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Abstract: The main object of the present paper is to state and prove a general nonnegativity principle in the framework
of multiterm fractional differential equations, which we use to investigate some iterative monotone sequences of lower
and upper solutions to a certain fractional eigenvalue problem. The obtained results can be easily extended to fractional
differential equations of distributed orders since the latter are the natural extension of multiterm fractional differential
equations.
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1. Introduction
Fractional calculus is now present in different fields of science and technology. We may encounter it in medicine,
ecology, seismology, physics, electronics, mechanics, viscoelasticity, etc. We also notice its traces in the classical
Abel singular integral equation. We address the reader to references [7, 12, 15]. Furthermore, some recent
papers have used the fractional derivative to model love and emotions, diffusion of oxygen to tissues through
capillaries, and the modeling of stochastic equations. Overall, there is no powerful method to explicitly solve such
equations. We point out that in recent papers some successful attempts in numerical approaches to the solution
were provided to solve fractional differential problems and the results were satisfactory. Regarding fractional
differential equations of distributed orders, they were first used by Caputo in 1967 to study elastic media as well
as to model dielectric induction and diffusion [5, 6]. As far as we are concerned, for the investigation of lower
and upper solutions of fractional boundary value problems as well as the maximum principle, we may cite the
leading works of [1, 3, 16]. Our main concern in this paper is first the extension of the nonnegativity principle
stated in Lemma 3.3 [2] to multiterm fractional differentials, and then its application to the investigation of
some iterative monotone sequences of lower and upper solutions to the following multiterm fractional eigenvalue
problem:  Lu (t) = −λq (t, u) , t ∈ J = (a, b) ,

u (a)− αu′ (a) = γ1,
u (b) + βu′ (b) = γ2,

(1)
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where

Lu (t) =
m∑
i=1

ai (t)
C
Dαi

a u (t) + b0 (t)u
′ (t)−

p∑
i=1

bi (t)
C
Dβi

a u (t) + c (t)u (t) .

Throughout this paper we shall use the following notations:

L1u (t) =

m∑
i=1

ai (t)D
αiu (t) + c (t)u (t) ,

L2u (t) = b0 (t)u
′ (t)−

p∑
i=1

bi (t)D
βiu (t) ,

Lu (t) = L1u (t) + L2u (t) ,

B1u = u (a)− αu′ (a) and B2u = u (b) + βu′ (b) .

Here are some problems regarding multiterm fractional differential equations and fractional differential
equations of distributed orders investigated in the last few years:

1) Linear case for constant coefficients:
m∑
i=1

cCi D
αi
0 u (t) = f (t) , t ∈ (0, T )

u(k) (0) = uk, for k = 0, 1, ..., n− 1,

where 0 < α1 < α2 < ... < αm , c1, ..., cm are real constant coefficients and n = [αm] + 1 , if αm is not an
integer; otherwise, n = αm . This problem was studied first by Hadid [10], then one year later by Hadid and
Luchko [11].

2) Linear case for variable coefficients:
m∑
i=1

ai (t)
C
Dαi

0 u (t) = f (t) , t ∈ (0, T )

u(k) (0) = uk, for k = 0, 1, ..., n− 1,

where 0 < α1 < α2 < ... < αm , c1, ..., cm are real constant coefficients, and n = [αm] + 1 , if αm is not an
integer; otherwise, n = αm . Such a problem was investigated by Miller and Ross [14].

3) Nonlinear case: {
CDα

0 u (t) = f
(
t, u (t) ,C Dα1

0 u (t) ,C Dα2
0 u (t) , ...,C Dαn

0 u (t)
)
, t ∈ (0, T )

u(k) (0) = uk, for k = 0, 1, ...,m,

where m < α ≤ m+ 1 , 0 < α1 < α2 < ... < αn < α . This problem was studied by Gejji and Jafari [9].

4) Distributed order case: { ∫m

0
β (r)

C
Dr

0y (t) dr = f (t) , t ∈ [0, T ] ,
y(k) (a) = yk, k = 0, 1, ...,m− 1, (0 < a ≤ T ),

studied by Ford and Morgado [8].
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5) Application to partial differential equations:
CDα

t u (t, x) +
m∑
i=1

λCi D
αi
t u (t, x) = div p (x)∇u (t, x)− q (x)u (t, x) ,

(t, x) ∈ (0, T )× Ω,
u|t=0 = u0 (x) , x ∈ Ω̄,

u|∂Ω = v (t, x) , (t, x) ∈ [0, T ]× ∂Ω,

Ω being an open and bounded subset of Rn and 0 < αm < ... < α1 < α ≤ 1 , λi ≥ 0 , for i = 1, ...,m , with
m ∈ N∗ . This problem was investigated by Luchko [13].

6) Investigation of monotone lower and upper solutions of the following boundary value problem (BVP, for
short): {

CDδ
0u (t) + g (t)u′ (t) + h (t)u (t) = −λk (t, u (t)) , t ∈ (0, 1) , 1 < δ ≤ 2,

u (0)− αu′ (0) = 0, u (1) + βu′ (1) = 0, α, β ≥ 0,

by Al-Refai [2].

The paper is organized as follows. We next present some preliminaries, and then the following section is
devoted to the generalization of the nonnegativity principle to multiterm fractional differential equations.
Next, we apply the obtained nonnegativity principle in the comparison between any two lower and upper
solutions to a certain multiterm fractional boundary value problem. Finally, we give some concluding
remarks.

2. Preliminaries
We recall the notion of the (left-sided) fractional Riemann–Liouville integral of order α of a function f : [a, b] →
R as well as its (left-sided) fractional derivative of order α in the sense of Caputo [7, 12].

Definition 1 Let α be a positive constant. We define the left-sided Riemann–Liouville fractional integral of
order α of a function f : [a, b] → R by the following formula:

Jα
a f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t > a,

where Γ(α) is the Gamma function, given by Γ (α) =
∫∞
0
e−ttα−1dt .

Let n = α if α is an integer number and n = [α] + 1 if α is not ( [α] being the integral part of α). We
define the left-sided Caputo fractional derivative of order α of f by

CDα
a f(t) = Jn−α

a f (n)(t) =
1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds,

if α is non integer, and
CDα

a f(t) = f (n)(t), for every t > a, if α is integer.

We recall the following useful relations:

1) CDα
aJ

α
a f(t) = f(t) (under the continuity of f or f ∈ L∞ ),
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2) JαC
a Dα

a f(t) = f (t)−
n−1∑
k=0

f(k)(a)
k! (t− a)

k (under the assumption of f ∈ ACn ([a, b])).

Throughout this paper we shall use the notation of the fractional derivative in the sense of Caputo of
order α of f by Dαf(t) instead of CDα

a f(t) .
In the sequel we need the following assumptions:

1) ai (t) , bj (t) ∈ C ([a, b] ;R+) , for i = 1, ...,m , j = 1, ..., p , with
∑m

i=1 ai (t) > 0 , for every t ∈ [a, b] ;

2) b0 (t) , c (t) ∈ C ([a, b] ;R) ;

3) q (t, x) ∈ C1 ([a, b]× R;R) ;

4) α1, ..., αm ∈ (1, 2] with αi ̸= αj , whenever i ̸= j , and β1, ..., βp ∈ (0, 1) with βi ̸= βj , whenever i ̸= j ;

5) α and β are nonnegative real numbers such that α ≥ b−a
α0−1 , where α0 = min1≤i≤m αi ;

6) λ , γ1 , γ2 are given real numbers.

3. Nonnegativity principle and existence of eigenfunctions

We begin our investigation by stating and proving the following result proved in [2] just for the closed interval
[0, 1] . We have:

Proposition 2 If f ∈ C2 ([a, b]) has a local minimum at a point t0 ∈ J = (a, b) , then for every 1 < γ < 2 ,
we have

Dγf (t0) ≥
(t0 − a)

−γ

Γ (2− γ)
[(γ − 1) {f (a)− f (t0)} − f ′ (a) (t0 − a)] . (2)

Proof Let us set g (t) = f (t)− f (t0) , t ∈ [a, b] . Then the function g satisfies the following:

g (t) ≥ 0, g (t0) = g′ (t0) = 0 and g′′ (t0) ≥ 0,

so that

Dγf (t0) = Dγg (t0) =
1

Γ (2− γ)

∫ t0

a

(t0 − s)
1−γ

g′′ (s) ds.

Integrating the right-hand side twice by parts, we obtain∫ t0

a

(t0 − s)
1−γ

g′′ (s) ds = lim
s→t0

(t0 − s)
1−γ

g′ (s)− (t0 − a)
1−γ

g′ (a)

+ (1− γ)

∫ t0

a

(t0 − s)
−γ

g′ (s) ds

= − (t0 − a)
1−γ

g′ (a)

+ (1− γ)

{
lim
s→t0

(t0 − s)
−γ

g (s)− (t0 − a)
−γ

g (a)

}

−γ (1− γ)

∫ t0

a

(t0 − s)
−1−γ

g (s) ds.

1299



FERFAR and MAZOUZI/Turk J Math

Since g′ (a) = f ′ (a) , g′′ (t) = f ′′ (t) , −γ (1− γ)
∫ t0
a

(t0 − s)
−1−γ

g (s) ds ≥ 0 , and

lim
s→t0

(t0 − s)
1−γ

g′ (s) = lim
s→t0

(t0 − s)
−γ

g (s) = 0,

then we get the desired inequality (2) at once. 2

Corollary 3 Under the same assumptions of the proposition, if f ′ (a) ≤ 0 , then

Dγf (t0) ≥ 0, for every 1 < γ < 2.

We need the following lemma:

Lemma 4 Let f ∈ C1 ([a, b]) attain its minimum at t0 ∈ J = (a, b) . Then for every 0 < γ < 1 , we have

Dγf (t0) ≤
(t0 − a)

−γ

Γ (1− γ)
[f (t0)− f (a)] ≤ 0. (3)

Proof Let us set g (t) = f (t)− f (t0) , t ∈ [a, b] . Then the function g satisfies the following:

g (t) ≥ 0, g (t0) = g′ (t0) = 0,

so that

Dγf (t0) = Dγg (t0) =
1

Γ (1− γ)

∫ t0

a

(t0 − s)
−γ

g′ (s) ds.

Integrating the right-hand side twice by parts, we obtain∫ t0

a

(t0 − s)
−γ

g′ (s) ds = lim
s→t0

(t0 − s)
−γ

g (s)− (t0 − a)
−γ

g (a)

−γ
∫ t0

a

(t0 − s)
−γ−1

g (s) ds.

Next, due to the fact that g′ (a) = f ′ (a) , −γ
∫ t0
a

(t0 − s)
−1−γ

g (s) ds ≥ 0 , and

lim
s→t0

(t0 − s)
−γ

g (s) = 0,

we get

Γ (1− γ)Dγf (t0) = Γ (1− γ)Dγg (t0) =

∫ t0

a

(t0 − s)
−γ

g′ (s) ds

= − (t0 − a)
−γ

g (a)− γ

∫ t0

a

(t0 − s)
−γ−1

g (s) ds

≤ − (t0 − a)
−γ

g (a) = (t0 − a)
−γ

[f (t0)− f (a)] ≤ 0,

and the inequality follows. 2

We assume throughout this paper that all the above given hypotheses from 1) to 6) are satisfied. Next,
we shall state and prove a general version of the nonnegativity principle given in Lemma 3.3 [2]. We have:
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Lemma 5 [Nonnegativity principle] Let b̃ (t, x, y) be a negative continuous function in J × R× R . Then
every function φ ∈ C2 (J ;R) satisfying the following problem,

m∑
i=1

ai (t)D
αiφ (t) + L2φ (t) + b̃ (t, φ (t) , φ′ (t))φ (t) ≤ 0, t ∈ J = (a, b) ,

Biφ ≥ 0, for i = 1, 2,

is necessarily nonnegative on the closed interval [a, b] .

Proof Suppose to the contrary that φ (t) is negative in [a, b] . Then φ attains its negative minimum at some
point t0 ∈ [a, b] ; that is, min {φ (t) , t ∈ [a, b]} = φ (t0) < 0 .

Let a < t0 < b . Then φ′ (t0) = 0. Consider the following cases:

• If φ′ (a) ≤ 0 , then we conclude by Corollary 3 that Dαiφ (t0) ≥ 0 , for i = 1, ...,m , and by Lemma 4
that Dβiφ (t0) ≤ 0 , for i = 1, ..., p . Therefore,

m∑
i=1

ai (t0)D
αiφ (t0) + L2φ (t0) + b̃ (t0, φ (t0) , 0)φ (t0) > 0,

which is a contradiction.

• If φ′ (a) > 0 , then the assumption α ≥ b−a
α0−1 and the first boundary condition imply that

φ (a) ≥ αφ′ (a) ≥ b− a

α0 − 1
φ′ (a) ,

from which we get
(α0 − 1)φ (a) ≥ (b− a)φ′ (a) .

Hence, for each i = 1, ..., n , one has

Dαiφ (t0) ≥ (t0 − a)
−αi

Γ (2− αi)
[(αi − 1) {φ (a)− φ (t0)} − φ′ (a) (t0 − a)]

≥ (t0 − a)
−αi

Γ (2− αi)
[(α0 − 1) {φ (a)− φ (t0)} − φ′ (a) (t0 − a)]

≥ (t0 − a)
−αi

Γ (2− αi)
[(α0 − 1)φ (a)− (α0 − 1)φ (t0)− φ′ (a) (t0 − a)]

≥ (t0 − a)
−αi

Γ (2− αi)
[(b− a)φ′ (a)− (α0 − 1)φ (t0)− φ′ (a) (t0 − a)]

≥ (t0 − a)
−αi

Γ (2− αi)
[(b− t0)φ

′ (a)− (α0 − 1)φ (t0)]

≥ 0.

Therefore,
m∑
i=1

ai (t0)D
αiφ (t0) + 0 + b̃ (t0, φ (t0) , 0)φ (t0) > 0,
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which is a contradiction.
Now, if t0 = a , then φ′ (a+) > 0 ; therefore, B1φ < 0 , which is again a contradiction. Finally, if t0 = b ,

then φ′ (b−) < 0 ; therefore, B2φ < 0 , giving once more another contradiction. We conclude that φ (t) ≥ 0 for
every t ∈ [a, b] . 2

Next, we introduce the notions of lower and upper solutions to problem (1). We have:

Definition 6 A function u ∈ C2 ([a, b] ;R) is called a lower (resp. an upper) solution to problem (1) if it
satisfies the following: {

Lu (t) + λq (t, u (t)) ≥ 0, for every t ∈ J ,
Biu ≤ γi, for i = 1, 2,

(resp. {
Lu (t) + λq (t, u (t)) ≤ 0, for every t ∈ J ,

Biu ≥ γi, for i = 1, 2).

Two distinct solutions φ1 (t) and φ2 (t) to problem (1) are said to be ordered if they satisfy either the inequality
φ1 (t) ≤ φ2 (t) or φ2 (t) ≤ φ1 (t) , for every t ∈ [a, b] .

The following theorem gives the uniqueness of the solution whenever it exists as well as the order character
of any lower and upper solutions.

Theorem 7 Under the above assumptions, if c (t) + λ ∂q
∂x (t, x) < 0 , for every (t, x) ∈ J × R , then any two

lower and upper solutions to problem (1) are ordered; moreover, the solution if it exists must be unique.

Proof Let φ (t) and ψ (t) be respectively a lower and an upper solution to problem (1). Then

{
Lφ (t) + λq (t, φ (t)) ≥ 0, t ∈ J,

Biφ ≤ γi, for i = 1, 2,

and {
Lψ (t) + λq (t, ψ (t)) ≤ 0, t ∈ J,

Biψ ≥ γi, for i = 1, 2.

It follows that {
L(ψ − φ) (t) + λ {q (t, ψ (t))− q (t, φ (t))} ≤ 0, t ∈ J,

Bi (ψ − φ) ≥ 0, for i = 1, 2.

We note that by virtue of the mean value theorem we have

q (t, ψ (t))− q (t, φ (t)) =
∂q (t, θ (t))

∂x
(ψ (t)− φ (t)) , t ∈ J,

for some θ (t) between φ (t) and ψ (t) . Setting z (t) = ψ (t)− φ (t) and

b̃ (t, z (t) , z′ (t)) = c (t) + λ
∂q

∂x
(t, θ (t)) (< 0),
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we obtain
m∑
i=1

ai (t)D
αiz (t) + L2(z) (t) + b̃ (t, z (t) , z′ (t)) z (t) ≤ 0, t ∈ J,

Biz ≥ 0, for i = 1, 2.

Applying the nonnegativity principle established earlier we conclude that z (t) = ψ (t) − φ (t) ≥ 0 for every
t ∈ [a, b] . Hence, φ (t) ≤ ψ (t) for every t ∈ [a, b] .

Regarding the uniqueness of the solution we suppose that problem (1) has two solutions φ1 (t) and φ2 (t) ,
and then setting φ (t) = φ2 (t) −φ1 (t) , we get at once

L(φ2 − φ1) (t) + λ {q (t, φ2 (t))− q (t, φ1 (t))}

=
m∑
i=1

ai (t)D
αiφ (t) + L2(φ) (t) +

{
c (t) + λ ∂q

∂x

(
t, θ̃ (t)

)}
φ (t) = 0, t ∈ J,

Biφ = 0, for i = 1, 2,

for some function θ̃ (t) between φ1 (t) and φ2 (t) according to the mean value theorem. We deduce from
the nonnegativity principle that φ (t) ≥ 0 for every t ∈ [a, b] ; that is, φ2 (t) ≥ φ1 (t) , for every t ∈ [a, b] .
Employing the same reasoning, we get φ2 (t) ≤ φ1 (t) for every t ∈ [a, b] . Therefore, φ1 (t) = φ2 (t) for every
t ∈ [a, b] , which proves the uniqueness of the solution as claimed. 2

An immediate corollary of the previous theorem is the following:

Corollary 8 Assume that q (t, 0) = 0 , for every t ∈ [a, b] and let

Λ = sup
(t,x)∈[a,b]×R

{
c (t) /

∣∣∣∣ ∂q∂x (t, x)

∣∣∣∣} .
Then the necessary condition for which the following eigenvalue problem,{

Lu (t) + λq (t, u (t)) = 0, t ∈ J,
Biu = 0, for i = 1, 2,

(4)

has a nontrivial solution is:

1) for every constant λ ≤ Λ , if sup(t,x)∈[a,b]×R
∂q
∂x (t, x) < 0 ,

2) for every constant λ ≥ −Λ , if inf(t,x)∈[a,b]×R
∂q
∂x (t, x) > 0 .

Proof

1. Suppose that sup(t,x)∈[a,b]×R
∂q
∂x (t, x) < 0 and λ > Λ . Then c (t) + λ ∂q

∂x (t, x) < 0 , for every (t, x) ∈

[a, b]×R . It follows from the above theorem that the solution of problem (4) is unique, and since u = 0 is
a solution, then it is a unique one. Thus, problem (4) has no eigenfunction at all; therefore, the condition
λ ≤ Λ is necessary for the existence of an eigenfunction of problem (4).

2. Under the assumption inf(t,x)∈[a,b]×R
∂q
∂x (t, x) > 0 , if we assume that λ < −Λ , then c (t) + λ ∂q

∂x (t, x) < 0

for every (t, x) ∈ [a, b]×R . We conclude as before that the condition λ ≥ −Λ is necessary for the existence
of an eigenfunction of problem (4).
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2

Another important consequence of the previous theorem is the following:

Corollary 9 If q (t, u) = r (t)u with r (t) ∈ C ([a, b] ;R∗) and λ0 = sup
t∈[a,b]

{c (t) / |r (t)|} , then the necessary

condition for which the linear eigenvalue problem{
Lu (t) + λr (t)u (t) = 0, t ∈ J,

Biu = 0, for i = 1, 2
(5)

has nontrivial solutions is:

1) for every constant λ ≤ λ0 , if sup
t∈[a,b]

r (t) < 0 ,

2) for every constant λ ≥ −λ0 , if inf
t∈[a,b]

r (t) > 0 .

Proof It is straightforward. 2

4. Existence result via lower and upper solutions

In what follows we will derive two monotone sequences {φn}n≥1 and {ψn}n≥1 of lower and upper solutions to
problem (1) that converge pointwisely to some functions φ and ψ such that φ (t) ≤ ψ (t) for every t ∈ [a, b] .

We have the following theorem:

Theorem 10 Let φ0 and ψ0 be respectively a lower and an upper solution to problem (1) such that φ0 ≤
ψ0 . Assume that there is a negative constant γ such that

γ < c (t) + λ
∂q

∂x
(t, x) , (t, x) ∈ [a, b]× R. (6)

Let {φn}n≥1 and {ψn}n≥1 respectively satisfy the following iterative problems:

 Lφn (t) + (γ − c (t))φn (t)
= (γ − c (t))φn−1 (t)− λq (t, φn−1 (t)) , t ∈ J,

Biφn−1 ≤ Biφn ≤ γi, for i = 1, 2, and n = 1, 2, ...
(7)

and  Lψn (t) + (γ − c (t))ψn (t)
= (γ − c (t))ψn−1 (t)− λq (t, ψn−1 (t)) , t ∈ J,

Biψn−1 ≥ Biψn ≥ γi, for i = 1, 2,and n = 1, 2, ...
(8)

Then:

1. The sequence {φn}n≥1 is nondecreasing and each term of it is a lower solution to problem (1).

2. The sequence {ψn}n≥1 is nonincreasing and each term of it is an upper solution to problem (1).

3. φn ≤ ψn , for every n ≥ 1 .
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Proof 1. Since φ0 is a lower solution to problem (1), then{
Lφ0 (t) + λq (t, φ0 (t)) ≥ 0, t ∈ J,

Biφ0 ≤ γi, for i = 1, 2.
(9)

Let φ1 be a solution to (7) corresponding to n = 1 . Then{
Lφ1 (t) + (γ − c (t))φ1 (t) = (γ − c (t))φ0 (t)− λq (t, φ0 (t)) , t ∈ J,

Biφ0 ≤ Biφ1 ≤ γi, for i = 1, 2.

It follows that
λq (t, φ0 (t)) = −Lφ1 (t)− (γ − c (t)) (φ1 (t)− φ0 (t)) ,

and so combining with (9) we get{
L (φ1 (t)− φ0 (t)) + (γ − c (t)) (φ1 (t)− φ0 (t)) ≤ 0, t ∈ J,

0 ≤ Bi (φ1 − φ0) , for i = 1, 2. (10)

Putting z (t) = φ1 (t)− φ0 (t) , problem (10) becomes{ ∑m
i=1 ai (t)D

αiz (t) + L2z (t) + γz (t) ≤ 0, t ∈ J,
Biz ≥ 0, for i = 1, 2.

(11)

We conclude by the nonnegativity principle that z (t) ≥ 0 , for every t ∈ [a, b] ; that is, φ0 (t) ≤ φ1 (t) , for every
t ∈ J , and by induction we infer that φn−1 (t) ≤ φn (t) , for n = 1, 2, ... , for every t ∈ [a, b] .

On the other hand, we have
Lφn (t) + λq (t, φn (t)) = (γ − c (t)) (φn−1 (t)− φn (t))

+λ {q (t, φn (t))− q (t, φn−1 (t))} , t ∈ J,

=
{
c (t)− γ + λ ∂q

∂x (t, φ̃n (t))
}
(φn (t)− φn−1 (t)) ≥ 0

Biφn ≤ γi, for i = 1, 2, and n = 1, 2, ...

for some φ̃n (t) between φn−1 (t) and φn (t) according to the mean value theorem. This shows that φn (t) is
a lower solution to problem (1).

2. Using the same reasoning we find ψn (t) ≤ ψn−1 (t) , for n = 1, 2, ... , for every t ∈ [a, b] , and ψn (t) is
an upper solution to problem (1).

3. Since φ1 (respectively ψ1 ) satisfies (7) (respectively (8)), then by subtraction we get
L (ψ1 (t)− φ1 (t)) + (γ − c (t)) (ψ1 (t)− φ1 (t))

= (γ − c (t)) (ψ0 (t)− φ0 (t))− λ {q (t, ψ0 (t))− q (t, φ0 (t))} ,
=

(
γ − c (t)− λ ∂q

∂x (t, φ̃0 (t))
)
(ψ0 (t)− φ0 (t)) ≤ 0

Bi (ψ1 − φ1) ≥ 0, for i = 1, 2.

We deduce once again by the nonnegativity principle that ψ1 ≥ φ1 , and by induction we conclude that

φn (t) ≤ ψn (t) , for every t ∈ [a, b] and for n = 1, 2, ...

2

We have the following result regarding the convergence of the sequences of the above lower and upper
solutions:
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Corollary 11 The above sequences of lower and upper solutions {φn (t)}n≥0 and {ψn (t)}n≥0 converge point-
wisely to some functions φ and ψ , respectively, so that

φ0 (t) ≤ φ (t) ≤ ψ (t) ≤ ψ0 (t) , t ∈ [a, b] .

Moreover, if the functions φ and ψ are continuous on [a, b] , then the above convergence is uniform.

Proof

1) We have from the preceding theorem

φ0 (t) ≤ φ1 (t) ≤ ... ≤ φn−1 (t) ≤ φn (t)

≤ ψn (t) ≤ ψn−1 (t) ≤ ... ≤ ψ1 (t) ≤ ψ0 (t) .

Hence, {φn (t)}n≥0 is a nondecreasing (resp. {ψn (t)}n≥0 is a nonincreasing) sequence, which is bounded
from above (resp. from below) by ψ0 (t) (resp. by φ0 (t)). They must be pointwisely convergent.

2) Assume that the limits φ (t) and ψ (t) are continuous on [a, b] . Then by virtue of Dini’s theorem (see [4])
the given monotone sequences {φn (t)}n≥0 and {ψn (t)}n≥0 converge uniformly on [a, b] to the functions
φ (t) and ψ (t) , respectively.

2

The next important consequence of the preceding theorem is:

Corollary 12 Under the assumption

γ < c (t) + λ
∂q

∂x
(t, x) < 0, (t, x) ∈ [a, b]× R, (12)

if B1φn = B1ψn = γ1 and B2φn = B2ψn = γ2 , for n = 1, 2, ... , in (7) and (8), and if the limits limn→∞φn (t)

and limn→∞ψn (t) are continuous functions on [a, b] , then they are equal and the common limit u (t) is the
unique solution to problem (1).

Proof It follows from the previous theorem that if the limits φ (t) := limn→∞φn (t) and ψ (t) := limn→∞ψn (t)

are continuous on [a, b] , then φn ⇒ φ (uniformly on [a, b]) and ψn ⇒ ψ (t) (uniformly on [a, b]). Taking the
limits in (7) and (8), as n → ∞ , we realize that both φ (t) and ψ (t) are solutions to the same problem (1),
and we conclude by Theorem 7 that φ ≡ ψ , showing that problem (1) has a unique solution. 2

5. Concluding remarks
Thanks to the new nonnegativity principle stated in Lemma 5 we have proved that under appropriate assump-
tions any two lower and upper solutions to problem (1) are ordered, and whenever a solution exists it must be
unique. On the other hand, the eigenvalue problems (4) and (5) have nontrivial solutions under some handy
conditions. Next, using inequality (6), we derived two monotone sequences of lower and upper solutions to
problem (1) that converge pointwisely to some lower and upper solutions to the same problem, respectively.
It turns out that if the limits are continuous, then under condition (12) a unique solution to problem (1) is
obtained as a uniform limit of either the earlier defined sequences of lower or upper solutions.
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