On an elliptic boundary value problem with critical exponent

Khadijah SHARAF* ${ }^{\text {(}}$
Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia

Received: 27.12.2017 • Accepted/Published Online: 25.03.2019 \quad Final Version: 29.05 .2019

Abstract

We study a nonlinear critical second-order PDE with zero Dirichlet boundary condition. We prove existence and compactness results for the equation by using Bahri's method of critical points at infinity.

Key words: Nonlinear elliptic PDE, calculus of variation, critical points at infinity

1. Introduction

In this paper we consider the problem of existence of smooth solutions of the following partial differential equation:

$$
\left\{\begin{array}{ccc}
-\Delta u & = & K(x) u^{\frac{n+2}{n-2}} \tag{1.1}\\
u & >0 & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $n \geq 3, \Omega$ is a smooth bounded domain of \mathbb{R}^{n}, and K is a given function on $\bar{\Omega}$.
The interest in this equation grew from its resemblance to the celebrated Nirenberg-Yamabe problem or more generally the scalar curvature problem on closed Riemannian manifolds. See [1], [3], [6], [7], [9], [10], [11], [12], [13].

Equation (1.1) can be expressed as a variational problem in $H_{0}^{1}(\Omega)$. However, the variational structure presents a loss of compactness phenomenon, since $\frac{n+2}{n-2}$ is critical and $H_{0}^{1}(\Omega) \hookrightarrow L^{\frac{2 n}{n-2}}(\Omega)$ is continuous and not compact.

The first contributions to (1.1) concern the case $K=1$. Indeed, in [14] and [4], the authors proved that the existence of solutions is related to the topology of the domain Ω. For $K \neq 1$, some existence results can be found, for example, in [8], [15], [16], and [17].

Let $G(.,$.$) be the Green function for (-\Delta)$ on Ω under zero Dirichlet boundary condition and $H(.,$.$) its$ regular part. Recently, in [16] and [17], we studied the loss of compactness of (1.1) and established existence results under the following three assumptions:
$(f)_{\beta} \quad K$ is a C^{1}-positive function such that for any critical point y of K there exists a real number $\beta=\beta(y)$ such that

[^0]$$
K(x)=K(y)+\sum_{k=1}^{n} b_{k}\left|(x-y)_{k}\right|^{\beta}+o\left(|x-y|^{\beta}\right),
$$
for all $x \in B\left(y, \rho_{0}\right)$, where ρ_{0} is a fixed positive constant, $b_{k}=b_{k}(y) \in \mathbb{R} \backslash\{0\}$, for $k=1 \ldots, n$, and
$$
-\frac{n-2}{n} \frac{c_{1}}{K(y)} \sum_{k=1}^{n} b_{k}(y)+c_{2} \frac{n-2}{2} H(y, y) \neq 0, \text { for any } y \text { such that } \beta(y)=n-2,
$$
where $c_{1}=\int_{\mathbb{R}^{n}} \frac{\left|x_{1}\right|^{n-2}}{\left(1+|x|^{2}\right)^{n}} d x$ and $c_{2}=\int_{\mathbb{R}^{n}} \frac{d x}{\left(1+|x|^{2}\right)^{\frac{n+2}{2}}}$.
\[

$$
\begin{cases}\beta(y) \in(1, n-2], \forall y & \text { such that } \nabla K(y)=0, \tag{0}\\ \beta(y) \in(1, \infty), \forall y & \text { or } \\ \text { such that } \nabla K(y)=0 \text { and } K \text { is assumed close to } 1 .\end{cases}
$$
\]

Lastly, it is assumed that

$$
\begin{equation*}
\frac{\partial K}{\partial \nu}(x)<0, \forall x \in \partial \Omega \text {, where } \nu \text { is the unit outward normal vector on } \partial \Omega \text {. } \tag{A}
\end{equation*}
$$

In this paper we continue our study of problem (1.1) and our aim is to describe the loss of compactness of the problem and provide the existence result under the $(f)_{\beta}$-condition when the flatness order of K at its critical points lies in $[n-2, \infty)$ without assuming any perturbation condition.

Remark 1.1 We point out that problem (1.1) was studied under the $(f)_{\beta}$-condition when the β-flatness order $\beta(y) \in(1, \infty)$. See [18] for the three-dimensional case and [17] for the n-dimensional case, $n \geq 4$. However, a strong condition was assumed in these papers:

$$
\begin{equation*}
\|K-1\|_{L^{\infty}(\bar{\Omega})} \text { is small enough. } \tag{1.2}
\end{equation*}
$$

Such a condition plays a crucial role to prove the "perturbation" results of [18] and [17]. Indeed, it reduces the analysis to $V(1, \varepsilon)$, a neighborhood of the critical points at infinity constructed by only one mass. For this reason, we find in [18] and [17] only a partial description of the critical points at infinity of problem (1.1), namely the critical points at infinity constructed by one mass. The present paper addresses the case where the perturbation condition (1.2) is not satisfied. This leads to an interesting new existence result completely different from those of [18] and [17]. Our proof requires a full description of the loss of compactness of the problem in the whole variational space. Indeed, we prove in Section 3 of this paper the description of the critical points at infinity in all $V(p, \varepsilon), p \geq 1$. This requires new estimates and new analysis at infinity.

Let \mathcal{K} be the set of all critical points of K. For any $\tau_{p}=\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \in \mathcal{K}^{p}, 1 \leq p \leq \sharp \mathcal{K}$ such that $y_{\ell_{i}} \neq y_{\ell_{j}}, \forall i \neq j$, we define a $p \times p$ symmetric matrix $M\left(\tau_{p}\right)=\left(m_{i j}\right)_{1 \leq i, j \leq p}$ by

$$
m_{i i}=m\left(y_{\ell_{i}}, y \ell_{i}\right)=\left\{\begin{array}{l}
-\frac{1}{K\left(y_{\ell_{i}}\right)^{\frac{n-2}{2}}}\left(\frac{n-2}{n} \frac{c_{1}}{K\left(y \ell_{i}\right)} \sum_{k=1}^{n} b_{k}\left(y_{\ell_{i}}\right)-c_{2} \frac{n-2}{2} H\left(y_{\ell_{i}}, y_{\ell_{i}}\right)\right) \\
\frac{\text { if } \beta\left(y \ell_{i}\right)=n-2,}{2} \frac{c_{2}}{K\left(y_{\ell_{i}}\right)^{\frac{n-2}{2}}} H\left(y_{\ell_{i}}, y \ell_{i}\right) \text { if } \beta\left(y_{\ell_{i}}\right)>n-2,
\end{array}\right.
$$

$\forall i=1, \ldots, p$, and

$$
m_{i j}=m\left(y_{\ell_{i}}, y_{\ell_{j}}\right)=-\frac{n-2}{2} c_{2} \frac{G\left(y_{\ell_{i}}, y_{\ell_{j}}\right)}{\left(K\left(y_{\ell_{i}}\right) K\left(y_{\ell_{j}}\right)\right)^{\frac{n-2}{4}}} \text {, for } i \neq j
$$

(B) Assume that $\rho\left(\tau_{p}\right)$, the least eigenvalue of $M\left(\tau_{p}\right)$, is nonzero for any $1 \leq p \leq \sharp \mathcal{K}$.

Define

$$
\begin{gathered}
\mathcal{C}^{\infty}:=\left\{\tau_{p}=\left(y_{l_{1}}, \ldots, y_{l_{p}}\right) \in \mathcal{K}^{p}, 1 \leq p \leq \sharp \mathcal{K}, \text { s.t. } y_{\ell_{i}} \neq y_{\ell_{j}} \forall 1 \leq i \neq j \leq p,\right. \\
\left.m\left(y_{l_{i}}, y_{l_{i}}\right)>0, \forall i=1 \ldots, p \text { and } \rho\left(\tau_{p}\right)>0\right\} .
\end{gathered}
$$

For any $\tau_{p} \in \mathcal{C}^{\infty}$, we define

$$
i\left(\tau_{p}\right)=p-1-\sum_{j=1}^{p}\left(n-\widetilde{i}\left(y_{\ell_{j}}\right)\right)
$$

where

$$
\widetilde{i}(y)=\sharp\left\{b_{k}(y), 1 \leq k \leq n, b_{k}(y)<0\right\} .
$$

Theorem 1.2 Under the assumptions $(A),(B)$, and $(f)_{\beta}, \beta \in[n-2, \infty)$, if

$$
\sum_{\tau_{p} \in \mathcal{C}^{\infty}}(-1)^{i\left(\tau_{p}\right)} \neq 1
$$

then (1.1) has a solution.
Equation (1.1) has a variational structure. The solutions are the positive critical points (up to a multiplicative constant) of the functional

$$
J(u)=\frac{\int_{\Omega}|\nabla u|^{2}}{\left(\int_{\Omega} K(x) u^{\frac{2 n}{n-2}}\right)^{\frac{n}{n-2}}}
$$

and u belongs to the unit sphere Σ of the Sobolev space $\left(H_{0}^{1}(\Omega),|\cdot| \Omega\right)$.
We will argue by contradiction to prove Theorem 1.2. Therefore, we will assume throughout this paper that (1.1) has no solution. Our method uses the theory of critical points at infinity of Bahri [2]. We will describe the lack of compactness of the equation and the concentration phenomenon through the construction of a suitable pseudogradient that satisfies the Palais-Smale condition along its flow lines provided that these flow lines are outside a neighborhood of specific critical points of the function K. Finally, a Euler-Poincaré characteristic argument achieves a contradiction.

The next section will be devoted to recalling the general framework of the associated variational structure and expanding the gradient of J near infinity. We will then use these asymptotic expansions in Section 3 to construct the required pseudogradient and characterize the critical points at infinity of J. Lastly, in Section 4, we will prove Theorem 1.2.

2. The gradient expansion of J

Due to the loss of compactness of the Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{\frac{2 n}{n-2}}(\Omega)$, the Euler-Lagrange functional J fails to satisfy the Palais-Smale (PS) condition. The sequences failing the PS condition were described in [4] and [19].

For $a \in \Omega$ and $\lambda>0$, we set

$$
\begin{equation*}
\delta_{a, \lambda}(x)=c_{0}\left(\frac{\lambda}{1+\lambda^{2}|x-a|^{2}}\right)^{\frac{n-2}{2}} \tag{2.1}
\end{equation*}
$$

where c_{0} is a fixed positive constant. The family $\delta_{a, \lambda}, a \in \Omega$ and $\lambda>0$, are the only solutions of

$$
\left\{\begin{array}{ccc}
-\Delta u & = & u^{\frac{n+2}{n-2}} \tag{2.2}\\
u & > & 0 \text { in } \mathbb{R}^{n} .
\end{array}\right.
$$

Define $P \delta_{a, \lambda}$ on Ω to be the unique solution of

$$
\left\{\begin{array}{clc}
-\Delta u & = & \delta_{a, \lambda}^{\frac{n+2}{n-2}} \tag{2.3}\\
u & >0 & 0 \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

By the regularity theorem, $P \delta_{a, \lambda} \in C^{\infty}(\Omega)$. For $p \in \mathbb{N}$ and $\varepsilon>0$, we define $V(p, \varepsilon)$, the set of all functions $u \in \Sigma^{+}:=\{u \in \Sigma, u \geq 0\}$ such that there exist $\left(a_{1}, \ldots, a_{p}\right) \in \Omega^{p}, \lambda_{1}, \ldots, \lambda_{p}>\varepsilon^{-1}$ and $\alpha_{1}, \ldots, \alpha_{p}>0$ satisfying

$$
\left|u-\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}}\right|<\varepsilon
$$

with $\left|J(u)^{\frac{n}{n-2}} \alpha_{i}^{\frac{4}{n-2}} K\left(a_{i}\right)-1\right|<\varepsilon$ and $\varepsilon_{i j}=\left(\frac{\lambda_{i}}{\lambda_{j}}+\frac{\lambda_{j}}{\lambda_{i}}+\lambda_{i} \lambda_{j}\left|a_{i}-a_{j}\right|^{2}\right)^{\frac{-(n-2)}{2}}<\varepsilon \forall i \neq j$.
It is known (see [4] and [19]) that for any $\left(u_{k}\right)_{k}$ in Σ^{+}that fails the PS condition, there exist $p \in \mathbb{N}$, a positive sequence $\left(\varepsilon_{k}\right)_{k}$ tending to zero, and an extracted subsequence $\left(u_{k_{\ell}}\right)_{\ell}$ such that $u_{k_{\ell}} \in V\left(p, \varepsilon_{k_{\ell}}\right), \forall \ell \in \mathbb{N}$.

The parametrization of the set $V(p, \varepsilon)$ is given in [4]. Indeed, for any $u \in V(p, \varepsilon), u$ can be written as

$$
u=\sum_{i=1}^{p} \bar{\alpha}_{i} P \delta_{\bar{a}_{i}, \bar{\lambda}_{i}}+v
$$

where $v \in H_{0}^{1}(\Omega),|v|<\varepsilon$, and satisfies

$$
\left(V_{0}\right):\langle v, \psi\rangle=0 \text { for } \psi \in\left\{P \delta_{a_{i}, \lambda_{i}}, \frac{\partial P \delta_{a_{i}, \lambda_{i}}}{\partial \lambda_{i}}, \frac{\partial P \delta_{a_{i}, \lambda_{i}}}{\partial a_{i}}, i=1, \ldots, p\right\}
$$

where $<., .>$ denotes the inner product on $H_{0}^{1}(\Omega)$ associated to the norm $|$.$| and \bar{\alpha}_{i}, \bar{a}_{i}, \bar{\lambda}_{i}, i=1, \ldots, p$ are the unique solutions (up to a permutation) of

$$
\min _{\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon)}\left|u-\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}}\right| .
$$

Following [2], we know that for $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon), v \longrightarrow J(u+v)$ admits a unique minimum denoted $\bar{v}=\bar{v}\left(\alpha_{i}, a_{i}, \lambda_{i}\right)$ and there exists a change of variable $v-\bar{v} \longrightarrow V$ such that

$$
J(u+v)=J(u+\bar{v})+|V|^{2}
$$

Moreover, there exists M independent of $\left(\alpha_{i}, a_{i}, \lambda_{i}\right)$ such that

$$
\begin{align*}
|\bar{v}| \leq M & \sum_{i=1}^{p}\left[\frac{1}{\lambda_{i}^{\frac{n}{2}}}+\frac{1}{\lambda_{i}^{\beta}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{\left(\log \lambda_{i}\right)^{\frac{n+2}{2 n}}}{\lambda_{i}^{\frac{n+2}{2}}}\right] \tag{2.4}\\
& +c \begin{cases}\sum_{k \neq r} \varepsilon_{k r}^{\frac{n+2}{n-2}}\left(\log \varepsilon_{k r}^{-1}\right)^{\frac{n+2}{2 n}}, & \text { if } n \geq 6 \\
\sum_{k \neq r} \varepsilon_{k r}\left(\log \varepsilon_{k r}^{-1}\right)^{\frac{n-2}{n}}, & \text { if } n<6 .\end{cases}
\end{align*}
$$

Next, we estimate the variation of the functional J in $V(p, \varepsilon)$ with respect to λ_{i} and $a_{i}, i=1, \ldots, p$.

Proposition 2.1 Let $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon)$.
For any $i=1, \ldots, p$ such that $a_{i} \in \cup_{y \in \mathcal{K}} B\left(y, \rho_{0}\right)$, we have:

$$
\begin{aligned}
& \text { (a) }\left\langle\partial J(u), \alpha_{i} \lambda_{i} \frac{\partial P \delta_{a_{i}, \lambda_{i}}}{\partial \lambda_{i}}\right\rangle=-2 c_{2} \frac{J(u)}{K\left(a_{i}\right)} \sum_{j \neq i} \alpha_{i} \alpha_{j}\left(\lambda_{i} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{i}}+\frac{n-2}{2} \frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}}\right) \\
& +\quad O\left(\sum_{s=2}^{[\min (n, \beta)]} \frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-s}}{\lambda_{i}^{s}}\right)+O\left(\frac{1}{\lambda_{i}^{\min (n, \beta)}}\right)+o\left(\sum_{j \neq i}\left(\varepsilon_{i j}+\frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}}\right)\right) \\
& \text { (b) }\left\langle\partial J(u), \alpha_{i} \lambda_{i} \frac{\partial P \delta_{a_{i}, \lambda_{i}}}{\partial \lambda_{i}}\right\rangle=-2 c_{2} J(u) \sum_{j \neq i} \alpha_{i} \alpha_{j}\left(\lambda_{i} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{i}}+\frac{n-2}{2} \frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}}\right) \\
& +\quad 2 \alpha_{i}^{2} J(u) K\left(a_{i}\right)^{\frac{n-2}{2}} m\left(y_{\ell_{i}}, y_{\ell_{i}}\right)+O\left(\left|a_{i}-y_{\ell_{i}}\right|^{\beta}\right)+o\left(\sum_{j \neq i}\left(\varepsilon_{i j}+\frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}}\right)+\frac{1}{\lambda_{i}^{n-2}}\right) .
\end{aligned}
$$

Proof. We combine the proof of Proposition 3.1 of [16] and the proof of Proposition 3.1 of [17], Proposition 2.1.

Proposition 2.2 Let $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon)$.
For any $i=1, \ldots, p$ such that $a_{i} \in \cup_{y \in \mathcal{K}} B\left(y, \rho_{0}\right)$, we have

$$
\begin{align*}
(i)\left\langle\partial J(u), \alpha_{i} \frac{1}{\lambda_{i}} \frac{\left.\partial P \delta_{a_{i}, \lambda_{i}}\right\rangle}{\partial\left(a_{i}\right)_{k}}\right\rangle= & -\left.(n-2) \alpha_{i}^{2} J(u) \frac{b_{k}}{\lambda_{i} K\left(a_{i}\right)} \beta \operatorname{sign}\left(a_{i}-y_{\ell_{i}}\right)_{k}\left|\left(a_{i}-y_{\ell_{i}}\right)_{k}\right|\right|^{\beta-1} \\
+ & O\left(\sum_{j=2}^{[\min (n, \beta)]} \frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-j}}{\lambda_{i}^{j}}\right)+O\left(\frac{1}{\lambda_{i}^{\min (n, \beta)}}\right)+O\left(\sum_{j \neq i}\left|\frac{1}{\lambda_{i}} \frac{\partial \varepsilon_{i j}}{\partial a_{i}}\right|\right), \tag{2.5}\\
(i i)\left\langle\partial J(u), \alpha_{i} \frac{1}{\lambda_{i}} \frac{\partial P \delta_{a_{i}, \lambda_{i}}}{\partial\left(a_{i}\right)_{k}}\right\rangle & =-(n-2) \alpha_{i}^{2} J(u) \frac{b_{k}}{K\left(a_{i}\right) \lambda_{i}^{\beta}} \int_{\mathbb{R}^{n}}\left|z_{k}+\lambda_{i}\left(a_{i}-y_{\ell_{i}}\right)_{k}\right|^{\beta} \\
& \times \frac{z_{k}}{\left(1+|z|^{2}\right)^{n+1}} d z+o\left(\frac{1}{\lambda_{i}^{\beta}}\right)+O\left(\sum_{j \neq i}\left|\frac{1}{\lambda_{i}} \frac{\partial \varepsilon_{i j}}{\partial a_{i}}\right|\right), \tag{2.6}
\end{align*}
$$

provided that $\lambda_{i}\left|a_{i}-y_{\ell_{i}}\right|$ is upper-bounded and $\beta<n+1$.
Proof. The proof is a combination of the proofs of Proposition 3.2 of [16] and Proposition 3.2 of [17].

3. Construction of the pseudogradient

This section is devoted to the construction of a decreasing pseudogradient of J, which allows us to identify the critical points at infinity of the variational structure associated to (1.1). These points are the ends of the noncompact flow lines of $(-\partial J)$. According to [2], each noncompact flow line can be written as:

$$
u(s)=\sum_{i=1}^{p} \alpha_{i}(s) P \delta_{a_{i}(s), \lambda_{i}(s)}+v(s) .
$$

Therefore, if we denote $\alpha_{i}=\lim _{s \rightarrow+\infty} \alpha_{i}(s)$ and $y_{i}=\lim _{s \rightarrow+\infty} a_{i}(s)$, then $\sum_{i=1}^{p} \alpha_{i} P \delta_{y_{i}, \infty}$ or $\left(y_{1}, \ldots, y_{p}\right)_{\infty}$ denotes a critical point at infinity.

The following theorem provides a full description of the critical points at infinity of the functional J.
Theorem 3.1 Assume that (1.1) has no solution. Under the assumptions $(A),(B)$, and $(f)_{\beta}, \beta \in[n-2, \infty)$, the only critical points at infinity of J are

$$
\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}:=\sum_{i=1}^{p} \frac{1}{K\left(y_{\ell_{i}}\right)^{\frac{n-2}{2}}} P \delta_{\left(y_{i}, \infty\right)},
$$

where $\left(y \ell_{1}, \ldots, y \ell_{p}\right) \in \mathcal{C}^{\infty}$. Moreover, the index of a such critical point at infinity $\left(y \ell_{1}, \ldots, y \ell_{p}\right)_{\infty}$ equals $i\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}=p-1+\sum_{i=1}^{p} n-\widetilde{i}\left(y_{\ell_{i}}\right)$.

As in [16] for the case where the β-flatness order $\beta(y) \in(1, n-2$], the proof of Theorem 3.1 follows from the construction of a suitable pseudogradient in $V(p, \varepsilon), p \geq 1$, such that the PS condition is satisfied along its
flow lines as long as these flow lines are away from each $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}$ such that $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \in \mathcal{C}^{\infty}$. Since in our statement the β-flatness order lies in $[n-2, \infty)$, our construction will be completely different with respect to the one of [16].

Proposition 3.2 For any $p \geq 1$ and $\varepsilon>0$ small enough, there exists a pseudogradient W in $V(p, \varepsilon)$ satisfying the following:
There exists a constant $c>0$ such that for any $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon)$, we have
(i) $<\partial J(u), W(u)>\leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{\min (n, \beta)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{j \neq i} \varepsilon_{i j}\right)$,
(ii) $<\partial J(u+\bar{v}), W(u)+\frac{\partial \bar{v}}{\partial(\alpha, a, \lambda)}(W(u))>\leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{\min (n, \beta)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{j \neq i} \varepsilon_{i j}\right)$.
(iii) $|W|$ is bounded and the only case where $\lambda_{i}(s), i=1, \ldots, p, s \geq 0$, tends to ∞ is when $a_{i}(s)$ tends to $y_{\ell_{i}}, \forall i=1, \ldots, p$ with $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \in \mathcal{C}^{\infty}$.

The proof of Proposition 3.2 is based on the following results, which describe the concentration phenomenon in specific regions of $V(p, \varepsilon)$. Let $\eta>0$ small enough. Define
$W_{1}(p, \varepsilon):=\left\{u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon)\right.$, s.t, $a_{i} \in B\left(y_{\ell_{i}}, \rho_{0}\right), \lambda^{n-2}\left|a_{j}-y_{l_{j}}\right|^{\beta}<\eta, \forall i=1, \ldots, p, y_{l_{i}} \neq y_{l_{j}}, \forall i \neq$ j, and $\left.\rho\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)>0\right\}$,
$W_{2}(p, \varepsilon):=\left\{u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon)\right.$, s.t, $a_{i} \in B\left(y_{\ell_{i}}, \rho_{0}\right), \lambda^{n-2}\left|a_{j}-y_{l_{j}}\right|^{\beta}<\eta, m\left(y_{\ell_{i}}, y_{\ell_{i}}\right)>0, \quad \forall i=$ $1, \ldots, p, y_{l_{i}} \neq y_{l_{j}}, \forall i \neq j$, and $\left.\rho\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)<0\right\}$, $W_{3}(p, \varepsilon):=\left\{u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon)\right.$, s.t, $a_{i} \in B\left(y_{\ell_{i}}, \rho_{0}\right), \lambda^{n-2}\left|a_{j}-y_{l_{j}}\right|^{\beta}<\eta, \forall i=1, \ldots, p, y_{l_{i}} \neq y_{l_{j}}, \forall i \neq$ j, and there exists $i_{1}, 1 \leq i_{1} \leq p$, s.t, $\left.m\left(y_{\ell_{i_{1}}}, y_{\ell_{i_{1}}}\right)<0\right\}$,
$W_{4}(p, \varepsilon):=\left\{u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in V(p, \varepsilon)\right.$, s.t, $a_{i} \in B\left(y_{\ell_{i}}, \rho_{0}\right), \forall i=1, \ldots, p, y_{l_{i}} \neq y_{l_{j}}, \forall i \neq j$, and there exists $i_{1}, 1 \leq$ $i_{1} \leq p$, s.t, $\left.\lambda^{n-2}\left|a_{j}-y_{l_{j}}\right|^{\beta} \geq \eta,\right\}$,
$W_{5}(p, \varepsilon)=V(p, \varepsilon) \backslash \cup_{j=1}^{4} W_{j}(p, \varepsilon)$.

Lemma 3.3 In $W_{1}(p, \varepsilon)$, there exists a bounded pseudogradient W_{1} satisfying (i) of Proposition 3.2. Moreover, for any $i=1, \ldots, p, \lambda_{i}(s)$ tends to ∞ when $s \rightarrow+\infty$.

Proof. Let $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in W_{1}(p, \varepsilon)$. Set

$$
W_{1}(u)=\sum_{i=1}^{p} \alpha_{i} \lambda_{i} \frac{\partial P \delta_{\left(a_{i}, \lambda_{i}\right)}}{\partial \lambda_{i}} .
$$

Using Proposition 2.1 and the following estimates,

$$
\begin{gathered}
\left|a_{i}-y_{\ell_{i}}\right|^{\beta}=o\left(\frac{1}{\lambda_{i}^{n-2}}\right), \quad \text { as } \eta \text { small, } \\
-\lambda_{i} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{i}}-\frac{n-2}{2} \frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}}=\frac{n-2}{2} \frac{G\left(y_{\ell_{i}}, y_{\ell_{j}}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}}+o\left(\frac{1}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}}\right),
\end{gathered}
$$

we get

$$
\begin{gathered}
<\partial J(u), W_{1}(u)>=2 J(u) \sum_{i=1}^{p} \sum_{j \neq i} \alpha_{i} \alpha_{j} \frac{n-2}{2} c_{2} \frac{G\left(y_{\ell_{i}}, y_{\ell_{j}}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}} \\
+2 J(u) \sum_{i=1}^{p} \alpha_{i}^{2} \begin{cases}\frac{n-2}{n} c_{1} \frac{\sum_{k=1}^{n} b_{k}\left(y \ell_{i}\right)}{K\left(a_{i}\right) \lambda_{i}^{\beta\left(y_{\left.\ell_{i}\right)}\right)}-c_{2} \frac{n-2}{2} \frac{H\left(y \ell_{i}, y \ell_{i}\right)}{\lambda_{i}^{n-2}},} & \text { if } \beta\left(y_{\ell_{i}}\right)=n-2 \\
-c_{2} \frac{n-2}{2} \frac{H\left(y\left(y \ell_{i}, y \ell_{i}\right)\right.}{\lambda_{i}^{n-2}}, & \text { if } \beta\left(y_{\ell_{i}}\right)>n-2\end{cases} \\
+o\left(\sum_{i=1}^{p} \frac{1}{\lambda_{i}^{n-2}}\right) .
\end{gathered}
$$

Since $J(u)^{\frac{n}{n-2}} \alpha_{i}^{\frac{4}{n-2}} K\left(a_{i}\right)=1+o(1), \forall i=1, \ldots, p$, we obtain

$$
\begin{aligned}
<\partial J(u), W_{1}(u)>=-2 J(u)^{\frac{2-n}{2}} & {\left[\sum_{i=1}^{p} \sum_{j \neq i} \frac{m\left(y_{\ell_{i}}, y_{\ell_{j}}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{\frac{n-2}{2}}}+\sum_{i=1}^{p} \frac{m\left(y_{\ell_{i}}, y_{\ell_{i}}\right)}{\lambda_{i}^{n-2}}\right]+o\left(\sum_{i=1}^{p} \frac{1}{\lambda_{i}^{n-2}}\right) } \\
=-2 J(u)^{\frac{2-n}{2}}\left(\frac{1}{\lambda_{1}^{\frac{n-2}{2}}}, \ldots,\right. & \left.\frac{1}{\lambda_{p}^{\frac{n-2}{2}}}\right) M\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)\left(\frac{1}{\left.\lambda_{1}^{\frac{n-2}{2}}, \ldots, \frac{1}{\lambda_{p}^{\frac{n-2}{2}}}\right)^{t}}\right. \\
& +o\left(\sum_{i=1}^{p} \frac{1}{\lambda_{i}^{n-2}}\right) .
\end{aligned}
$$

Using the fact that $\rho\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)>0$, we get

$$
<\partial J(u), W_{1}(u)>\leq-c \sum_{i=1}^{p} \frac{1}{\lambda_{i}^{n-2}} \leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{n-2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{j \neq i} \varepsilon_{i j}\right) .
$$

Observe that under the action of W_{1} each $\lambda_{i}(s), i=2, \ldots, p$ increases with respect to the differential equation $\dot{\lambda_{i}}=\lambda_{i}$ and therefore tends to $+\infty$ when $s \rightarrow+\infty$.

Lemma 3.4 In $W_{2}(p, \varepsilon)$, there exists a bounded pseudogradient W_{2} satisfying (i) of Proposition 3.2 and the PS condition as long as its flow lines remain in $W_{2}(p, \varepsilon)$.

Proof. Let $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in W_{2}(p, \varepsilon)$ and let $E=\left(e_{1}, \ldots, e_{p}\right) \in \mathbb{R}^{p}$ be an eigenvector of $\rho\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)$ such that $e_{i}>0, \forall i=1, \ldots, p$ and $\|E\|$. Let $\delta>0$ small enough such that $X M\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) X^{t}<$ $\frac{1}{2} \rho\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right), \forall X \in B(E, \delta):=\left\{Z \in \mathbb{R}^{p},\|Z\|=1\right.$ and $\left.\|Z-E\|<\delta\right\}$. Define

$$
V(E)=\left\{Y \in \mathbb{R}^{p}, Y \neq 0, \frac{Y}{\|Y\|} \in B(E, \delta)\right\} .
$$

If $\left(\frac{1}{\lambda_{1}^{\frac{n-2}{2}}}, \ldots, \frac{1}{\lambda_{p}^{\frac{n-2}{2}}}\right) \in V(E)$, we set

$$
W_{2}=-\sum_{i=1}^{p} \alpha_{i} \lambda_{i} \frac{\partial P \delta_{\left(a_{i}, \lambda_{i}\right)}}{\partial \lambda_{i}} .
$$

We find by Proposition 2.1

$$
\begin{gathered}
<\partial J(u), W_{2}(u)>=2 J(u)^{\frac{2-n}{4}}\left(\frac{1}{\lambda_{1}^{\frac{n-2}{2}}}, \ldots, \frac{1}{\lambda_{p}^{\frac{n-2}{2}}}\right) M\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)\left(\frac{1}{\lambda_{1}^{\frac{n-2}{2}}}, \ldots, \frac{1}{\lambda_{p}^{\frac{n-2}{2}}}\right)^{t} \\
+o\left(\sum_{i=1}^{p} \frac{1}{\lambda_{i}^{n-2}}\right) \\
\leq-c \sum_{i=1}^{p} \frac{1}{\lambda_{i}^{n-2}} \leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{n-2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{j \neq i} \varepsilon_{i j}\right) .
\end{gathered}
$$

If $\left(\frac{1}{\lambda_{1}^{\frac{n-2}{2}}}, \ldots, \frac{1}{\lambda_{p}^{\frac{n-2}{2}}}\right) \notin V(E)$, we denote by $c(t)$ the segment in \mathbb{R}^{p} connecting E with $\Lambda:=\left(\frac{1}{\lambda_{1}^{\frac{n-2}{2}}}, \ldots, \frac{1}{\lambda_{p}^{\frac{n-2}{2}}}\right)^{t}$. Setting

$$
W_{2}(u)=-\sum_{i=1}^{p}|\Lambda| \alpha_{i} \lambda_{i}^{2} \frac{\partial P \delta_{\left(a_{i}, \lambda_{i}\right)}}{\partial \lambda_{i}}\left(\frac{\|\Lambda\| e_{i}-\Lambda_{i}}{\|c(0)\|}-\frac{c_{i}(0)<\|\Lambda\| \vec{e}-\Lambda, c(0)>}{\|c(0)\|^{3}}\right),
$$

then

$$
<\partial J(u), W_{2}(u)>\leq \frac{1}{2}\|\Lambda\|^{2} \frac{\partial}{\partial t}\left(\frac{c(t) M\left(y \ell_{1}, \ldots, y \ell_{p}\right) c(t)^{t}}{\|c(t)\|^{2}}\right)_{/ t=0}+o\left(\sum_{j \neq i} \varepsilon_{i j}\right)
$$

Observe that

$$
\frac{\partial}{\partial t}\left(\frac{c(t) M\left(y \ell_{1}, \ldots, y_{\ell_{p}}\right) c(t)^{t}}{\|c(t)\|^{2}}\right)_{/ t=0} \leq-c \text { in } V(E)^{c}
$$

Indeed,

$$
\frac{c(t) M\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) c(t)^{t}}{\|c(t)\|^{2}}=\rho\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)+\frac{(1-t)^{2}}{\|c(t)\|^{2}}\left(\Lambda M\left(y \ell_{1}, \ldots, y_{\ell_{p}}\right) \Lambda^{t}-\rho\left(y_{\ell_{1}}, \ldots, y \ell_{p}\right)\|\Lambda\|^{2}\right) .
$$

This yields

$$
\frac{\partial}{\partial t}\left(\frac{c(t) M\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) c(t)^{t}}{\|c(t)\|^{2}}\right)_{/ t=0}=-\frac{2(1-t)}{\|c(t)\|^{4}}\left(\Lambda M\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \Lambda^{t}\right.
$$

$$
\left.-\rho\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)\|\Lambda\|^{2}\right)\left((1-t)|\Lambda|<E, \Lambda>+t|\Lambda|^{2}\right)
$$

We have $<E, \Lambda>\geq \inf _{1 \leq i \leq p} e_{i}\|\Lambda\|^{2}$. From the fact that $c(t) \in V(E)^{c}$, there exists $\alpha>0$ such that

$$
\alpha<(1-t) \text { and } \Lambda M\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \Lambda^{t}-\rho\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)\|\Lambda\|^{2} \geq c\|\Lambda\|^{2}
$$

We obtain

$$
\frac{\partial}{\partial t}\left(\frac{c(t) M\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) c(t)^{t}}{\|c(t)\|^{2}}\right)_{/ t=0} \leq\left(-\frac{2 \alpha}{\|c(t)\|^{4}} c\|\Lambda\|^{2} \alpha \inf _{1 \leq i \leq p} e_{i}\|\Lambda\|^{2}\right)_{/ t=0} \leq-c
$$

It follows that

$$
<\partial J(u), W_{2}(u)>\leq-c \sum_{i=1}^{p} \frac{1}{\lambda_{i}^{n-2}} \leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{n-2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{j \neq i} \varepsilon_{i j}\right)
$$

Observe that under the action of W_{2} either λ_{i} satisfies $\dot{\lambda_{i}}=-\lambda_{i}, \forall i=1, \ldots, p$ or Λ moves along a compact path. Hence, the flow remains in a compact set and therefore the PS condition is satisfied along the flow line.

Lemma 3.5 In $W_{3}(p, \varepsilon)$, there exists a bounded pseudogradient W_{3} satisfying (i) of Proposition 3.2 and the $P S$ condition as long as its flow lines remain in $W_{3}(p, \varepsilon)$.

Proof. Let $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in W_{3}(p, \varepsilon)$ and let i_{1}, \ldots, i_{q} be the indices such that $m\left(y_{i_{j}}, y_{i_{j}}\right)<0$. Define

$$
L=\left\{j, 1 \leq j \leq p, \lambda_{j} \leq \frac{1}{2} \min _{1 \leq j \leq q} \lambda i_{j}\right\}
$$

Let M_{L} be the matrix defined by $\left(y_{\ell_{i}}\right)_{\ell_{i} \in L}$ and let ρ_{L} be the least eigenvalue of M_{L}. Setting

$$
W_{3}^{1}=-\sum_{j=1}^{q} \alpha_{i_{j}} \lambda i_{j} \frac{\partial P \delta_{\left(a_{i_{j}}, \lambda_{i_{j}}\right)}}{\partial \lambda_{i_{j}}},
$$

we have

$$
\begin{aligned}
<\partial J(u), W_{3}^{1}(u)> & =-2 J(u)^{\frac{2-n}{4}} \sum_{j=1}^{q}\left(\sum_{k \neq i_{j}} \varepsilon_{i_{j} k}-\frac{m\left(y_{\ell_{i_{j}}}, y_{\ell_{i_{j}}}\right)}{\lambda_{i_{j}}^{n-2}}\right) \\
& \leq-c \sum_{j \notin L}\left(\sum_{i \neq j} \varepsilon_{i j}+\frac{1}{\lambda_{j}^{n-2}}\right)
\end{aligned}
$$

To add the indices j such that $j \in L$, we set

$$
W_{3}^{2}=\left(\left(1+\operatorname{sign} \rho_{L}\right) W_{1}\left(\sum_{i \in L} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)}\right)+\left(1-\operatorname{sign} \rho_{L}\right) W_{2}\left(\sum_{i \in L} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)}\right)\right)
$$

where $\operatorname{sign}\left(\rho_{L}\right)=1$ if $\rho_{L}>0$ and $\operatorname{sign}\left(\rho_{L}\right)=-1$ if $\rho_{L}<0$. Using the above two lemmas, we have

$$
<\partial J(u), W_{3}^{2}(u)>\leq-c\left(\sum_{i \in L}\left(\frac{1}{\lambda_{i}^{n-2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{j \neq i, i, j \in L} \varepsilon_{i j}\right)+O\left(\sum_{i \in L, j \notin L} \varepsilon_{i j}\right)
$$

Define $W_{3}=W_{3}^{1}+m W_{3}^{2}$, where $m>0$ small enough. From the above estimates we have

$$
<\partial J(u), W_{3}(u)>\leq-c\left(\sum_{i=1}^{p} \frac{1}{\lambda_{i}^{n-2}}+\sum_{j \neq i} \varepsilon_{i j}\right) \leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{n-2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{j \neq i} \varepsilon_{i j}\right)
$$

Lemma 3.6 In $W_{4}(p, \varepsilon)$, there exists a bounded pseudogradient W_{4} satisfying (i) of Proposition 3.2 and the PS condition as long as its flow lines remain in $W_{4}(p, \varepsilon)$.

Proof. Let $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{a_{i}, \lambda_{i}} \in W_{4}(p, \varepsilon)$. Suppose that

$$
L=\left\{j, 1 \leq j \leq p, \eta \leq \lambda_{j}^{n-2}\left|a_{j}-y_{\ell_{j}}\right|^{\beta}\right\}
$$

We claim the following:
(Claim) $\quad \forall j_{1} \in L, \exists Y_{j_{1}}$ a vector field such that

$$
<\partial J(u), Y_{j_{1}}(u)>\leq-c\left(\frac{1}{\lambda_{j_{1}}^{\min (\beta, n)}}+\frac{\left|\nabla K\left(a_{j_{1}}\right)\right|}{\lambda_{j_{1}}}+\sum_{j \neq j_{1}} \varepsilon_{j j_{1}}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right)
$$

Indeed, for $i \in L$, we distinguish 3 cases.
Case 1. If $\beta\left(y_{\ell_{i}}\right)=n-2$ and $\frac{1}{\eta} \geq \lambda_{i}\left|a_{i}-y_{\ell_{i}}\right|$. We set

$$
X_{i}(u)=\alpha_{i} \sum_{k=1}^{n} b_{k} \int_{\mathbb{R}^{n}} \frac{\left|x_{k}+\lambda_{i}\left(a_{i}-y_{\ell_{i}}\right)_{k}\right|^{\beta} x_{k}}{\left(1+|x|^{2}\right)^{n+1}} d x \frac{1}{\lambda_{i}} \frac{\partial P \delta_{\left(a_{i}, \lambda_{i}\right)}}{\partial\left(a_{i}\right)_{k}}
$$

Using the second expansion of Proposition 2.2, we have

$$
\left\langle\partial J(u), X_{i}(u)\right\rangle \leq-\frac{c}{\lambda_{i}^{n-2}}\left(\int_{\mathbb{R}^{n}} \frac{\left|x_{k_{a}}+\lambda_{i}\left(a_{i}-y_{\ell_{i}}\right)_{k_{a}}\right|^{\beta} x_{k_{a}}}{\left(1+|x|^{2}\right)^{n+1}} d x\right)^{2}+o\left(\frac{1}{\lambda_{i}^{n-2}}\right)+o\left(\sum_{j \neq i} \varepsilon_{i j}\right)
$$

Observe that

$$
\left(\int_{\mathbb{R}^{n}} \frac{\left|x_{k_{a}}+\lambda_{i}\left(a_{i}-y_{\ell_{i}}\right)_{k_{a}}\right|^{\beta} x_{k_{a}}}{\left(1+|x|^{2}\right)^{n+1}} d x\right)^{2} \geq c
$$

since $\lambda_{i}\left|a_{i}-y_{\ell_{i}}\right| \geq \eta$. Therefore,

$$
\left\langle\partial J(u), X_{i}(u)\right\rangle \leq-\frac{c}{\lambda_{i}^{n-2}}+o\left(\sum_{j \neq i} \varepsilon_{i j}\right) \leq-c\left(\frac{1}{\lambda_{i}^{n-2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+o\left(\sum_{j \neq i} \varepsilon_{i j}\right) .
$$

Now we consider $Z_{i}(u)=-\alpha_{i} \lambda_{i} \frac{\partial P \delta_{\left(a_{i}, \lambda_{i}\right)}}{\partial \lambda_{i}}$. Proposition 2.1 yields

$$
\left\langle\partial J(u), Z_{i}(u)\right\rangle \leq-c \sum_{j \neq i} \varepsilon_{i j}+O\left(\frac{1}{\lambda_{i}^{n-2}}\right),
$$

since $\lambda_{i} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{i}} \sim-c \varepsilon_{i j}$ in our statement. Therefore,

$$
\left\langle\partial J(u), X_{i}(u)+\gamma Z_{i}(u)\right\rangle \leq-c\left(\frac{1}{\lambda_{i}^{n-2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\sum_{j \neq i} \varepsilon_{i j}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right),
$$

for $\gamma>0$ and small.
Case 2. If $\beta\left(y_{\ell_{i}}\right)=n-2$ and $\frac{1}{\eta} \leq \lambda_{i}\left|a_{i}-y_{\ell_{i}}\right|$, define

$$
\hat{X}_{i}(u)=\alpha_{i} \sum_{k=1}^{n} b_{k} \operatorname{sign}\left(a_{i}-y_{\ell_{i}}\right)_{k} \frac{1}{\lambda_{i}} \frac{\partial P \delta_{\left(a_{i}, \lambda_{i}\right)}}{\partial\left(a_{i}\right)_{k}} .
$$

We obtain from the first expansion of Proposition 2.2

$$
\left\langle\partial J(u), \hat{X}_{i}(u)\right\rangle \leq-c \sum_{k=1}^{n} b_{k}^{2} \frac{\left|\left(a_{i}-y_{\ell_{i}}\right)_{k}\right|^{\beta-1}}{\lambda_{i}}+O\left(\sum_{s=2}^{n-2} \frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-s}}{\lambda_{i}^{s}}\right)+O\left(\frac{1}{\lambda_{i}^{\beta}}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right) .
$$

Using the fact that

$$
\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-s}}{\lambda_{i}^{s}}=o\left(\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-1}}{\lambda_{i}}\right), \forall s \geq 2 \text {, and } \frac{1}{\lambda_{i}^{\beta}}=o\left(\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-1}}{\lambda_{i}}\right),
$$

we obtain

$$
\left\langle\partial J(u), \hat{X}_{i}(u)\right\rangle \leq-c \frac{\left|\left(a_{i}-y_{e_{i}}\right)_{k}\right|^{\beta-1}}{\lambda_{i}}+o\left(\sum_{k \neq r} \varepsilon_{k r}\right) .
$$

We now apply the pseudogradient $Z_{i}(u)$. We have

$$
\begin{aligned}
\left\langle\partial J(u), Z_{i}(u)\right\rangle & \leq-c \sum_{j \neq i} \varepsilon_{i j}+O\left(\sum_{s=2}^{n-2} \frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-s}}{\lambda_{i}^{s}}\right)+O\left(\frac{1}{\lambda_{i}^{\beta}}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right) \\
& \leq-c \sum_{j \neq i} \varepsilon_{i j}+o\left(\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-1}}{\lambda_{i}}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right) .
\end{aligned}
$$

Thus,

$$
\left\langle\partial J(u), \hat{X}_{i}(u)+Z_{i}(u)\right\rangle \leq-c\left(\sum_{j \neq i} \varepsilon_{i j}+\frac{1}{\lambda_{i}^{n-2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right) .
$$

Case 3. If $\beta\left(y_{\ell_{i}}\right)>n-2$, we use the vector fields \hat{X}_{i} and Z_{i} defined in the two above cases. We have

$$
\begin{aligned}
\left\langle\partial J(u), \hat{X}_{i}(u)\right\rangle \leq-c & \sum_{k=1}^{n} b_{k}^{2} \frac{\left|\left(a_{i}-y_{\ell_{i}}\right)_{k}\right|^{\beta-1}}{\lambda_{i}}+O\left(\sum_{s=2}^{[\min (n, \beta)]} \frac{\left|a_{i}-y_{\ell_{\ell}}\right|^{\beta-s}}{\lambda_{i}^{s}}\right) \\
& +O\left(\frac{1}{\lambda_{i}^{\min (n, \beta)}}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right)
\end{aligned}
$$

Since

$$
\begin{gathered}
\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-s}}{\lambda_{i}^{s}}=o\left(\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-1}}{\lambda_{i}}\right), \forall s \geq 2 \\
\frac{1}{\lambda_{i}^{\beta}}=o\left(\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-1}}{\lambda_{i}}\right), \text { and } \frac{1}{\lambda_{i}^{n}}=o\left(\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-1}}{\lambda_{i}}\right), \text { as } \lambda \rightarrow+\infty
\end{gathered}
$$

we get

$$
\operatorname{Big}\left\langle\partial J(u), \hat{X}_{i}(u)\right\rangle \leq-c \frac{\left|\left(a_{i}-y_{\ell_{i}}\right)_{k}\right|^{\beta-1}}{\lambda_{i}}+o\left(\sum_{k \neq r} \varepsilon_{k r}\right)
$$

Moreover,

$$
\left\langle\partial J(u), Z_{i}(u)\right\rangle \leq-c \sum_{j \neq i} \varepsilon_{i j}+o\left(\frac{\left|a_{i}-y_{\ell_{i}}\right|^{\beta-1}}{\lambda_{i}}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right)
$$

Using $Y_{i}(u)=\hat{X}_{i}(u)+Z_{i}(u)$, we find that

$$
\left\langle\partial J(u), Y_{i}(u)\right\rangle \leq-c\left(\sum_{j \neq i} \varepsilon_{i j}+\frac{1}{\lambda_{i}^{\min (n, \beta)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right)
$$

and hence our claim follows.
Now let

$$
\lambda_{i_{0}}^{\beta}=\min _{i \in L} \lambda_{i}^{\beta}
$$

and define

$$
\widetilde{L}=\left\{j, 1 \leq j \leq p, \lambda_{j}^{\beta} \geq \frac{1}{2} \lambda_{i_{0}}^{\beta}\right\} .
$$

We have:

$$
<\partial J(u), \sum_{i \in L} Y_{i}(u)>\leq-c\left(\sum_{i \in \widetilde{L}}\left(\frac{1}{\lambda_{i}^{\min (\beta, n)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{i \in L, j \neq i} \varepsilon_{i j}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right)
$$

$$
<\partial J(u), \sum_{i \in L} Y_{i}(u)+\gamma \sum_{i \in \widetilde{L} \backslash L} Z_{i}(u)>\leq-c\left(\sum_{i \in \widetilde{L}}\left(\frac{1}{\lambda_{i}^{\min (\beta, n)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{i \in \widetilde{L}, j \neq i} \varepsilon_{i j}\right)+o\left(\sum_{k \neq r} \varepsilon_{k r}\right)
$$

for $\gamma>0$ small enough. To add the left indices, let $\bar{u}=\sum_{i \notin \widetilde{L}} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)}$. Observe that $\bar{u} \in V_{i}\left(\sharp \widetilde{L}^{c}, \varepsilon\right), i=1,2,3$. Let $\widetilde{W}(u)=W_{i}(\bar{u})$ where $W_{i}(\bar{u})$ is the corresponding pseudogradient. We have

$$
<\partial J(u), \widetilde{W}(u)>\leq-c\left(\sum_{i \notin \widetilde{L}}\left(\frac{1}{\lambda_{i}^{\min (\beta, n)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{i, j \notin \widetilde{L}, j \neq i} \varepsilon_{i j}\right)+O\left(\sum_{i \notin \widetilde{L}, j \in \widetilde{L}} \varepsilon_{i j}\right)
$$

Let $\widetilde{\gamma}$ be a positive constant small enough and let

$$
W_{4}(u)=\widetilde{\gamma} \widetilde{W}(u)+\sum_{i \in L} Y_{i}(u)+\gamma \sum_{i \in \widetilde{L} \backslash L} Z_{i}(u)
$$

We have

$$
<\partial J(u), W_{4}(u)>\leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{\min (\beta, n)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{j \neq i} \varepsilon_{i j}\right)
$$

Lemma 3.7 In $W_{5}(p, \varepsilon)$, there exists a bounded pseudogradient W_{5} satisfying (i) of Proposition 3.2 and the $P S$ condition as long as its flow lines remain in $W_{5}(p, \varepsilon)$.

Proof. We decompose $W_{5}(p, \varepsilon)$ in two regions:

$$
\begin{gathered}
R_{1}=\left\{u=\sum_{i=1}^{p} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)} \in V(p, \varepsilon), a_{i} \in B\left(y_{\ell_{i}}, \rho_{0}\right), y_{\ell_{i}} \in \mathcal{K}, \forall i=1, \ldots, p\right. \\
\text { and there exists } \left.j \neq i \text { such that } y_{\ell_{i}}=y_{\ell_{j}}\right\}, \\
R_{2}=\left\{u=\sum_{i=1}^{p} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)} \in V(p, \varepsilon), \exists i, 1 \leq i \leq p, a_{i} \notin \cup_{y, \nabla K(y)=0} B\left(y, \rho_{0}\right)\right\} .
\end{gathered}
$$

For the construction of the required vector field in R_{2}, we refer to [8]. We now state the construction in R_{1}. For any $i, i=1, \ldots, p$, let

$$
B_{i}=\left\{j, 1 \leq j \leq p, a_{j} \in B\left(y_{\ell_{i}}, \rho_{0}\right)\right\}
$$

Suppose that i_{1}, \ldots, i_{ℓ} are all the indices such that $\sharp B_{i_{k}}>1, \forall k=1, \ldots, \ell$. Let $\delta>0$ small enough and ϕ be a smooth positive cut off function: $\phi(t)=0$ if $|t|<\eta$ and $\phi(t)=1$ if $|t| \geq \eta$.

For $j \in B_{i_{k}}$, we set

$$
\bar{\phi}\left(\lambda_{j}\right)=\sum_{i \neq j \in B_{i_{k}}} \phi\left(\frac{\lambda_{j}}{\lambda_{i}}\right) .
$$

Set

$$
W_{5}^{1}(u)=-\sum_{k=1}^{\ell} \sum_{j \in B_{i_{k}}} \alpha_{j} \bar{\phi}\left(\lambda_{j}\right) \lambda_{j} \frac{\partial P \delta_{\left(a_{i}, \lambda_{i}\right)}}{\partial \lambda_{i}} .
$$

Then

$$
\left\langle\partial J(u), W_{5}^{1}(u)\right\rangle \leq c \sum_{k=1}^{\ell}\left(\sum_{j \in B_{i_{k}}} \bar{\phi}\left(\lambda_{j}\right) \lambda_{j} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{j}}+\sum_{j \in B_{i_{k}}} O\left(\sum_{s=1}^{[\min (\beta, n)]} \frac{\left|a_{j}-y_{\ell_{j}}\right|^{\beta-s}}{\lambda_{j}^{s}}\right)\right)
$$

For $j \in B_{i_{k}}$ such that $\bar{\phi}\left(\lambda_{j}\right) \neq 0$, there exists $i_{0} \neq j \in B_{i_{k}}$ such that

$$
\frac{1}{\lambda_{j}^{\beta}}=o\left(\varepsilon_{j i_{0}}\right) \text { and } \frac{1}{\lambda_{j}^{n}}=o\left(\varepsilon_{j i_{0}}\right)
$$

Observe that if $i \in B_{i_{k}}^{c}$, then $\left|a_{i}-a_{j}\right| \geq \rho_{0}$. Therefore,

$$
\lambda_{j} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{i}} \leq-c \varepsilon_{i j} \text { and } \lambda_{i} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{j}} \leq-c \varepsilon_{i j}
$$

Thus,

$$
\left\langle\partial J(u), W_{5}^{1}(u)\right\rangle \leq-c \sum_{k=1}^{\ell}\left(\sum_{j \in B_{i_{k}}} \bar{\phi}\left(\lambda_{j}\right)\left(\sum_{i \neq j} \varepsilon_{i j}+\frac{1}{\lambda_{j}^{\min (\beta, n)}}\right)+\sum_{j \in B_{i_{k}}} O\left(\sum_{s=1}^{[\min (\beta, n)]} \frac{\left|a_{j}-y_{\ell_{j}}\right|^{\beta-s}}{\lambda_{j}^{s}}\right)\right)
$$

Denote by j_{0} the index such that

$$
\lambda_{j_{0}}^{\min (n, \beta)}=\min \left\{\lambda_{i}^{\min (n, \beta)}, 1 \leq i \leq p\right\}
$$

We have two cases:
 constant small enough. In this case, we get:

$$
\left\langle\partial J(u), W_{5}^{1}(u)\right\rangle \leq-c \sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{\min (\beta, n)}}+\sum_{i \neq j} \varepsilon_{i j}\right)+\sum_{k=1}^{\ell} \sum_{j \in B_{i_{k}}} O\left(\sum_{s=1}^{[\min (\beta, n)]} \frac{\left|a_{j}-y_{\ell_{j}}\right|^{\beta-s}}{\lambda_{j}^{s}}\right) .
$$

Therefore,

$$
\left\langle\partial J(u), W_{5}^{1}(u)+\gamma_{1} \sum_{i=1}^{p} \hat{X}_{i}(u)\right\rangle \leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{\min (\beta, n)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{i \neq j} \varepsilon_{i j}\right)
$$

for $\gamma_{1}>0$ small enough.
(ii) If $\forall j \in B_{i_{k}}, k=1, \ldots, \ell$, we have $\frac{\lambda_{j_{0}}^{\min (n, \beta)}}{\lambda_{j}^{\min (n, \beta)}}<\gamma$, or if there exists $j \in B_{i_{k}}, k=1, \ldots, \ell$, with $\frac{\lambda_{j_{0}}^{\min (n, \beta)}}{\lambda_{j}^{\min (n, \beta)}} \geq \gamma$, we have $\bar{\phi}\left(\lambda_{j}\right)=0$. Define

$$
E=\left\{k, \frac{\lambda_{k}^{\min (n, \beta)}}{\lambda_{j_{0}}^{\min (n, \beta)}}<\frac{1}{\gamma}\right\} \cup\left\{k, \bar{\phi}\left(\lambda_{k}\right)=0\right\} \cup\left(\cup_{k=1}^{\ell} B_{i_{k}}\right)^{c}
$$

For all $k \neq j \in E$, we have $a_{k} \in B\left(y_{\ell_{k}}, \rho_{0}\right)$ and $a_{j} \in B\left(y_{\ell_{j}}, \rho_{0}\right)$ with $y_{\ell_{j}} \neq y_{\ell_{k}}$. Let $\bar{u}=\sum_{i \in E} \alpha_{i} P \delta_{a_{i}, \lambda_{i}}$. \bar{u} lies in $W_{i}(\sharp E, \varepsilon), i=1,2,3,4$. We denote by W_{i} the related pseudogradient. We get

$$
\left\langle\partial J(u), W_{i}(u)\right\rangle \leq-c\left(\sum_{i \in E}\left(\frac{1}{\lambda_{i}^{\min (\beta, n)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{i \neq j, i, j \in E} \varepsilon_{i j}\right)+O\left(\sum_{i \in E, j \notin E} \varepsilon_{i j}\right) .
$$

Therefore,

$$
\left\langle\partial J(u), W_{5}^{1}(u)+\gamma_{1}\left(W_{i}(u)+\sum_{i=1}^{p} \hat{X}_{i}(u)\right\rangle \leq-c\left(\sum_{i=1}^{p}\left(\frac{1}{\lambda_{i}^{\min (\beta, n)}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}\right)+\sum_{i \neq j} \varepsilon_{i j}\right) .\right.
$$

Proof of of Proposition 3.2 The required pseudogradient W is a convex combination of $W_{i}, i=1, \ldots, 5$. Clearly it satisfies (i) and (iii) of Proposition 3.2. Concerning (ii), it follows from the estimates (2.4).

Proof of of Theorem 3.1 The characterization of the critical points at infinity follows from Proposition 3.2. Concerning the related index, we expand J near each critical point at infinity $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}$. As in [8] and [17], for any $u=\sum_{i=1}^{p} \alpha_{i} \delta_{\left(a_{i}, \lambda_{i}\right)} \in V(p, \varepsilon)$ such that $a_{i} \in B\left(y_{\ell_{i}}, \rho\right), \forall i=1, \ldots p$, with $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \in \mathcal{C}^{\infty}$, there exists a change of variables

$$
\left(a_{1}, \ldots, a_{p}, \lambda_{1}, \ldots, \lambda_{p}\right) \rightarrow\left(a_{1}^{\prime}, \ldots, a_{p}^{\prime}, \lambda_{1}^{\prime}, \ldots, \lambda_{p}^{\prime}\right)
$$

such that

$$
J(u)=\frac{S_{n} \sum_{i=1}^{p} \alpha_{i}^{2}}{\left(S_{n} \sum_{i=1}^{p} \alpha_{i}^{\frac{2 n}{n-2}} K\left(a_{i}^{\prime}\right)\right)^{\frac{n-2}{n}}}\left(1+\sum_{i=1}^{p} \frac{1}{\lambda_{i}^{\prime \beta}}\right)
$$

where S_{n} is the best constant of Sobolev.
It follows that the index of J at $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}$ corresponds to the index of

$$
\psi\left(\alpha, a^{\prime}\right)=\frac{S_{n} \sum_{i=1}^{p} \alpha_{i}^{2}}{\left(S_{n} \sum_{i=1}^{p} \alpha_{i}^{\frac{2 n}{n-2}} K\left(a_{i}^{\prime}\right)\right)^{\frac{n-2}{n}}}
$$

at $\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{p}, y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)$ where $\bar{\alpha}_{i}=\frac{1}{K\left(y_{\ell_{i}}\right)^{\frac{n-2}{4}}}, i=1, \ldots, p$. Hence, Theorem 3.1 follows.

4. Proof of Theorem 1.2

We argue by contradiction: suppose that (1.1) has no solution. By Theorem 3.1, the critical points at infinity of J are $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}$ such that $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \in \mathcal{C}^{\infty}$. Using the deformation lemma of [5], we have

$$
\Sigma^{+} \cong \bigcup_{\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \in \mathcal{C}^{\infty}} W_{u}^{\infty}\left(\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}\right)
$$

Here \cong denotes retracts by deformation and $W_{u}^{\infty}\left(\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}\right)$ denotes the unstable manifold at infinity of $\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)_{\infty}$. We now compute the Euler-Poincaré characteristic of each manifold and we obtain

$$
1=\sum_{\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right) \in \mathcal{C}^{\infty}}(-1)^{i\left(\left(y_{\ell_{1}}, \ldots, y_{\ell_{p}}\right)\right)},
$$

since Σ^{+}is a contractible space. Such an equality contradicts the assumption of Theorem 1.2.

Acknowledgment

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G-635-247-438. The author thanks DSR for this technical and financial support.

References

[1] Aubin T, Bahri A. Méthodes de topologie algébrique pour le problème de la courbure scalaire prescrite. Journal de Mathématiques Pures et Appliquées 1997; 76 (6): 525-849 (in French).
[2] Bahri A. Critical Point at Infinity in Some Variational Problems. Pitman Research Notes in Mathematics. Harlow, UK: Longman, 1989.
[3] Bahri A. An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimensions. Duke Mathematics Journal 1996; 81: 323-466.
[4] Bahri A, Coron JM. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain. Communications on Pure and Applied Mathematics 1988; 41: 255-294.
[5] Bahri A, Rabinowitz P. Periodic orbits of Hamiltonian systems of three body type. Annales de l'Institut Henri Poincare C Analyse non lineaire 1991; 8: 561-649.
[6] Ben Mahmoud R, Chtioui H. Existence results for the prescribed scalar curvature on S^{3}. Annales de l'Institut Fourier 2011; 61: 971-986.
[7] Ben Mahmoud R, Chtioui H. Prescribing the scalar curvature problem on higher-dimensional manifolds. Discrete and Continuous Dynamical Systems A 2012; 32 (5): 1857-1879.
[8] Bouchech Z, Chtioui H. Multiplicity and existence results for a nonlinear elliptic equation with Sobolev exponent. Advanced Nonlinear Studies 2010; 10: 537-572.
[9] Chang SA, Yang PC. A perturbation result in prescribing scalar curvature on S^{n}. Duke Mathematics Journal 1991; 64: 27-69.
[10] Chtioui H. Prescribing the scalar curvature problem on three and four manifolds. Advanced Nonlinear Studies 2003; 3: 457-470.
[11] Chtioui H, Ben Mahmoud R, Abuzaid DA. Conformal transformation of metrics on the n-sphere. Nonlinear Analysis: Theory Methods and Applications 2013; 82: 66-81.
[12] Li YY. Prescribing scalar curvature on S^{n} and related topics, Part I. Journal of Differential Equations 1995; 120: 319-410.
[13] Li YY. Prescribing scalar curvature on S^{n} and related topics, Part II: Existence and compactness. Communications on Pure and Applied Mathematics 1996; 49: 541-579.
[14] Pohozaev S. Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. Soviet Mathematics Doklady 1965; 6: 1408-1411.
[15] Sharaf K. Existence of solutions for elliptic nonlinear problems on the unit ball of \mathbb{R}^{3}. Electronic Journal of Differential Equations 2016; 2016: 229.
[16] Sharaf K. On a nonlinear problem with zero Dirichlet boundary condition. Applicable Analysis 2017; 96 (9): 14661482. doi: $10.1080 / 00036811.2016 .1220548$
[17] Sharaf K. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems Series A 2017; 37 (3): 1691-1706.
[18] Sharaf K. Positive solutions for a nonlinear problem on a three dimensional domain. Complex Variables and Elliptic Equations 2017; 62 (6): 862-875.
[19] Struwe M. A global compactness result for elliptic boundary value problem involving limiting nonlinearities. Mathematische Zeitschrift 1984; 187: 511-517.

[^0]: *Correspondence: $\mathrm{kh}_{\text {s }}$ haraf@yahoo.com
 2010 AMS Mathematics Subject Classification: 35J60, 35J65

