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Abstract: In this paper we introduce the theory of multiplication alteration by two-cocycles for bialgebras with weak
antipode. Moreover, by the connection between two-cocycles and invertible skew pairings, we show that a special case
of the double cross product of these bialgebras can be obtained as a deformation of a bialgebra with weak antipode.
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1. Introduction
Let R be a commutative ring with a unit and denote the tensor product over R by ⊗ . In [17], we can
find one of the first interesting examples of multiplication alteration by a 2-cocycle for R -algebras. In this
case, Sweedler proved that if U is an associative unitary R -algebra with a commutative subalgebra A and
σ =

∑
ai ⊗ bi ⊗ ci ∈ A⊗A⊗A is an Amistur 2-cocycle, then U admits a new associative an unitary product

defined by u · v =
∑

ai ubi vci for all u, v ∈ U . Moreover, if U is central separable, U with the new product is
still central separable and is isomorphic to the Rosenberg–Zelinsky central separable algebra obtained from the
2 -cocycle σ−1 (see [15]). Later, in [3], Doi discovered a new construction to modify the algebra structure of a
bialgebra A over a field F using an invertible 2-cocycle σ in A . In this case, if σ : A⊗A → F is the 2-cocycle,
the new product on A is defined by

a ∗ b =
∑

σ(a1 ⊗ b1)a2b2σ
−1(a3 ⊗ b3)

for a, b ∈ A . With this new algebra structure and the original coalgebra structure, A is a new bialgebra denoted
by Aσ, and if A is a Hopf algebra with antipode λA , so is Aσ whit antipode given by

λAσ (a) =
∑

σ(a1 ⊗ λA(a2))λA(a3)σ
−1(λA(a4)⊗ a5)

for a ∈ A .
A particular case of alterations of products by 2-cocycles are provided by invertible skew pairings on

bialgebras. If A and H are bialgebras and τ : A ⊗ H → F is an invertible skew pairing, in [4], Doi and
Takeuchi defined a new biagebra A ▷◁τ H in the following way: The morphism ω : A ⊗ H ⊗ A ⊗ H → F
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defined by ω((a ⊗ g) ⊗ (b ⊗ h)) = εA(a)εH(h)τ(b ⊗ g) , for a, b ∈ A and g, h ∈ H , is a 2-cocycle in A ⊗ H

and A ▷◁τ H = (A⊗H)ω . The construction of A ▷◁τ H is an example of Majid’s double crossproduct A ▷◁ H

([11], [12]) where the left H -module structure of A , denoted by φA , and the right A -module structure of H ,
denoted by ϕH , are defined by

φA(h⊗ a) =
∑

τ(a1 ⊗ h1)a2τ
−1(a3 ⊗ h2), ϕH(h⊗ a) =

∑
τ(a1 ⊗ h1)h2τ

−1(a2 ⊗ h3)

for a ∈ A and h ∈ H .
The main motivation of this paper is to introduce a theory of alteration multiplication, in the sense of

[3], for bialgebras with weak antipode in monoidal categories. This kind of bialgebra was introduced by Li in
[8] in order to construct some singular solutions of the quantum Yang–Baxter equation (see also [10]). It is
necessary to highlight that the name chosen by Li was weak Hopf algebra, but there is another notion with
the same name which is well established in the literature (see [2]), and in order to avoid confusion (they are
different notions and none is contained in the other), we will use the name of bialgebra with weak antipode to
refer to our structure. Anyway, we are convinced that the construction can be carried out for classical weak
Hopf algebras, which will be the goal of a future work.

Throughout this paper, C denotes a strict symmetric monoidal category with tensor product ⊗ , unit
object K , and natural isomorphism of symmetry c . For each object M in C , we denote the identity morphism
by idM : M → M and, for simplicity of notation, given objects M , N , and P in C and a morphism f : M → N ,
we write P ⊗f for idP ⊗f and f⊗P for f⊗ idP . There is no loss of generality in assuming the strict character
for C because it is well known that we can construct a strict monoidal category Cst which is tensor equivalent to
C (see [7] for the details). As a consequence, the results proved in this paper hold for every nonstrict symmetric
monoidal category.

An outline of the paper is as follows. After this introduction, in Section 2 , we consider the notion of
2 -cocycle and prove some properties related with bialgebras with weak antipode. The main result recovers
Doi’s construction on Hopf algebras [3] by showing that the deformation of a bialgebra with weak antipode
by a 2 -cocycle is also a bialgebra with weak antipode (Theorem 2.6). In Section 3 , we introduce the notion
of skew pairing for bialgebras with weak antipode (inspired in the definition of weak Hopf pair given by Li in
[9]) and we prove that, as in the Hopf algebra setting, if there exists a skew pairing for two bialgebras with
anti-comultiplicative weak antipode A and H , we can define a new bialgebra with anti-comultiplicative weak
antipode A ▷◁τ H such that A ▷◁τ H = (A⊗H)ω for some 2-cocycle ω induced by τ (Proposition 3.7). Finally,
we explain the reasons why, unlike what happens for Hopf algebras, our construction is not applicable in order
to give a description of the Drinfeld’s double (Remark 3.8).

2. Product alterations by two-cocycles for bialgebras with weak antipode

In this section, we prove that, as in the Hopf algebra case (see [4]), 2 -cocycles provide a way of altering the
product of a bialgebra with weak antipode to produce another bialgebra with weak antipode, but firstly, and
for completeness and consistency, we will remind some useful concepts.

An algebra in C is a triple A = (A, ηA, µA) where A is an object in C and ηA : K → A (unit), µA : A⊗
A → A (product) are morphisms in C such that µA◦(A⊗ηA) = idA = µA◦(ηA⊗A) , µA◦(A⊗µA) = µA◦(µA⊗A) .
If A , B are algebras in C , so is A⊗B , where ηA⊗B = ηA ⊗ ηB and µA⊗B = (µA ⊗ µB) ◦ (A⊗ cB,A ⊗B).
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A coalgebra in C is a triple D = (D, εD, δD) where D is an object in C and εD : D → K (counit),
δD : D → D ⊗ D (coproduct) are morphisms in C such that (εD ⊗ D) ◦ δD = idD = (D ⊗ εD) ◦ δD ,
(δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD. If D , E are coalgebras in C , so is D ⊗ E , where εD⊗E = εD ⊗ εE and
δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

If A is an algebra, B is a coalgebra and f : B → A , g : B → A are morphisms, we define the convolution
product by f ∗ g = µA ◦ (f ⊗ g) ◦ δB . We will say that f : B → A is convolution invertible if there exists
f−1 : B → A such that f ∗ f−1 = εB ⊗ ηA = f−1 ∗ f .

A bialgebra H is an algebra (H, ηH , µH) and a coalgebra (H, εH , δH) such that ηH and µH are
morphisms of coalgebras (equivalently, εH and δH are morphisms of algebras), i.e., δH ◦ ηH = ηH ◦ ηH and
δH ◦ µH = µH⊗H ◦ (δH ⊗ δH) . Moreover, if there exists a morphism TH : H → H (called weak antipode) such
that

idH ∗ T ∗ idH = idH , (1)

T ∗ idH ∗ T = T, (2)

we will say that H is a bialgebra with weak antipode. The morphism T is not unique, and using (1), it is easy
to see that T ◦ ηH = ηH and εH ◦ T = εH . Moreover, T is antimultiplicative if T ◦ µH = µH ◦ cH,H ◦ (T ⊗ T ) ,
and anti-comultiplicative if δH ◦ T = (T ⊗ T ) ◦ cH,H ◦ δH . Finally, we will define the morphisms target and
source as ΠL

H = idH ∗ T and ΠR
H = T ∗ idH , respectively.

Examples 2.1 The most natural examples of bialgebras with weak antipode coming by considering S a finite
Clifford monoid. Then the semigroup algebra kS is a finite dimensional bialgebra with antimultiplicative and
anti-comultiplicative weak antipode, and so is (kS)∗ (see [8]). Moreover the tensor product kS ⊗ (kS)∗ is also
a finite dimensional bialgebra with antimultiplicative and anti-comultiplicative weak antipode. Note that none of
these bialgebras are Hopf algebras unless S is a group. Other more sophisticated examples are the weak quantized
enveloping algebras of semisimple Lie algebras, generalized Kac–Moody algebras and superalgebras (see [1] and
[6] for details).

Two more concrete examples can be given from those obtained in [1]. In this article, the authors consider
the example of finite dimensional Hopf algebra given by Sweedler in [16] and, modifying slightly the relations
between the generators, they obtain two new bialgebras with weak antipode that are not Hopf algebras. It can be
proven that the weak antipode of these bialgebras is antimultiplicative, which makes their dual bialgebras with
anti-comultiplicative weak antipode.

Now we recall the notion of 2 -cocycle.

Definition 2.2 Let H be a bialgebra, and let σ : H ⊗H → K be a convolution invertible morphism. We say
that σ is a 2 -cocycle if the equality

∂1(σ) ∗ ∂3(σ) = ∂4(σ) ∗ ∂2(σ) (3)

holds, where ∂1(σ) = εH ⊗σ , ∂2(σ) = σ ◦ (µH ⊗H) , ∂3(σ) = σ ◦ (H ⊗µH) and ∂4(σ) = σ⊗ εH . Equivalently,
a convolution invertible morphism σ : H ⊗H → K is a 2 -cocycle if

σ ◦ (H ⊗ ((σ ⊗ µH) ◦ δH⊗H)) = σ ◦ (((σ ⊗ µH) ◦ δH⊗H)⊗H). (4)
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The 2 -cocycle σ is called normal if further

σ ◦ (ηH ⊗H) = εH = σ ◦ (H ⊗ ηH). (5)

It is not difficult to show that, if σ is a 2 -cocycle, then χ = (σ−1 ◦ (ηH ⊗ ηH))⊗ σ is a normal 2 -cocycle
with convolution inverse χ−1 = (σ ◦ (ηH ⊗ ηH)) ⊗ σ−1 . As a consequence, in the following, we assume all
2 -cocycles are normal. Moreover, if σ is normal so is σ−1 , and the following equalities hold:

∂3(σ) ∗ ∂2(σ−1) = ∂1(σ−1) ∗ ∂4(σ), (6)

∂2(σ) ∗ ∂3(σ−1) = ∂4(σ−1) ∗ ∂1(σ), (7)

i.e.

(σ⊗σ−1)◦ (H⊗µH⊗H ⊗H)◦ (H⊗cH,H ⊗cH,H ⊗H)◦ (δH ⊗δH ⊗δH) = (σ⊗σ−1)◦ (H⊗ (cH,H ◦δH)⊗H), (8)

((σ ◦ (µH ⊗H))⊗ (σ−1 ◦ (H ⊗ µH))) ◦ δH⊗H⊗H = (σ−1 ⊗ σ) ◦ (H ⊗ δH ⊗H). (9)

Proposition 2.3 Let H be a bialgebra with anti-comultiplicative weak antipode T and let σ : H ⊗H → K be
a convolution invertible morphism with inverse σ−1 . Then, for i = L,R :

(i) The following conditions are equivalent:

σ ◦ (Πi
H ⊗H) = εH ⊗ εH . (10)

σ−1 ◦ (Πi
H ⊗H) = εH ⊗ εH . (11)

(ii) The following conditions are equivalent:

σ ◦ (H ⊗Πi
H) = εH ⊗ εH . (12)

σ−1 ◦ (H ⊗Πi
H) = εH ⊗ εH . (13)

Proof We begin by showing the if part of (i). The only if part is similar and we leave the details to the reader.
First of all, note that

δH ◦ΠL
H = (µH ⊗ΠL

H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ T ) ◦ δH . (14)

Indeed,

δH ◦ΠL
H = µH⊗H ◦ (δH ⊗ (δH ◦ T )) ◦ δH(H bialgebra)

= µH⊗H ◦ (δH ⊗ ((T ⊗ T ) ◦ cH,H ◦ δH)) ◦ δH(T anti-comultiplicative)

= (µH ⊗ΠL
H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ T ) ◦ δH (naturality of c).

Then, if we assume that σ ◦ (ΠL
H ⊗H) = εH ⊗ εH ,
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εH ⊗ εH = (σ−1 ∗ σ) ◦ (ΠL
H ⊗H)(σ convolution invertible)

= (σ−1 ⊗ σ) ◦ (H ⊗ cH,H ⊗H) ◦ (((µH ⊗ΠL
H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ T ) ◦ δH)⊗ δH) (by (14))

= σ−1 ◦ (ΠL
H ⊗H) (by (10)).

On the other hand, by using

δH ◦ΠR
H = (ΠR

H ⊗ µH) ◦ (cH,H ⊗H) ◦ (T ⊗ δH) ◦ δH , (15)

we get the corresponding equality involving ΠR
H .

The proof for (ii) follows a similar pattern.
2

Proposition 2.4 Let H be a bialgebra with anti-comultiplicative weak antipode T and let σ : H ⊗H → K be
a 2-cocycle. Define f : H → K as f = σ ◦ (H ⊗ T ) ◦ δH . If the equalities

σ ◦ (Πi
H ⊗H) = εH ⊗ εH = σ ◦ (H ⊗Πi

H),

i = L,R hold, then f is convolution invertible with inverse f−1 = σ−1 ◦ (T ⊗H) ◦ δH .

Proof
Indeed,

f ∗ f−1

= (σ ⊗ σ−1) ◦ (H ⊗ (cH,H ◦ δH ◦ T )⊗H) ◦ (δH ⊗H) ◦ δH (T anti-comultiplicative)

= (∂1(σ−1) ∗ ∂4(σ)) ◦ (((H ⊗ T ) ◦ δH)⊗H) ◦ δH (by naturality of c and counit properties)

= (∂3(σ) ∗ ∂2(σ−1)) ◦ (((H ⊗ T ) ◦ δH)⊗H) ◦ δH (by (6))

= (σ⊗σ−1)◦(H⊗µH⊗H ⊗H)◦(H⊗cH,H ⊗cH,H ⊗H)◦(((δH ⊗((T ⊗T )◦cH,H ◦δH)⊗δH)◦(δH ⊗H)◦δH
(T anti-comultiplicative)

= ((σ ◦ (H ⊗ΠR
H))⊗ (σ−1 ◦ (ΠL

H ⊗H))) ◦ δH⊗H ◦ δH (naturality of c and coassociativity)

= (εH ⊗ εH ⊗ εH ⊗ εH) ◦ δH⊗H ◦ δH (by (11) and (12))

= εH (counit properties).

On the other hand,

f−1 ∗ f

= (∂4(σ−1) ∗ ∂1(σ)) ◦ (T ⊗H ⊗ T ) ◦ (δH ⊗H) ◦ δH (by coassociativity, naturality of c and counit properties)

= (∂2(σ) ∗ ∂3(σ−1)) ◦ (T ⊗H ⊗ T ) ◦ (δH ⊗H) ◦ δH (by (7))

= (σ ⊗ σ−1) ◦ (µH ⊗ cH,H ⊗ µH) ◦ (H ⊗ cH,H ⊗ cH,H ⊗H)
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◦(((T ⊗ T ) ◦ cH,H ◦ δH)⊗ δH ⊗ ((T ⊗ T ) ◦ cH,H ◦ δH)) ◦ (δH ⊗H) ◦ δH (T anti-comultiplicative)

= (((σ ◦ (ΠR
H ⊗ T ))⊗ (σ−1 ◦ (T ⊗ΠL

H))) ◦ (H ⊗ cH,H ⊗H) ◦ ((cH,H ◦ δH)⊗ (cH,H ◦ δH)) ◦ δH (coassociativity

and naturality of c )

= (εH ⊗ εH ⊗ εH ⊗ εH) ◦ (H ⊗ cH,H ⊗H) ◦ ((cH,H ◦ δH)⊗ (cH,H ◦ δH)) ◦ δH (by (13) and (10))

= εH (counit properties),

and the proof is complete.
2

Proposition 2.5 Let H be a bialgebra and let σ be a 2-cocycle. Define the product µHσ as

µHσ = (σ ⊗ µH ⊗ σ−1) ◦ (H ⊗H ⊗ δH⊗H) ◦ δH⊗H .

Then Hσ = (H, ηHσ = ηH , µHσ , εHσ = εH , δHσ = δH) is a bialgebra.

Proof [3], Theorem 1.6. 2

The following theorem is the main result of this section. We will show that, under suitable conditions,
Hσ is also a bialgebra with weak antipode.

Theorem 2.6 Let H be a bialgebra with anti-comultiplicative weak antipode T and let σ be a 2-cocycle such
that (10) and (12) hold, i = L,R . Then Hσ is a bialgebra with anti-comultiplicative weak antipode

THσ = (f ⊗ T ⊗ f−1) ◦ (H ⊗ δH) ◦ δH ,

and the corresponding equalities of Proposition 2.3 hold for Hσ .

Proof By Proposition 2.5, Hσ is a bialgebra. Now we compute the target and source morphisms:

ΠL
Hσ

= µHσ ◦ (H ⊗ THσ ) ◦ δH

= µHσ ◦ (H ⊗ σ ⊗H) ◦ (δH ⊗ (cH,H ◦ δH ◦ T )⊗ f−1) ◦ (H ⊗ δH) ◦ δH (T anti-comultiplicative)

= (σ⊗ µH) ◦ (δH⊗H ⊗ (σ−1 ∗ σ)) ◦ (δH⊗H ⊗ f−1) ◦ (H ⊗ T ⊗H) ◦ (δH ⊗H) ◦ δH (coassociativity and naturality

of c )

= (σ ⊗ µH) ◦ (δH⊗H ⊗ f−1) ◦ (H ⊗ T ⊗H) ◦ (δH ⊗H) ◦ δH (σ convolution invertible)

= (σ ⊗ µH) ◦ (δH⊗H ⊗ σ−1) ◦ (H ⊗ (cH,H ◦ δH ◦ T )⊗H) ◦ (δH ⊗H) ◦ δH (T anti-comultiplicative)

= ((∂1(σ−1) ∗ ∂4(σ))⊗H) ◦ (H ⊗H ⊗ (cH,H ◦ (µH ⊗H))) ◦ (δH⊗H ⊗H) ◦ (H ⊗ T ⊗H) ◦ (δH ⊗H) ◦ δH
(coassociativity and naturality of c )

= ((∂3(σ) ∗ ∂2(σ−1))⊗H) ◦ (H ⊗H ⊗ (cH,H ◦ (µH ⊗H))) ◦ (δH⊗H ⊗H) ◦ (H ⊗ T ⊗H) ◦ (δH ⊗H) ◦ δH
(by (6))

= (((σ ⊗ σ−1) ◦ (H ⊗ µH⊗H ⊗H) ◦ (H ⊗ cH,H ⊗ cH,H ⊗H)
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◦(δH ⊗ ((T ⊗ T ) ◦ cH,H ◦ δH)⊗ δH))⊗H) ◦ (H ⊗H ⊗ (cH,H ◦ (µH ⊗H))) ◦ (H ⊗ cH,H ⊗ T ⊗H)

◦(δH ⊗ (cH,H ◦ δH)⊗H) ◦ (δH ⊗H) ◦ δH (T anti-comultiplicative)

= ((((σ ◦ (H ⊗ΠR
H))⊗ σ−1) ◦ (H ⊗ cH,H ⊗H) ◦ (H ⊗ µH ⊗ δH))⊗H) ◦ (δH ⊗ T ⊗ cH,H)

◦(H ⊗ (cH,H ◦ (ΠL
H ⊗H) ◦ δH)⊗H) ◦ (δH ⊗H) ◦ δH (coassociativity and naturality of c )

= (σ−1 ⊗ΠL
H) ◦ (µH ⊗ cH,H) ◦ (H ⊗ (cH,H ◦ (H ⊗ T ) ◦ δH)⊗H) ◦ (δH ⊗H) ◦ δH (by (12)).

Now, using (10), we have that

σ ◦ (ΠL
Hσ ⊗H) = (σ ◦ (ΠL

H ⊗H) ◦ δH)⊗ εH = εH ⊗ εH ,

and by (11), σ ◦ (H ⊗ΠL
Hσ ) = εH ⊗ εH .

In a similar way,

ΠR
Hσ = (ΠR

H ⊗ σ) ◦ (cH,H ⊗ µH) ◦ (H ⊗ (cH,H ◦ (T ⊗H) ◦ δH)⊗H) ◦ (H ⊗ δH) ◦ δH ,

and σ ◦ (ΠR
Hσ ⊗H) = εH ⊗ εH = σ ◦ (H ⊗ΠR

H) .
Now we get that THσ is a weak antipode for Hσ . First of all, using the equalities (14), (15), (10), and

(12), it is not difficult to see that the following equalities hold:

µHσ ◦ (ΠL
H ⊗H) = (σ ⊗ µH) ◦ δH⊗H ◦ (ΠL

H ⊗H). (16)

µHσ ◦ (H ⊗ΠL
H) = (σ ⊗ µH) ◦ δH⊗H ◦ (H ⊗ΠL

H). (17)

µHσ ◦ (ΠR
H ⊗H) = (µH ⊗ σ−1) ◦ δH⊗H ◦ (ΠR

H ⊗H). (18)

µHσ ◦ (H ⊗ΠR
H) = (µH ⊗ σ−1) ◦ δH⊗H ◦ (H ⊗ΠR

H). (19)

Then

idH ∗ THσ ∗ idH

= ΠL
Hσ ∗ idH

= (σ−1 ⊗ (µHσ ◦ (ΠL
H ⊗H))) ◦ (H ⊗ cH,H ⊗H) ◦ (((µH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ T ) ◦ δH) ⊗ δH) ◦ δH

(coassociativity and computations for ΠL
Hσ )

= (σ−1 ⊗ ((σ ⊗ µH) ◦ δH⊗H ◦ (ΠL
H ⊗H))) ◦ (H ⊗ cH,H ⊗H)

◦(((µH ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ T ) ◦ δH)⊗ δH) ◦ δH (by (16))

= ((σ−1 ∗ σ)⊗ µH) ◦ δH⊗H ◦ (ΠL
H ⊗H) ◦ δH (by (14))

= ΠL
H ∗ idH (σ convolution invertible)
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= idH (by (1)).

On the other hand,

THσ ∗ idH ∗ THσ

= µHσ ◦ (µHσ ⊗ THσ ) ◦ (H ⊗ σ−1 ⊗ δH) ◦ ((cH,H ◦ δH ◦ T ) ⊗ T ⊗ T ) ◦ (f ⊗ δH ⊗H) ◦ (δH ⊗H) ◦ δH (T

anti-comultiplicative)

= µHσ ◦ (µH ⊗ σ−1 ⊗ THσ ) ◦ ((σ ∗ σ−1)⊗ δH⊗H ⊗H) ◦ (H ⊗ cH,H ⊗ δH) ◦ ((δH ◦ T )⊗H ⊗H)

◦(f ⊗ δH ⊗H) ◦ (δH ⊗H) ◦ δH (coassociativity)

= µHσ ◦ (µH ⊗ σ−1 ⊗ THσ ) ◦ (δH⊗H ⊗H) ◦ (f ⊗ T ⊗ δH) ◦ (δH ⊗H) ◦ δH (σ convolution invertible)

= µHσ ◦ (µH ⊗ σ−1 ⊗ THσ ) ◦ (H ⊗ cH,H ⊗H ⊗H) ◦ (f ⊗ ((T ⊗ T ) ◦ cH,H ◦ δH)⊗ δH ⊗H) ◦ (δH ⊗ δH) ◦ δH
(T anti-comultiplicative)

= µHσ ◦ (ΠR
H ⊗H) ◦ (H ⊗ σ−1 ⊗ THσ ) ◦ (f ⊗ (cH,H ◦ (T ⊗H) ◦ δH)⊗ δH) ◦ (δH ⊗H) ◦ δH (naturality of c )

= (µH ⊗ σ−1) ◦ δH⊗H ◦ (ΠR
H ⊗H) ◦ (H ⊗ σ−1 ⊗ THσ ) ◦ (f ⊗ (cH,H ◦ (T ⊗H) ◦ δH)⊗ δH) ◦ (δH ⊗H) ◦ δH

(by (18))

= (µH ⊗ σ−1) ◦ δH⊗H ◦ (ΠR
H ⊗ σ−1 ⊗ σ ⊗H) ◦ (f ⊗ ((H ⊗ T ) ◦ cH,H ◦ δH)⊗ δH ⊗ T ⊗ ((T ⊗ f−1) ◦ δH))

◦(δH ⊗H ⊗ δH) ◦ (H ⊗ δH) ◦ δH (coassociativity)

= (µH⊗σ−1)◦δH⊗H◦(ΠR
H⊗(∂4(σ−1)∗∂1(σ))⊗((T⊗f−1)◦δH))◦(((H⊗T )◦cH,H◦δH)⊗H⊗((T⊗H)◦δH))

◦(((f ⊗H) ◦ δH)⊗ δH) ◦ δH (definition of ∂ morphisms)

= (µH⊗σ−1)◦δH⊗H◦(ΠR
H⊗(∂2(σ)∗∂3(σ−1))⊗((T⊗f−1)◦δH))◦(((H⊗T )◦cH,H◦δH)⊗H⊗((T⊗H)◦δH))

◦(((f ⊗H) ◦ δH)⊗ δH) ◦ δH (by (7))

= (µH ⊗ σ−1) ◦ δH⊗H ◦ (ΠR
H ⊗ ((σ ⊗ σ−1) ◦ (µH ⊗ cH,H ⊗ µH) ◦ (H ⊗ cH,H ⊗ cH,H ⊗H))⊗H)

◦(H ⊗ (δH ◦ T )⊗ δH ⊗ ((T ⊗ T ) ◦ cH,H ◦ δH)⊗ T ) ◦ (f ⊗ (cH,H ◦ δH)⊗ δH ⊗ ((H ⊗ f−1) ◦ δH))

◦(δH ⊗ δH) ◦ δH (definition of ∂ morphisms, T anti-comultiplicative)

= (µH ⊗ σ−1) ◦ δH⊗H ◦ (H ⊗ σ ⊗H) ◦ (H ⊗ µH ⊗ (σ−1 ◦ (H ⊗ΠL
H))⊗ T ⊗H)

◦(H ⊗H ⊗ cH,H ⊗H ⊗H ⊗H) ◦ (H ⊗ δH ⊗H ⊗ δH ⊗H)

◦(f ⊗ (cH,H ◦ (T ⊗ΠR
H) ◦ δH)⊗ δH ⊗ ((T ⊗ f−1) ◦ δH)) ◦ (δH ⊗ δH) ◦ δH (naturality of c )

= (µH ⊗ σ−1) ◦ δH⊗H ◦ (H ⊗ (σ ◦ (µH ⊗H))⊗H) ◦ (f ⊗ (cH,H ◦ (T ⊗ΠR
H) ◦ δH)

⊗H ⊗ ((T ⊗ T ) ◦ δH)⊗ f−1) ◦ (δH ⊗H ⊗ δH) ◦ (H ⊗ δH) ◦ δH (by (13))

= (µH ⊗ σ−1) ◦ δH⊗H ◦ (H ⊗ σ ⊗H) ◦ (f ⊗ ((ΠR
H ⊗ µH) ◦ (cH,H ⊗H) ◦ (T ⊗ δH) ◦ δH)
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⊗(cH,H ◦ δH ◦ T )⊗ f−1) ◦ (δH ⊗ δH) ◦ δH (T anti-comultiplicative)

= (µH ⊗ σ−1) ◦ δH⊗H ◦ (H ⊗ σ ⊗H) ◦ (f ⊗ (δH ◦ΠR
H)⊗ (cH,H ◦ δH ◦ T )⊗ f−1) ◦ (δH ⊗ δH) ◦ δH (by (15))

= (µH ⊗ (σ−1 ∗ σ)) ◦ δH⊗H ◦ (f ⊗ΠR
H ⊗ T ⊗ f−1) ◦ (δH ⊗ δH) ◦ δH ( naturality of c )

= µH ◦ (ΠR
H ⊗ T ) ◦ δH ◦ (f ⊗H ⊗ f−1) ◦ (H ⊗ δH) ◦ δH (σ convolution invertible)

= (T ∗ idH ∗ T ) ◦ (f ⊗H ⊗ f−1) ◦ (H ⊗ δH) ◦ δH

= THσ (by (2)).

Finally, THσ is anti-comultiplicative because so is T and by Proposition 2.4. Indeed,

δH ◦ THσ

= cH,H ◦ (T ⊗ T ) ◦ δH ◦ (f ⊗H ⊗ f−1) ◦ (H ⊗ δH) ◦ δH

= cH,H ◦ (T ⊗ (f−1 ∗ f)⊗ T ) ◦ (f ⊗ δH ⊗H ⊗ f−1) ◦ (δH ⊗ δH) ◦ δH

= cH,H ◦ (THσ ⊗ THσ ) ◦ δH ,

and the proof is complete.
2

Remark 2.7 Note that, by Proposition 2.4, T = THσ ◦ (f−1 ⊗H ⊗ f) ◦ (H ⊗ δH) ◦ δH . As a consequence, it
is easy to see that T is bijective if and only if so is THσ .

3. Two-cocycles, skew pairings, and double crossproducts
It is a well known fact that a class of 2 -cocycles is provided by invertible skew pairings on bialgebras. In this
section, we will show that when we consider bialgebras with weak antipode the bialgebra built with this method
is also a bialgebra with weak antipode.

First of all, we introduce our notion of skew pairing for bialgebras with weak antipode. The definition is
inspired in the one given by Li in [9] by the name of weak Hopf pair. Although it may seem that we have removed
the conditions involving the unit morphisms, we will show that they can be obtained under the hypothesis of
considering convolution invertible skew pairings, and this assumption will be essential to obtain the results of
this section.

Definition 3.1 Let A and H be bialgebras with weak antipodes TA and TH , respectively. A pairing between
A and H over K is a morphism τ : A⊗H → K such that the equalities

(a1) τ ◦ (µA ⊗H) = (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ (A⊗A⊗ δH),

(a2) τ ◦ (A⊗ µH) = (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ (δA ⊗H ⊗H),

hold.
A skew pairing between A and H is a pairing between Acop and H , i. e. a morphism τ : A⊗H → K

satisfying (a1) and

1226



ALONSO ÁLVAREZ et al./Turk J Math

(a2’) τ ◦ (A⊗ µH) = (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ ((cA,A ◦ δA)⊗H ⊗H).

Proposition 3.2 Let A and H be bialgebras with weak antipodes TA and TH , respectively. Let τ : A⊗H → K

be a skew pairing. Then the following assertions are equivalent:

(i) τ is convolution invertible.

(ii) τ ◦ (Πi
A ⊗H) = εA ⊗ εH , i = L,K .

Moreover, in this case τ−1 = τ ◦ (TA ⊗H) is the convolution inverse of τ .

Proof
(i) ⇒ (ii). Assume that τ is convolution invertible with inverse τ−1 . Then, by (1) for A and (a1),

τ = τ ◦ ((idA ∗ TA ∗ idA)⊗H) = (τ ◦ (ΠL
A ⊗H)) ∗ τ.

Then
εA ⊗ εH = τ ∗ τ−1 = (τ ◦ (ΠL

A ⊗H)) ∗ τ ∗ τ−1 = τ ◦ (ΠL
A ⊗H),

and in a similar way, but using that idA ∗ TA ∗ idA = idA ∗ ΠR
A , we get that τ ◦ (ΠR

A ⊗ H) = εA ⊗ εH . Now
consider the morphism τ−1 = τ ◦ (TA ⊗H) . Then, by (a1),

τ ∗ τ−1 = τ ◦ (ΠL
A ⊗H) = εA ⊗ εH ,

τ−1 ∗ τ = τ ◦ (ΠR
A ⊗H) = εA ⊗ εH ,

and τ−1 is the convolution inverse of τ .
(ii) ⇒ (i). Define τ−1 = τ ◦ (TA ⊗H) . By (a1), τ−1 is the convolution inverse of τ .

2

Proposition 3.3 Let A and H be bialgebras with anti-comultiplicative weak antipodes TA and TH , respectively.
Let τ : A⊗H → K be a convolution invertible skew pairing. Then, for i = L,K ,

τ ◦ (A⊗Πi
H) = εA ⊗ εH . (20)

As a consequence, τ = τ ◦ (TA ⊗ TH) = τ−1 ◦ (A⊗ TH) and τ−1 ◦ (A⊗Πi
H) = εA ⊗ εH , i = L,K .

Proof
By Proposition 3.2, τ−1 = τ ◦ (TA ⊗H) . Then

τ−1

= τ ◦ (TA ⊗ (idH ∗ TH ∗ idH)) (by (1))

= (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ ((cA,A ◦ δA ◦ TA)⊗ ((ΠL
H ⊗H) ◦ δH)) (by (a2))

= (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ (((TA ⊗ TA) ◦ δA)⊗ ((ΠL
H ⊗H) ◦ δH)) (T anti-comultiplicative)

= ((τ−1 ◦ (A⊗ΠL
H)) ∗ τ−1) (by Proposition 3.2).
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Then,
τ−1 ◦ (A⊗ΠL

H) = (τ−1 ◦ (A⊗ΠL
H)) ∗ τ−1 ∗ τ = τ−1 ∗ τ = εA ⊗ εH .

Now, using (14),

εA ⊗ εH

= (τ ∗ τ−1) ◦ (A⊗ΠL
H)

= (τ ⊗ τ−1) ◦ (A⊗ cA,H ⊗H) ◦ (δA ⊗ ((µH ⊗ΠL
H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ T ) ◦ δH))

= τ ◦ (A⊗ΠL
H).

In a similar way we get that τ−1 ◦ (A ⊗ ΠR
H) = εA ⊗ εH , and using (15), we obtain that εA ⊗ εH =

τ ◦ (A⊗ΠR
H).

On the other hand,

τ−1 ∗ (τ ◦ (TA ⊗ TH))

= (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ (((TA ⊗ TA) ◦ δA)⊗ ((H ⊗ TH) ◦ δH))

= (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ ((cA,A ◦ δA ◦ TA)⊗ ((H ⊗ TH) ◦ δH))

= τ ◦ (TA ⊗ΠL
H)

= εA ⊗ εH ,

and with similar computations we obtain that (τ ◦ (TA ⊗ TH)) ∗ τ−1 = εA ⊗ εH . As a consequence, τ =

τ ◦ (TA⊗TH) = τ−1 ◦ (A⊗TH) . Finally, by the definition of τ−1 , it is obvious that τ−1 ◦ (A⊗Πi
H) = εA⊗ εH ,

i = L,K .
2

Remark 3.4 As a consequence of Propositions 3.2 and 3.3, we have that if the skew pairing τ is invertible,
the equalities

τ ◦ (ηA ⊗H) = εH = τ−1 ◦ (ηA ⊗H), (21)

τ ◦ (A⊗ ηH) = εA = τ−1 ◦ (A⊗ ηH), (22)

hold.
In the Hopf algebra setting, (21) implies that τ is convolution invertible with inverse τ−1 = τ ◦(TA⊗H) ,

and therefore it also implies (22), because by (a1),

τ ∗ τ−1 = τ ◦ (ΠL
A ⊗H) = τ ◦ (ηA ⊗H) ◦ (εA ⊗H) = εA ⊗ εH

and
τ−1 ∗ τ = τ ◦ (ΠR

A ⊗H) = τ ◦ (ηA ⊗H) ◦ (εA ⊗H) = εA ⊗ εH .

Note that the above proof does not work in the bialgebra with weak antipode setting because in this case
ΠL

A ̸= ηA ◦ εA ̸= ΠR
A .
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Proposition 3.5 Let A and H be bialgebras with anti-comultiplicative weak antipodes TA and TH , respectively.
Moreover, assume that TH is bijective. Let τ : A⊗H → K be a convolution invertible skew pairing. Then,

τ−1 = τ ◦ (A⊗ T−1
H ). (23)

As a consequence, for i = L,K ,
τ−1 ◦ (Πi

A ⊗H) = εA ⊗ εH . (24)

Proof Indeed,

τ ∗ τ−1

= (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ ((cA,A ◦ δA)⊗ (cH,H ◦ (H ⊗ T−1
H ) ◦ δH)) (by naturality)

= τ ◦ (A⊗ (µH ◦ cH,H ◦ (H ⊗ T−1
H ) ◦ δH)) (by (a2’))

= τ ◦ (A⊗ (ΠL
H ◦ T−1

H )) (TH anti-comultiplicative)

= εA ⊗ εH (by 20),

and

τ−1 ∗ τ

= (τ ⊗ τ) ◦ (A⊗ cA,H ⊗H) ◦ ((cA,A ◦ δA)⊗ (cH,H ◦ (T−1
H ⊗H) ◦ δH))

= τ ◦ (A⊗ (µH ◦ cH,H ◦ (T−1
H ⊗H) ◦ δH))

= τ ◦ (A⊗ (ΠR
H ◦ T−1

H ))

= εA ⊗ εH .

Finally, by Proposition 3.2 we get that τ−1 ◦ (Πi
A ⊗H) = εA ⊗ εH , i = L,K .

2

Proposition 3.6 Let A , H be bialgebras with anti-comultiplicative weak antipodes TA and TH , respectively.
Then A ⊗ H = (A ⊗ H, ηA⊗H , µA⊗H , εA⊗H , δA⊗H) is a bialgebra with anti-comultiplicative weak antipode
TA⊗H = TA ⊗ TH .

Moreover, let τ : A ⊗ H → K be a convolution invertible skew pairing. The morphism σ = εA ⊗ (τ ◦
cH,A) ⊗ εH is a normal 2-cocycle with convolution inverse σ−1 = εA ⊗ (τ−1 ◦ cH,A) ⊗ εH and satisfies the
conditions (10) and (12).

Proof Straightforward. 2

By [4], if A and H are bialgebras and τ : A⊗H → K is a convolution invertible skew pairing, we can
form a new bialgebra A ▷◁τ H built on A⊗H with tensor product coproduct and unit, and algebra structure
given by

µA▷◁τH = (µA⊗µH)◦ (A⊗ τ ⊗A⊗H⊗ τ−1⊗H)◦ (A⊗ δA⊗H ⊗A⊗H⊗H)◦ (A⊗ δA⊗H ⊗H)◦ (A⊗ cH,A⊗H).
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Moreover, if A and H are Hopf algebras with antipodes TA and TH , respectively, A ▷◁τ H is a Hopf algebra
with antipode

TA▷◁τH = (τ−1 ⊗ TA ⊗ TH ⊗ τ) ◦ (A⊗H ⊗ δA⊗H) ◦ δA⊗H .

Following [4], the Hopf algebra A ▷◁τ H can be explained as a deformation of A⊗H by the 2 -cocycle associated
to a skew pairing. Now we extend this result to the bialgebra with weak antipode setting.

Proposition 3.7 Let A , H be bialgebras with anti-comultiplicative weak antipodes TA and TH , respectively.
Let τ : A⊗H → K be a convolution invertible skew pairing. Then

A ▷◁τ H = (A⊗H, ηA⊗H , µA▷◁τH , εA⊗H , δA⊗H , TA▷◁τH)

has a structure of bialgebra with anti-comultiplicative weak antipode.

Proof We only need to see that A ▷◁τ H is a deformation of A⊗H by the 2 -cocycle σ defined in Proposition
3.6. Indeed,

µ(A⊗H)σ

= (εA ⊗ (τ ◦ cH,A)⊗ εH ⊗µA⊗H ⊗ εA ⊗ (τ−1 ◦ cH,A)⊗ εH) ◦ (A⊗H ⊗A⊗H ⊗ δA⊗H⊗A⊗H) ◦ δA⊗H⊗A⊗H

= (µA ⊗µH) ◦ (A⊗ τ ⊗A⊗H ⊗ τ−1 ⊗H) ◦ (A⊗ δA⊗H ⊗A⊗H ⊗H) ◦ (A⊗ δA⊗H ⊗H) ◦ (A⊗ cH,A ⊗H)

= µA▷◁τH ,

and

T(A⊗H)σ

= (εA ⊗ (τ ◦ cH,A ◦ (H ⊗ TA))⊗ (εH ◦ TH)⊗ TA ⊗ TH

⊗(εA ◦ TA)⊗ (τ−1 ◦ cH,A ◦ (TH ⊗A))⊗ εH) ◦ (δA⊗H ⊗A⊗H ⊗ δA⊗H) ◦ (A⊗H ⊗ δA⊗H) ◦ δA⊗H

= (τ−1 ⊗ TA ⊗ TH ⊗ τ) ◦ (A⊗H ⊗ δA⊗H) ◦ δA⊗H

= TA▷◁τH .

2

Remark 3.8 The Hopf algebra A ▷◁τ H is a is a special case of the Majid–Radford double crossproduct
A ▷◁ H (see [13], [14]), one of whose most celebrated examples is the Drinfeld double [5] (roughly speaking,
a double crossproduct involving H and (H∗)cop , where H∗ is the dual of H ). In the Hopf algebra world, if
A = H∗cop ⊗H , the Drinfeld double D(H) can be obtained as Aσ , where σ is defined by

σ((x⊗ a), (y ⊗ b)) = x(1)y(a)ε(b),

for x, y ∈ H∗ and a, b ∈ H . Taking this into account, by Theorem 1.10 of [8], if H is a finite bialgebra with
weak antipode so is its dual, it seems natural to ask if our result can be applied in order to describe the Drinfeld
double of a bialgebra with weak antipode. Unfortunately, as we will explain next, the answer is negative and
the description of the Drinfeld double of bialgebras with weak antipode in terms of 2 -cocycles remains open.
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Indeed, assume that H is a finite bialgebra with weak antipode T . Consider the evaluation map
b : H ⊗ H∗ → K . It is not difficult to see that b is a skew pairing and the associated 2 -cocycle will be
σ = εH∗ ⊗ b⊗ εH . However, if we assume that b is convolution invertible, by Proposition 3.2 we have that

b ◦ (ΠL
H ⊗H∗) = εH ⊗ εH∗ = b ◦ (ΠR

H ⊗H∗).

Then, by the suitable compositions, we get that ΠL
H = ηH ⊗ εH = ΠR

H and H is a classical Hopf algebra.
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