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Abstract: Given a domain €2 in the complex plane C and a univalent function ¢ defined in an open unit disk D with
nice boundary behaviour, Miller and Mocanu studied the class of admissible functions ¥(€2,q) so that the differential
subordination ¥(p(z), zp’(2), 2p” (2); 2) < h(z) implies p(z) < q(z), where p is an analytic function in I with p(0) = 1,
¢ :C*xD — C and Q = h(D). This paper investigates the properties of this class for ¢(z) = e*. As application, several
sufficient conditions for normalized analytic functions f to be in the subclass of star-like functions associated with the

exponential function are obtained.

Key words: Univalent functions, star-like functions, differential subordination, exponential function, Janowski star-like

function

1. Introduction and preliminaries

Let H[a,n] denote the class of analytic functions defined in the open unit disk D := {z € C: |z| < 1} of the
form f(z) = a+ an2" + ap412" "t + -+, where n is a positive integer and a € C. Set H; := H[1,1]. Let H
be the subclass of H[0, 1] consisting of functions f normalized by the condition f(0) = f/(0) —1=0. Let S
be a subclass of H containing univalent functions. Given any two analytic functions in D, we say that f is
subordinate to g, written as f < g, if there exists a Schwarz function w that is analytic in D with w(0) = 0
and |w(z)| < 1 satisfying f(z) = g(w(z)) for all z € D. In particular, if g is univalent, then f < g if and
only if f(0) = ¢(0) and f(D) C g(D). Some special classes of univalent functions are of great significance
in geometric function theory due to their geometric properties. By considering the analytic function ¢ € H;
with positive real part in D that maps D onto regions which are star-like with respect to a point ¢(0) = 1
and symmetric with respect to the real axis, in 1994, Ma and Minda [8] gave a unified treatment of various

subclasses of star-like functions in terms of subordination by studying the class

2f'(z)
f(2)

S*(cp):{fEH: <<p(z),zeID>}.

For special choices of ¢, the class §*(¢) reduces to widely known subclasses of star-like functions. For example,
when —1 < B < A <1, §*[A,B] := §*((1+ Az)/(1 + Bz)) is the class of Janowski [6] star-like functions,
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Sy = S*(1 + 2(log((1 + v/2)/(1 — \/2)))?/n?) is the class consisting of parabolic star-like functions [15],
S} = S§*(V1+ z) is the class of lemniscate star-like functions [18] and S; := §*(z + V1 + 22) is the class of
star-like functions associated with lune [14]. In 2015, Mendiratta et al. [9] also introduced the class SF = S*(e?)

of star-like functions associated with the exponential function satisfying the condition |log(zf'(z)/f(2))| < 1

for z € D.
The study of differential subordination which is a generalized form of differential inequalites began with a

prodigious article “Differential subordination and univalent functions” by Miller and Mocanu [10] in 1981. After
that the theory of differential subordination brought a revolutionary change and attracted many researchers
to use this technique for the study of univalent functions. Given a complex function (r,s,t;2): C3 x D — C
and a univalent function h in D, if p is an analytic function in I that satisfies the second-order differential
subordination

U(p(2), 20 (2), 2°p" (2); 2) < h(2) (1.1)
then p is called a solution of the differential subordination. The univalent function ¢ is said to be a dominant
of the solutions of the differential subordination if p < ¢ for all p satisfying (1.1). A dominant ¢ that satisfies
G < q for all dominants g of (1.1) is said to be the best dominant of (1.1). The best dominant is unique up to

a rotation of ID. Moreover, let Q denote the set of analytic and univalent functions ¢ in D\ E(q), where

E(q) ={¢ € ID: ZILHéQ(Z) = oo}

and are such that ¢’(¢) # 0 for ¢ € dD \ E(q). The following definition of admissible functions and the

fundamental theorem laid the foundation stone in the theory of differential subordination.

Definition 1.1 [11, p. 27] Let 2 be a domain in C, q € Q and n be a positive integer. Define ¥, (9, q) to be

the class of admissible functions 1: C3 x D — C that satisfies the admissibility condition:
U(r,s,t;2) € Q

whenever

r = q(C) is finite, s = m(q'(¢) and Re (1 + Z) > mRe <1 +
where z €D, ¢ € 0D\ E(q) and m > n is a positive integer. We write U1(8,q) as ¥(£,q).
Theorem 1.2 [11, p. 28] Let ¢ € ¥,,(Q,q) with ¢(0) =a. If p € Hla,n] satisfies

b(p(2), 20/ (2), 2°p"(2); 2) € Q

then p(z) < q(z).

Miller and Mocanu [11], in their monograph, discussed the class of admissible functions ¥(€2,¢) when the
function ¢ maps D onto a disk or a half-plane. These two special classes together with Theorem 1.2 lead
to several important and interesting results in the theory of differential subordination. However, the aim of

this paper is to consider differential implications with the superordinate function ¢(z) = e*.

In Section 2,
the admissibility class U({2, e?) is obtained, by deriving its admissibility condition. Examples are provided to

illustrate the obtained results.
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In 2015, Mendiratta et al. [9] estimated bounds on § for which p(z) < e* whenever 1+ Szp/(2)/p(z)
is subordinate to e*, (1 + Az)/(1 + Bz) and /1 +z. In 2018, Kumar and Ravichandran [7] extended the
result of Mendiratta et al. and obtained bounds on 3 for 1+ B2p'(z)/p’(2) (j = 0,2). They also estimated
the bounds on 8 such that p(z) < e* whenever 1+ S2p'(z)/p’(2) (j =0,1,2) is subordinate to 1+ sinz and
1+ (2(k+2))/(k(k —2)), where k = /24 1. Also, Gandhi et al. [4] obtained bounds on 3 for which p(z) < e*

whenever 1+ Bzp/(2)/p’(z) (j =0,1,2) is subordinate to z + /1 + 22. Motivated by their works and that of
[1-3, 5, 12, 13, 16, 17, 19], in Section 3, the problem

V(p(2), 2p(2), 2°p"(2);2) < h(z) = p(z) <€

is established for special cases of Janowski star-like functions h. In Section 4, the above-mentioned problem
is solved for various expressions when h, in particular, is also an exponential function. The results of [9] are
not only generalized but new differential implications are also obtained in last two sections. Additionally, the

applications of the results obtained yield sufficient conditions for functions f € H to belong to the class S} .

2. The admissibility condition

In this section, we describe the admissible class (€2, q) with examples, where (2 is a domain in C and ¢(z) = €?.
Note that ¢ is a univalent function in D with ¢(D) = A and ¢(0) = 1, where A := {w € C: |logw| < 1}.
Thus, g € Q with E(q) = 0 and hence the class ¥(Q,q) is well defined.

For || = 1, ¢(¢) € q(0D) = 9¢(D) = {w € C : |logw| = 1}. This gives |logq(¢)] = 1 so that
log ¢(¢) = €', where 6 € [0,2r) and hence ¢(¢) = e . However, ¢(¢) = e which implies that ¢ = ¢?. Also
¢q' Q) = eife¢’ and
¢q"(¢)
q7'(¢)

Thus, the admissibility condition reduces to

Re (1 + ) =Re(1 +¢) =1+ cosé.

6

W(r, s, t;2) € Q@ whenever r = q({) = e°
s =mlq'(¢) = mer (2.1)
and  Re(1+1t/s) > m(1+ cosb)

where z € D, 6 € [0,27) and m > 1. Therefore, the class W({,e*) consists of those functions ¢: C> x D — C
that satisfy the admissibility condition given by (2.1). If ¢: C2 x D — C, then the admissibility condition (2.1)

reduces to

G mee’2) ¢ Q
where z € D, 6 € [0,27) and m > 1. As a particular case of Theorem 1.2, we have the following:
Theorem 2.1 Let p € H;.
(i) If v € U(Q,e?), then

(p(z),20'(2),2°p"(2);2) € Q= p(z) <€
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(i) If ¥ € U(A,e?), then
b(p(2), 20 (2), 2°p"(2);2) < € = p(z) <€

We close this section with some examples illustrating Theorem 2.1.
Example 2.2 Let ¥(r,s,t;2) =7+ (1 +2¢e)s and h: D — C be defined by
2z+1
h(z) =2 .
(2) ( 24z )

Then Q = h(D) ={w € C: |w| < 2}. To prove ¥ € ¥(Q,€e*), we need to show that the admissibility condition
(2.1) is satisfied. Consider

[(r,s,t; 2)| = €391 + (1 + 2e)me™?|
>e H(1+2e)m—1) >2
whenever r = e, s = mer and Re(1+t/s) > m(l 4+ cosh), where z € D, 0 € [0,2r) and m > 1.
Therefore, ¥(r,s,t;z) ¢ Q and hence 1p € V(Q,e*). By Theorem 2.1, it follows that if p € H,, then

p(z) + (1 +20)2p'(2)| <2 = pl2) < €.
Example 2.3 If o(r,s,t;2) = 1+ (1 ++v/2)es and h(z) = V1 + z, then Q = h(D) = {w € C: |w? — 1| < 1}.
Consider
(W, 5,8:2))% = 1] = (L + V2)els[|(1 + V2)es +2|
> (14 V2)els|((1 + V2)e|s| — 2)
= (14 V2)me' T (1 + V2)me! Tes? — 2)
>(1+V2)(V2-1)=1

whenever r = e | s =mer and Re(1+1t/s) > m(1+cosf), where z € D, 6 € [0,27) and m > 1. Thus,
W(r,s,t;z) ¢ Q and therefore b € U(Q, e*). By Theorem 2.1, it is easily seen that if p € Hy, then

1+ (14+V2)ezp'(2))> =1 <1 = p(z) <€

Example 2.4 Let ¢(r,s,t;z) = 1+ s and suppose that Q = {w € C: |w — 1| < e7'}. In order to prove
e ¥(Q,e*), note that

[(r,s,t;2) — 1| = |s| = |meweem| = me®? > me ! > !

6

whenever r = ¢, s = mer and Re(1+t/s) > m(l + cosf), where z € D, 6 € [0,27) and m > 1.

Therefore, ¥(r,s,t;z) ¢ Q which implies ¢ € ¥(Q,e*). For any p € Hi, we obtain
lzp(2)] <e™! = p(z) <e.
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Similarly, if we take (r,s,t;2) =12 —r + (14 €)s + 1 with the same ) as defined earlier, then
[Y(rs,t:2) =1 = |r* =+ (2+ )]
= ecose|eei9 — 14 (2+e)me”|
> e (24 em — e~ 1))
>e (24 e)m —1 — e%Y)

>e H((24+e)ym—1—¢)>e!

6

whenever 7 = ¢, s = mer and Re (1+t/s) > m(1 + cosf), where z € D, 6 € [0,27) and m > 1. By

Theorem 2.1, it is easy to deduce that for any p € H1, we have

1 z

Ip?(2) —p(2) + (1 +e)zp/ ()] <e ' = p(z) <e”

In the similar fashion, by taking ¥ (r,s,t;z) = 1+ s/r? and Q as above, it is easily seen that

[W(r, s, t;2) — 1| = |s/r?| = |mewe_ew| = me” % > me ! > 7!
whenever 1 = e, s = mer and Re (14+1t/s) > m(1l+ cosh), where 8 € [0,27) and m > 1. This implies
that ¥(r,s,t;z) ¢ Q and hence ¢ € ¥(Q,e*). Thus, for any p € Hi, we have

1
<o = [logp(z)] < 1.

Example 2.5 Let ¢(r,s,t;2) =14 s/r and Q = h(D) = {w € C: |w—1| < 1}, where h(z) =1+ z. Consider

[W(r,5,8:2) = 1] = |s/r| = [me”| =m > 1

60

whenever v = e, s = mer and Re(1+t/s) > m(1 + cosh), where z € D, § € [0,27) and m > 1.
Therefore, ¥(r,s,t;z) ¢ Q and hence 1p € U(Q,e*). Using Theorem 2.1, in terms of subordination, the result
can be written as

zp'(2)
p(2)
where p € Hy. Since ¥(q(2),2q'(2),22¢"(2);2) = 1 + 2z = h(z) and ¢ € ¥(,q), where q(z) = e*, it follows
that e® is the best dominant by [11, Theorem 2.3e, p. 31].

z

1+ <14z = pz)<e

Example 2.6 Let ¢(r,s,t;2) =2s+t and Q ={w € C: |w| < 1/e}. Then

[9(r,s,8;2)] = |25 + 1] = |s]

t
2+]
S

cos 3

> me Rel2+ -

S

> me® Y (1 + m(1 + cosh))

> mecos@ > 671
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whenever 1 = e’ | s = me®r and Re (I1+t/s) > m(1+cosh), where z €D, 6 € [0,27) and m > 1. This
shows that (r,s,t;z) ¢ Q and ¢ € ¥(Q,e*). By Theorem 2.1, the required result is

1220/ (2) + 220" (2)| < 1/e = p(2) <€~

3. Subordination associated with the Janowski function

For —1 < B < A <1, we consider the subordination 1 (p(z), 2p'(2), 2%p" (2); z) < (1 + Az)/(1 + Bz) implying
p(z) < e* for z € D. In particular, we first estimate the bound on 3 such that the first order differential
subordination 1+ Szp'(2)/p"(z) < 1+ (1 — «)z (where n is any nonnegative integer and 0 < o < 1) implies
p(z) < €*. Throughout this paper, we will assume that 8 is a positive real number and r, s, ¢ are same as

referred in the admissibility condition (2.1).
Theorem 3.1 If n is a nonnegative integer, 0 < a < 1 and p € H; satisfies the subordination

zp'(2)
p"(2)

e(l—a) when n =0
e" 1l —a) when n #0

1+ <14+ (1-a)z, whereﬁZ{

then p(z) < e*.

Proof Let h(z) =14+ (1—a)z, where z€D,0<a<land Q=hD)={weC: jlw-1<1-a}.
Case (i). If n =0, consider the function ¥ (r,s,t;z) =1+ Ss. Then

V(p(2),2p'(2), 22" (2);2) < 14+ (1 — a)z.

Theorem 2.1 is applicable if we show that ¢ € U(Q,e?), that is, ¥(r, s,t;2) & Q whenever r = e’ , s =me'lr
and Re(1+1t/s) > m(1+ cosf), where z €D, § € [0,27) and m > 1. A simple calculation yields

[o(r,s,t;2) — 1] = Bmec®? > et > 1 —a.

Hence, 9 (r,s,t;z) ¢ Q which gives ¢ € ¥(Q, e*). Using Theorem 2.1, we get p(z) < e*.
Case (ii). When n # 0, the function ¥ (r,s,t;z) = 1+ Ss/r™ satisfies

[Y(r,s,t;2) — 1] = ﬂme—(n—l)cose > 56_(n_1) >1—a

16

whenever 7 = ¢, s = me®r and Re(1+1t/s) > m(l + cosf), where z € D, 6 € [0,27) and m > 1.
Therefore, as argued in Case (i), ¥(r, s,t;2) ¢ Q which implies ¢ € ¥(Q,e*). Hence, by Theorem 2.1, we have
the desired result. O

Remark 3.2 For the case n = 1, Theorem 3.1 reduces to [9, Theorem 2.8b, p. 876] when A =1 — « and
B=0.

Consequently, if a function f € H satisfies the subordination
2f'(2)\' " 2f'(z) | 2f"(2)
o (35) (- ) <

where 0 < a <1 and the bound on 3 is defined as in Theorem 3.1, then f € S;.
Next, the bound on f§ is determined such that the first order differential subordination 1 + Szp’(z)/

p"T(2) < (2+ 2)/(2 — 2) (where n is any nonnegative integer) implies p(z) < e*.
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Theorem 3.3 If n is any nonnegative integer and p € Hy satisfies the subordination

2p'(2) 24z
i) 2-2

1+ where 3 > 2e™

then p(z) < e*.

Proof By considering the function ¥(r, s, t;2) = 1+ Bs/r"™! and Q = {w € C: |2w — 2)/(w + 1)| < 1}, it
suffices to show ¥ € U(Q,e*). For this, note that

29(r, 8,t;2) — 2 S 2ﬂm6*nC059
W(r, s, t;2)+1 | — 2+ Bme—ncost’

Since the real-valued function g(z) = 2x/(2 + x) is increasing for * > 0 and Bme "% > 2, it is easy to
deduce that
21/)(7“, Svt; Z) —2 >1
Y(r,s,t;z) +1 |
16

whenever 7 = e, s = me?r and Re (1 +t/s) > m(1+ cosf), where z € D, € [0,27) and m > 1. Hence,

by making use of Theorem 2.1, we get the required result. O

Remark 3.4 The case n = 0 in Theorem 3.3 is similar to [9, Theorem 2.8b, p. 376] for A = 1/2 and
B=-1/2.

As a result, we have

If a function f € H satisfies the subordination

1+ 8 (Zf’(z))n (1 _z2f'(2) N zf”(z)> 24z

f(z) f(z) f'(2) 2— 2

where > 2e™ and n is any nonnegative integer, then f € S¥.
€

The next theorem provides a bound on « and S such that the first order differential subordination

(1 —a)p(z) + ap?(z) + Bzp'(z) < 1+ z implies p(z) < e*.

Theorem 3.5 Let «, 8 be positive real numbers satisfying a(e — 1) + fe > e and p € Hy. If the following
subordination
(1 —a)p(z) +ap®(2) + Bzp'(2) < 1+ 2

holds, then p(z) < e*.

Proof Let Q=h(D)={weC:|w—1| <1}, where h(z) =1+ 2. If ¥(r,s,t;2) = (1 — a)r + ar? + Bs, the

required subordination is proved if we show that 1 € ¥(£, e*) in view of Theorem 2.1. Observe that
[(r,s,t;2) — 112 = ((1 - @) cos(sin B) + ae? <% cos(2sin B) + Sme®s? cos § cos(sin 6)
— Bme©®Y sin A sin(sin §) — 1)2 +((1— @)e**? sin(sin 0) + ce? %Y sin(2 sin 0)

+ Bme? cos O sin(sin A) + Sme°*? sin § cos(sin 6)))2 =:¢g(0).
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The second derivative test shows that the function g attains its minimum value at § = 7 for « > 0 and 5 > 0.
Therefore, for all 0 € [0, 27)

(afe—1)+e(e— 1+ Bm))?
oh

g(0) > g(m) =

- (a(e—1)+e(e—1+B))?

>1

ol
by the given condition a(e—1)+ fe > e. Thus, 9(r,s,t;z) & Q whenever r = e’ , s =mer and Re (1 +1t/s)
> m(1+4cosf), where z €D, 0 € [0,27) and m > 1. By Definition 1.1, ¢ € U(Q, e*) and the result is evident
by Theorem 2.1. O

Thus, we have
If ale — 1)+ Be > e and f € H satisfies the following subordination

) (o F RN 2f(2) g2 f () 2f"(2) .
((1 )+ (a—=B) f(z)) ) +5f(z) <1+ f/(z)><1+

then f € S;.

Next, we determine the bounds on [ such that the first order differential subordinations p(z) +
Bzp'(2)/p"(2) < (2+22)/(2 — z), where n = 0,1 implies p(z) < e*.

Theorem 3.6 Let p € Hy. Then each of the following conditions is sufficient for p(z) < e*:
(a) p(z)+ Bzp'(2) < (2422)/(2—2) for B> (e+2—+2(e—1))/(e(v/2 - 1)) =~ 2.0323.

(b) p(2) + Bzp'(2)/p(2) < (2+22)/(2—2) for B> (e+2—2(e—1))/(v/2 - 1) ~ 5.52436.

Proof Define h: D — C by h(z) = (2+2z)/(2—z) and suppose that Q@ = h(D) ={w e C: |(w—1)/(w+2)| <
1/2}.

(a) As done earlier in the previous results, the function ¥(r,s,t;z) = r + Bs should satisfy ¥ (r,s,t;z) & Q

2]

whenever 7 = ¢, s = mer and Re (1 +t/s) > m(1+cosf), where z € D, 6 € [0,27) and m > 1. Observe

that

2 (14 Bmcosh — e % cos(sinh))? + (Bmsin + e~ <> sin(sin 6))?
(14 Bmcosf + 2e= <050 cos(sin 0))2 4 (Bmsin @ — 2e~ <05 sin(sin §))2”

w(rﬂgat;z) —1
U(r,s,t;z) +2

It is easily verified that the minimum value of the function in the right hand side of the above equation occurs

at 0 = 0; therefore, we obtain

(e — 1+ Bem)?
(e 4+ 2+ Bem)?

(e(148) —1)*
(e(1+B) +2)?

>

‘1/)(7”;5,75;2) —1

2
w(r,s,t;z)—&—Q’ 2

since B> (e+2—v2(e—1))/(e(v2—1)).
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(b) The required subordination is proved if we show that the function ¥(r, s,t;z) = r+ 8s/r does not lie in .
For B> (e+2—+/2(e —1))/(v/2 — 1), using the same technique as in previous case, we have

1/)(7”‘, S7t; Z) —1
‘w(n&t;z) +2

2 ~ (e%% cos(sin @) + Bmcos b — 1)? + (e°°3% sin(sin 0) + Bm sin 0)?
~ (ecos? cos(sin 0) + Bm cos § + 2)2 + (ecosf sin(sin §) + Bm sin 0)2

S Bm+e—1 2>1
“\fm+e+2/) T2
16

whenever 7 = ¢ | s = me¥r and Re(1+1t/s) > m(l + cosf), where z € D, 6 € [0,27) and m > 1.

Therefore, using Theorem 2.1, we have p(z) < e*. O

As a consequence, we obtain

If a function f € H satisfies either of the following subordinations

zf'(2) 2f'(2) [, 2f'(z) | 2f"(2) 2+ 2z o e+2—12(e—1)
o (-G ) < R e (V2-1)

2f'(2) 2f'(z)  zf"(2) 2+ 22 e+2—v2(e—1)
f(z) +6(1 @ " f/(z)>< g, Bz

then f € S;.

(a) +5

(b)

4. Subordination associated with the exponential function

In this section, we consider the problem of determining the conditions under which the subordination ¥ (p(z), z
p'(2),2%p"(2);2) < €* implies that p(z) < e* also holds. Alternatively, our aim is to show that ¢ € U{e*} :=
U(A,e*) for various choices of 9, where A := {w € C: |logw| < 1}. The first theorem of this section estimates
the bound on 8 such that the first order differential subordination 1+ S(zp'(2))"™ < e* (where n is any positive
integer) implies p(z) < e*. Recall that, for z # 0

logz = In|z| + iargz = In(2? + y*)V/2 +itan~Y(y/z) for z > 0.
Theorem 4.1 If n is any positive integer and p € Hy satisfies the subordination

n+1 n h is odd
1+ B(2p'(2)" < €*, where § > {en+1+en e o
e

—e when n is even

then p(z) < e*.

Proof The required subordination is proved if we show that the function defined as ¢(r,s,t;2z) = 1 4 Bs™
6

satisfies the condition ¥(r, s, t;2) ¢ Q whenever r = e, s = me'’r and Re (1 +t/s) > m(1 + cosf), where

z€D, §€0,2r) and m > 1. Consider

1 2
|logw(r,s,t;z)\2 =1 an(,u2 +v2) + (tam_1 H) =:¢g(0)

where

1= Bm"e™ % sin nf cos(nsin ) + fm™e™ <Y cos né sin(n sin 6)
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and

v =1+ Bm"e" % cosnf cos(nsin ) — fm"e™ % sin nf sin(n sin ).

Case (i). When n is odd and 3 > €™t 4 " we have

_ Bm"nln (6_2”(—6” + ﬁm")Q)

0
—en + ﬂmn >

g (m)

for all m > 1. Therefore, second derivative verifies that minimum value of g is attained at § = «. If

B> el 4 e we obtain

n n A 2
Q(Q)Zg(ﬂ)2i1n2<1_2ﬁm +52m2 )Zihﬁ(l_ﬁm) .

en 62n en —

for all 6 € [0,27). Thus, |log(r,s,t;2)| > 1 and Theorem 2.1 gives ¥ € U{e*}.
Case (ii). If n is even and
B annln (e—Qn(en _"_an)Q)

0
e + Bmn >

g" ()

for 8 > 0, the minimum value of the function g is attained at § = w. Therefore, for all § € [0,27) and

B >emtl — e we get

1 9 2an 62m2n
9(0) 2 g(m) = 7 In (1 t— Tt )2t
This implies that ¢ € ¥{e*}. Hence, Theorem 2.1 gives the desired differential subordination. O

Now, we estimate the bound on 3 such that the first order differential subordination 1+ Bzp/(z)/p"*1(z) < €*

(where n is any nonnegative integer) implies p(z) < e*.
Theorem 4.2 If p € H;y satisfies the subordination

2p'(2)
p"ti(z)

<€, where B> et —en

1+p

and n is any nonnegative integer, then p(z) < e*.

6

Proof We apply Theorem 2.1 to show that ¢ € U{e*}, where ¢(r,s,t;2) =1+ Bs/r™. Whenever r = e
s =me®r and Re(1+1t/s) > m(l+cosf), where z €D, 6 € [0,27) and m > 1, note that

2

1
N2 2002 2 -1 M .
[log ¥ (r, s, t;2)|* = 41n (u*+v°) + (tan V) 1 g(0)

where

—ncos 6 —n cos 6

w= Bme sin  cos(n sin @) — Bme cos  sin(n sin )

and

v =1+ Bme " cosf cos(nsin ) + fme™ "% sin f sin(n sin 6).
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Let u(z) = z(—1+n)? — (—an+e"(1 —3n+n?))In(e""(e" +z)), where z > 0 and n is a nonnegative
integer. Natural logarithm being an increasing function implies that In(e™ 4+ z) > In(e™) for z > 0, that is,

In(e™ + ) > n for x > 0. This gives
u(z) > z(1—=2n) +n(zn—e*(1—3n+n?)) + ne™(1 —3n+n’) =z(1—n)> >0
for z > 0 and n # 1. In particular for n =1, u(z) = (z + e)(In(x + €) — 1) > 0 for & > 0. Therefore,

Bm (26m(—1+n)? — (=Bmn+e"(1 —3n +n?))In (e~ (e" + Bm)?))
(e" 4 pm)?

g"(0) = >0

for 8 > 0, which implies, using second derivative test, ¢ attains its minimum value at § = 0. Hence, for all
0 €[0,27) and B > et —en

2m? 2 n+1l _ n 2
o6) > 90) = g (14 257 4 o) — Jwe (14 B2 ) > e (14 ) <,

en e2n
Thus, |log(r,s,t;z)| > 1 which implies ¢ € ¥{e*}. O

Remark 4.3 For n =0, Theorem 4.2 reduces to [9, Theorem 2.8a, p. 376].

In the next two theorems, the bound on [ is computed such that the first order differential subordination

p(2) + B2p'(2)/p"*! (2) < €* (where n = —1,0,1,2,...) implies p(z) < €.

z

Theorem 4.4 Let p € H1, then each of the following subordinations is sufficient for p(z) < e*:
(a) p(z) + B2p'(2) < e for B> €%+ 1~ 8.38906.
(b) p(2) + Bzp'(2)/p(2) < €* for B> e+ e~ ' ~ 3.08616.

Proof (a) In order to prove the admissibility condition (2.1) for the function ¥ (r,s,t;z) = r + s, we need to
10

show that |log4)(r, s,t;2)|> > 1 whenever r = ¢, s = me*r and Re (1 +t/s) > m(1 4 cosf), where z € D,
0 € [0,27) and m > 1. A simple computation gives

1
|log 4 (r, s, t; z)|2 =1 1n2(e2 cosb 4 32m2e2¢080 4 28me?0Y cos 0)

o o . . 2
N <tan_1 < sin(sin ) 4+ Bm cos 0 sin(sin §) + Bm sin 6 cos(sin 0) ) ) . 40).

cos(sin ) 4+ Bm cos 6 cos(sin §) — Sm sin 6 sin(sin 6)

Note that

_ 28m(1 — Bm) + (1 — Bm + B2m?)In((—1 + Bm)?)

1+ Bm)? =0

g"(m)

for 8> B* ~ 3.4446, where 8* is the root of the equation z(1 — z) + (1 — = + 22) In(—1 + x) = 0. Therefore,

the minimum value of the function g is clearly attained at § = 7 for 8 > e + 1 ~ 8.38906. In that case, we

have

e? e? e?

9(8) > g(m) = ~

1 1 2 2m?
41112( ﬂm+5m

) >1 forall 6 € 0,2m).
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Hence, ¢ € ¥{e*}.

(b) Using the same technique as above, for the function ¥ (r, s, t;z) = r + Bs/r, consider

1
|loga(r, s, t;2)|* = 1 1112(62 50 1 32m? + 26mesY cos 0 cos(sin §) + 26mes? sin 0 sin(sin 6))

% sin(sin ) + Bmsin @ 2
tan™* =:¢(0).
* < A oo cos(sin @) + Sm COSG) 9(6)

We observe that the second derivative of ¢ is positive on both of its critical points; therefore, the absolute

minimum of g is attained at § = 7 for 8 > e +e~!. Hence, we get

1 1 2
g(0) > g(m) = 1 In? <2 _2pm + BZmz) >1 forall 8 €0,2m).
e e
Thus, ¢ € ¥{e*} and Theorem 2.1 completes the proof. O

Theorem 4.5 Let n be any positive integer and (3, be a positive Toot of the equation
(eM" —z(—1+ n))2 — (T — 2®n + 27" (1 —n +n?)) In(e + e "x) = 0. (4.1)
If p € Hy satisfies the subordination

2p'(2) .

p(2) + ﬁan(Z) < e, for B> By,

then p(z) < e*.

Proof As argued in other cases, to prove the required subordinaton, it suffices to show that the function

0

U(r,s,t;2) = r + Bs/r"t! satisfies ¢(r,s,t;2) € A whenever r = ¢ |, s = mer and Re(1+1t/s) >
m(1 + cos), where z € D, 0 € [0,27) and m > 1. Note that

1 . . ,
|log 9(r, s,t;2)|* = 1 In?(e2°03% 4 g2m2e=2m 030 4 28me1=7) <989 o5 0 cos(sin 0) cos(n sin 0)

+ 28me(t=™) <30 5in § cos(sin ) sin(n sin 0) + 28met =™ <5 sin § sin(sin 0)

cos(nsin f) — 28met ™™ %9 cos § sin(sin ) sin(n sin 0)) + (taxfl(x))2 =:g(0)

where

e(nt1)cosb gin (sin @) 4+ Amsin O cos(nsin f) — Bm cos O sin(n sin A)

e(nt1)cosb cog(sin @) + Bm cos 6 cos(n sin @) + Bm sin §sin(nsin @)

X prnd
If 8> B,, where 3, is a positive root of the equation (4.1), then

2 (eH” — Bm(-1+ n))2 — (e2+2”n — B%m?2n + Beltm(1 —n + nz)) In ((e + ﬂe’”m)2)

> 0.
(e™+7 + Bm)?

g"(0) =

Therefore, the minimum value of ¢ is attained at § = 0 by the second derivative test which implies for all
0 €10,2r) and 8> 3, >0

1 28m  32m?
o6) > 90) = g (4 25 + ) >
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for all positive integers m and n. Hence, ¢ € ¥{e*} and Theorem 2.1 gives the desired result. O
Next, the bound on S is determined such that each of the first order differential subordination p(z) +
B(zp'(2))?/p"(2) < €* (n=0,1,2) implies p(z) < €.

Theorem 4.6 Let p € Hy. Then each of the following subordinations is sufficient for p(z) < e*:
(a) p(z) + B(2p'(2))? < €* for B> €3 — e~ 17.3673.

(b) p(z) + B(2p'(2))?/p(z) < €* for B> e? — 1~ 6.38906.

(c) p(z) + B(zp(2))2/p?(2) < €* for B >e— e ~ 2.3504.

Proof For different choices of 1, we need to show that ¢ € U{e*}, that is, we must verify |logy(r, s, t;2)| > 1
whenever r = e’ | s = mei®r and Re(1+t/s) > m(1+cosf), where z €D, 6 € [0,2m) and m > 1.
(a) Let (r,s,t;2) = r + Bs* and consider

1 2
[log (1, t:2)* = T W(u? +v2) + (tam™ )" =2 g(0)

where
= e sin(sin 0) + fm2e? <% cos 20 sin(2sin ) 4+ fm2e? 3% sin 26 cos(2 sin #)
and
__ _cosé . 2 2cosf . 2 2cosf _: . .
v =e“"" cos(sinf) + fm-e cos 26 cos(2sin ) — Bm<e sin 260 sin(2sin ).
Since

—2(e 4+ 28m?)? + (€2 + 2Bem? + 282m*) In ((e + fm?)?)

(e + pm?)? =Y

g"(m) =

for B > B* ~ 3.7586, where 3* is a positive root of the equation (e + 2x)% — (€2 + 2ze + 222)In(e +x) = 0, we
can say that the minimum value of ¢ is obviously attained at # = 7 for 8 > e — e. Therefore, for > e —e¢,

we have

1 2 2 2,4

<2+ ,Brgn +6T>21 for all 6 € [0, 2m).
e e e

Hence, ¥(r,s,t;z) € A and using Theorem 2.1 the result follows.

(b) Let the function be defined by v (r, s,t;2) = r + 3s%/r and observe

1
[log ¥ (r, s,t;2)]* = i In?(e2c0f 4 gZmAe?eos? 1 23m2e?5Y cos 20) + (tan_l(x))2 =: g(0)

where
sin(sin ) + Sm? cos 20 sin(sin ) + Sm? sin 26 cos(sin 0)

~ cos(sin ) + Bm?2 cos 20 cos(sin @) — Sm? sin 20 sin(sin )’

It is easily verified that the minimum value of the function g is attained at § = 7 for 8 > e? — 1. In that case,
for all 6 € [0,27) and B > €% —1

> 1.

2 2,4
ian(l—&—Qﬁm ﬁm)

+
2 2 o2
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Therefore, |logv(r,s,t;z)| > 1 whenever r = e’ s =me?r and Re (14+1t/s) > m(1l+cosb), where z € D,
0 € [0,27m) and m > 1. Hence, Theorem 2.1 yields the desired result.

(c) For the function 9 (r,s,t;2) = r + Bs?/r?, it is easy to deduce that

1
|log(r, s,t; 2)|* = 1 In?(e2¢°% 1 52m* 4 28m2e°? cos 26 cos(sin ) + 26m2e°*% sin 20

€59 gin(sin 8) + Sm? sin 20 2
) =)

€59 cos(sin 0) + Sm? cos 26

sin(sin ) + (tanl (

Since the second derivative of g is positive on both of its critical points, g attains absolute minimum at 6 =«
for 3 >e—e~! > 0. Therefore, for all § € [0,27) and for B >e —e™ !, we get

2
g(0) > g(m) = Zln2 (612 + 25:% +ﬂ2m4> > 1.

Hence, 9(r,s,t;2) ¢ A and thus ¢ € U{e*}.
Next, we estimate the bound on 3 such that each of the first order differential subordination p?(z) +
Bzp'(2)/p"(2) < €* (n=0,1,2) implies p(z) < e*.

Theorem 4.7 Let p € Hy. Then each of the following subordinations is sufficient for p(z) < e*:

(a) p*(2) + Bzp'(2) < €* for B> e +e !~ 7.75694.

(b) p?(2)+ Bzp'(2)/p(2) < €* for B> e+ e 2 ~ 2.85362.

(c) p?(2) + Bzp'(2)/p*(2) < €* for B > B* ~ 104.122, where 3* is a positive oot of the equation
6e® + 5xed — 22 + (—2e% — 5xe® + 2?) In(e + x) = 0.

Proof (a) For the function v(r,s,t;z) = r? + Bs, Theorem 2.1 is applicable if we show that the function

10

Y € U{e*} whenever r = e¢ | s = me"r and Re(1+1t/s) > m(1l + cos@), where z € D, 6 € [0,27) and

m > 1. Consider

1 2
|log v(r, s, t;2)|* = 1 In?(p? + %) + (tan_1 H) =: g()

v
where
1= e2°5%sin(2sin 0) + Bme*? cos §sin(sin #) + Sme Y sin A cos(sin 6)
and
v =e25% cos(2sin 6) + Bme? cos 6 cos(sin §) — Sme? sin f sin(sin ).

To show |log(r, s,t;z)| > 1, note that ¢’(w) > 0 for f > * ~ 2.9432, where * is a root of the equation
2ze(1+ze) — (2+xe+x%e?) In(—1+xe) = 0. Therefore, minimum value of the function g is obviously attained
at @ = for B> e?+ e~ ! and hence

1. 5/1 26m  B*m?
g(H)Zg(ﬂ'):Zln <64_ o3 + o2 >1 forall 0 €[0,2m).
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Consequently, Theorem 2.1 yields the result.
(b) The required subordination is proved if we show that ¢ € U{e*}, that is, if the admissibility condition (2.1)

is satisfied. For the function (r,s,t;z) = 72 + Bs/r, observe

1 , , ,
|loga(r, s,t; 2)|* = 1 In?(e* <% 1 52m? 4 28me?°°*? cos 6 cos(2sin A) + 28me? 3% sin 0

e2cosf sin(2 sin 9) + Bmsin 6 2 . (9)
¢2e0s0 cos(2sin ) + pmeosh ) ) I

sin(2sin6)) + (tan—l (

For B8 > e+ e 2, it is easily verified using second derivative test that ¢ attains its minimum value at 6 = 7
which implies

00) = o) = 1 (- 2

o + 62m2) >1 forall 6 €[0,27).

Therefore, ¥(r,s,t;z) ¢ A whenever r = e’ s = mei®r and Re(1+t/s) > m(l + cosf), where z € D,
6 € [0,27) and m > 1. Using Theorem 2.1 we get p(z) < e*.
(c) As done in other cases, we need to show that ¥(r, s, t;2) ¢ A, where v is defined as ¥ (r, s, t; 2) = r2+3s/r?.

Consider

1 _ 2
[log(r.s,t:2)|* = $ W (u? + %) + (tan™ £ =1 g(0)

where
1= €29 sin(2sin §) — Bme™ %Y cos O sin(sin §) + Bme™ ¥ sin 6 cos(sin #)
and
v =% cos(2sin @) + Sme” Y cos f cos(sin ) 4+ fme™ Y sin @ sin(sin ).
We note that the minimum value of ¢ is attained at 8 = 0 for 5 > * ~ 104.122, where * is a positive root
of the equation 6e® + 5ze® — 22 + (—2¢5 — 5xe® + 22)In(e3 + ) = 0. For § € [0,27) and § > B*, we have

2,.,2
g(0) > g(0) = ihﬁ <e4+2ﬁme+ ﬂ; ) > 1.

Therefore, ¢ € U{e*} and hence the result is obtained. O

Next, the bound on f is ascertained such that each of the first order differential subordination p™(z) +

Bzp(2)p'(z) < €* (n=1,2,3) implies p(z) < e*.

Theorem 4.8 Let p € Hy, then each of the following subordinations is sufficient for p(z) < e*:
(a) p(2) + Bzp(2)p'(2) < €* for B> e+ e~ 22.8038.

(b) p?(2) + Bzp(2)p'(2) < €* for B> e® + 1~ 21.0855.

(c) p3(2) + Bzp(2)p'(2) < €* for B> e3 + e 1 ~20.4534.

Proof The subordination p(z) < e* is satisfied if we show that ¢ € U{e*} for different choices of .
Equivalently, we need to verify the admissibility condition (2.1):

|log ¥ (r, s, t;2)> > 1
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whenever r = e, s = me?r and Re(1+t/s) > m(1+cosf), where z €D, 6 € [0,27) and m > 1.

(a) Let ¢(r,s,t;z) =1+ Prs. A simple calculation yields

1 2
|log(r, s, t; z)\2 =1 1r12(,u2 + 1/2) + (taurf1 H) =:g(0)

where

1= e sin(sin 0) + fme® <Y cos fsin(2sin 0) + Sme® <Y sin § cos(2sin 6)

and

2cos @

v = e cos(sin 0) + Bme? 3 cos  cos(2sin b)) — fme sin f sin(2 sin ).

It is easily verified that ¢”(w) > 0 for § > (B* = 7.7065, where [B* is the positive root of the equation
62 — 2e + (e — 2z) In((e — 2)?) = 0. Since we are given that 8 > e3 + e ~ 22.8038, the minimum value of g is
attained at 6 = 7 and for all 6 € [0,27), we have

( 1 28m 62m2)
n

+
e2 e3 e

Therefore, 1) € ¥{e?}.
(b) The function v (r, s,t; z) = r? + Brs satisfies

1 2
|log1h(r, s, t; 2)|* = Eln2 (e4cose(u2 + 1/2)) + (tan_1 %) =: g(0)

where
1 = sin(2sin @) + Smsin 6 cos(2sin 0) + Sm cos 0 sin(2 sin )

and

v = cos(2sin @) + fm cos O cos(2sin @) — Sm sin 6 sin(2sin ).

Since ¢” () > 0 for 8 > B* ~ 6.46722, where 3* is the root of the equation z(2—3x)+(2—3x+222)In(—1+2) =
0, the minimum value of g(#) is obviously attained at 6 = 7 if 3 > €3+ 1 ~ 20.0855. Therefore, for 6 € [0,27),
we get

g(8) > g(m) = 11n2 (1 _ 2Bm N 52m2> -

4 et et et
and hence ¢ € U{e*}.

(c) Let 9(r,s,t;2) = r>+ Brs. With r, s and t stated above, 1 takes the form 1 (r, s,t;2) = e3e’’ —&—BmeieeQew
which satisfies
2

1
|log1(r, s, t; 2)|* = Zln2 (e4cose(u2 + 1/2)) + (tan_1 %) : g(0)

where

= €% sin(3sin §) 4 Bm cos O sin(2sin §) 4 Fm sin O cos(2sin 6)
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and

v = e cos(3sin ) + Bm cos O cos(2sin §) — Bm sin O sin(2sin ).

Clearly, g attains its minimum value either at 6 =0 or § = 7. Since ¢”(7) > 0 for 8 > §* &~ 5.66489, where
B* is the root of the equation we(3 + 5ze) — (3 — we + 22%e?) In(—1 + ze) = 0, the minimum value of g is

attained at @ = 7 if B> €3+ e~ ! ~ 20.4534. In that case, we have

1. 5/1 26m  B%m?
g(0) > g(n) = I In (66 ~ o T >1 forall 6 €0,2m).
Therefore, ¢ € U{e*} by Theorem 2.1. O

Now, we estimate the bound on 3 such that the first order differential subordination p?(z)+p(z)—1+Bzp/(z) <

e* implies p(z) < €*.
Theorem 4.9 Let p € H1 and satisfy the subordination

p2(2) +p(2) — 1+ B2p/'(z) = e* for B>e*+e ' —e+ 1~ 6.03865.
Then p(z) < e*.

Proof Proceeding as in the previous theorems, we need to show that the function (r, s, t;2) = 7> +r—1+fs
6

satisfies the admissibility condition (2.1). Whenever r = e¢" | s = me?r and Re (1 +t/s) > m(1 + cosf),

where z €D, 6 € [0,27) and m > 1, ¢(r,s,t;2) = e pee’ — 14 ﬁmeweew satisfies

2
1
og p(r,5,152) = 3 + 1) + (10~ 2 =400
where
1= €25 cos(2sin ) + 37 cos(sin ) + Bme? cos O cos(sin §) — Fme®®? sin § sin(sin §) — 1

and

v =20 5in(2sin 0) + e sin(sin 0) + Fme? cos O sin(sin §) + Bme? sin 6 cos(sin §).

Using second derivative test, it can be easily verified that g attains its minimum value at § = 7 for
B > 0. Therefore, for § € [0,27), we have

11,0’
90) > o) = g (20 - 5 - S 41))

Since logarithm is an increasing function and the condition 8 > e? 4+ e~! — e + 1 imply that
2
1 1 1 1
|logw(r7s,t;z)|2zzln2 (5—2——1—1) 211n2(62):1.
Hence, ¢ € U{e*} and Theorem 2.1 gives the desired result. O
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Remark 4.10 As depicted in the previous section, results proved in this section also provide several sufficient

conditions for a normalized analytic function to be in the class Sk . These sufficient conditions can be obtained

by simply putting p(z) = zf'(2)/ f(z), where f € H.

Remark 4.11 Since we were concerned with the star-likeness property in this paper, therefore we presented

applications of our results only for the subclass of S*. However, by setting p(z) = f'(2), p(z) = f(2)/z,

p(2)

=2f(2)/z—1, p(z) =24/f(2) — 1, p(z) = 22f'(2)/f(z) — 1 and so forth in the theorems obtained, one

can obtain many more differential implications.
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