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Abstract: In this work, we establish a common fixed point result for mappings satisfying a controllable punctual
inequality and we study the convergence (resp. weak convergence) of the generalized Kirk’s process associated with
them. In addition, our results are applied to investigate the convergence (resp. weak convergence) of Kuhfittig’s iterative
process to the solution of a nonlinear system of functional equations.
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1. Introduction
In applied sciences, many problems can be modeled by equations of the form

u− Tu = f (1)

in a convenable Banach space X . If T is a bounded linear mapping such that I−T is invertible or satisfies the
Fredholm alternative, then equation (1) has a solution. In the case where T is assumed to be only linear, other
results which ensure the existence of the solution are given by several authors (see, for example, [4]). Now, in
the nonlinear setting, the situation is quite different. More precisely, if f = 0 and T is a contraction mapping,
then equation (1) has a solution z which is the unique fixed point of T and the Picard sequence {xn}n given
by xn = Tn(x0) converges to z for any x0 ∈ X . However, this fact does not apply if T is nonexpansive.
To see this, it suffices to take T : [0, 1] −→ [0, 1] given by T (x) = 1 − x , it is easy to observe that T is an

isometry; thus, it is a nonexpansive mapping having 1

2
as a unique fixed point. Let x0 = 0 , the Picard sequence

{xn}n is given by x2k = 0 and x2k+1 = 1 for all integer k ∈ {0}
∪

N which is not convergent to the point 1

2
.

Furthermore, it is easy to observe that u is a solution to equation (1) if and only if that u is a fixed point for
the mapping Tf given by

Tfu = Tu+ f. (2)

Thus, studying the existence of the solution of (1) is equivalent to investigating fixed points of the mapping
Tf . Here we are interested in the study of common fixed points for mappings satisfying controllable punctual
inequality. Our contribution is motivated by the fact that several phenomena can be given as a combination
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of finite problems. Our results extend, in particular, those of [10] and they are applied to give necessary
and sufficient conditions to solve a nonlinear system of functional equations and to study the convergence of
Kuhfittig’s (see [12]) iterative process to its solutions.

2. Notations and preliminaries
Before going to the results, we present some definitions.

Let X be a Banach space. The modulus of convexity of X is the function δX : [0, 2] −→ [0, 1] defined
by

δX(ϵ) = inf{1− ∥x+y∥
2 : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ}.

Definition 2.1 A Banach space X is said to be uniformly convex if δX(ϵ) > 0 for each ϵ ∈ (0, 2] .

Definition 2.2 A Banach space X is said to be strictly convex if for x, y, z ∈ X

∥x− z∥ = ∥y − z∥ = 1
2∥x− y∥ =⇒ z =

x+ y

2
.

Recall that the Lebesgue spaces Lp([0, 1])(1 < p < ∞) are a natural prototype of uniformly convex Banach
spaces. Additionally, every uniformly convex Banach space is strictly convex, but the converse is not true in
general. For further information on these notions, we quote for example [5, 8].

Definition 2.3 Let X be a normed space and C a subset of X . The selfmapping T : C −→ C is said to be
nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.

It is well known (see [3, 6, 10, 13]) that if C is an arbitrary bounded closed convex subset of a uniformly
convex Banach space X , then T has at least one fixed point. As a particular case, if X is a Hilbert space,
this result holds. However, if X = L1([0, 1]) , we can find a bounded closed convex subset C0 ⊂ L1([0, 1]) and

a nonexpansive mapping T̃ : C0 −→ C0 such that T̃ is a fixed point free mapping (see [1]).

Definition 2.4 Let C be a convex subset of a Banach space X and let T : C −→ C be a selfmapping. For
x0 ∈ C , define a sequence {xn}n ⊂ C by

xn+1 = λxn + (1− λ)T (xn) λ ∈ (0, 1),

{xn}n is called Krasnoselskii’s process associated with T .

Definition 2.5 Let C be a convex subset of a Banach space X and let T1, T2, ..., Tk be selfmappings on C .
For x0 ∈ C , define {xn}n ⊂ C by

xn+1 = λ0xn + λ1T1(xn) + ...+ λkTk(xn),

where λi ≥ 0 for i = 0, ...., k with λ1 > 0 and
k∑

i=0

λi = 1 . {xn}n is called generalized Kirk’s process associated

with the mappings T1, ..., Tk .
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Remark 2.6 If in Definition 2.5, we put λ2 = ... = λk = 0 , then the generalized Kirk’s process is reduced to
Krasnoselskii’s process associated with the mapping T1 .

Remark 2.7 For a given selfmapping T on C , we denote by T i the composition T ◦ T..... ◦ T (i times). If in
Definition 2.5, we take Ti = T i for all integer i ≥ 1 , then the process is reduced to the classical Kirk’s process
associated with the mapping T .

Through this paper, F (T ) will denote the set of fixed points of the mapping T .

3. Common fixed points formulas

We begin with the following Lemma.

Lemma 3.1 Let C be a convex subset of a Banach space X and let T1, ..., Tk be selfmappings on C . For

(λi)
k
i=0 ⊂ [0, 1] with

k∑
i=0

λi = 1, we denote by

S =

k∑
i=0

λiTi ( with the notation T0 = IdC),

then

k∩
i=1

F (Ti) = F (S)
∩(

k∩
i=1

F (TiS)

)
.

Proof Let x0 ∈
k∩

i=1

F (Ti) , then x0 ∈ F (Ti) for all integer i = 1, ..., k , which proves that Ti(x0) = x0 for all i =

1, ..., k and hence S(x0) =

k∑
i=0

λiTi(x0) = x0 ; thus, x0 ∈ F (S) and consequently x0 ∈ F (S)
∩( k∩

i=1

F (TiS)

)
.

Conversely, let x0 ∈ F (S)
∩( k∩

i=1

F (TiS)

)
; thus, S(x0) = x0 and (TiS)(x0) = x0 for all integer i = 1, ..., k ,

by composition the equality S(x0) = x0 at the left by Ti (i = 1, ..., k) , we get

(TiS)(x0) = Tix0 = x0,

Hence, x0 ∈ F (Ti),∀i = 1, ..., k which gives that x0 ∈
k∩

i=1

F (Ti) and completes the proof. 2

Theorem 3.2 Let C be a convex subset of a Banach space X and let T1, T2, ..., Tk (k ≥ 2) be self-mappings
on C satisfying that for all x ∈ C and for all integers i, j = 1, ..., k, (i < j) there exists an integer 1 ≤ n(x) < j

such that
∥Ti(x)− Tj(x)∥ ≤ ∥x− Tn(x)(x)∥. (3)
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Let (λi)
k
i=0 ⊂ [0, 1] with λ1 > 0 and

k∑
i=0

λi = 1 . Set S =

k∑
i=0

λiTi ( with the notation T0 = IC) . Then

k∩
i=1

F (Ti) = F (S).

Proof It is easy to show that
k∩

i=1

F (Ti) ⊆ F (S) . To prove the converse, let x0 ∈ F (S) ; thus,

S(x0) =

(
k∑

i=0

λiTi

)
(x0) = x0,

it follows that

x0 =

(
k∑

i=1

(
λi

1− λ0

)
Ti

)
(x0) (λ0 ̸= 1 since λ1 > 0).

Let δ = sup{∥Ti(x0) − Tj(x0)∥, i, j = 0, ..., k} . Suppose that δ > 0 , the assumption (3) implies the existence
of a smallest integer p(x0) ∈ {1, ..., k} such that

δ = ∥x0 − Tp(x0)(x0)∥.

Since
k∑

i=1

λi

1− λ0
= 1 , it follows that

x0 = γ0T1(x0) + (1− γ0)z,

where z ∈ conv{T2(x0), ..., Tk(x0)}. Thus

δ = ∥x0 − Tp(x0)(x0)∥ =∥γ0T1(x0) + (1− γ0)z − Tp(x0)(x0)∥

≤γ0∥T1(x0)− Tp(x0)(x0)∥+ (1− γ0)∥z − Tp(x0)(x0)∥

≤γ0δ + (1− γ0)δ = δ.

(ı) If p(x0) = 1 , this is a contradiction, since in this case, we obtain that ∥T1(x0)− T1(x0)∥ = 0 = δ.

(ıı) If p(x0) > 1 , by the assumption (3), there exists an integer m(x0) < p(x0) such that

δ ≤ ∥T1(x0)− Tp(x0)(x0)∥ ≤ ∥x0 − Tm(x0)(x0)∥

which gives that ∥x0 − Tm(x0)(x0)∥ = δ and contradicts the fact that p(x0) is the smallest integer such
that δ = ∥x−Tp(x0)(x0)∥. Necessarily, we get δ = 0 . Hence, ∥x0 −Ti(x0)∥ = 0 for all integer i = 1, ..., k ,

consequently x0 ∈
k∩

i=1

F (Ti) which completes the proof.

2
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Example 3.3 Let C be a convex subset of a Banach space X and let T be a self-mapping on C . If T

satisfies one of the following assumptions, then for all integer n ≥ 2 , the self-mappings T, T 2, ...., Tn satisfy the
controllable punctual inequality (3) .

1. T nonexpansive;

2. ∥Tx− Ty∥ ≤ ∥x− Tx∥∥x− Ty∥+ ∥y − Ty∥∥y − Tx∥
∥x− Ty∥+ ∥y − Tx∥

for all x, y ∈ C, x ̸= y with ∥x− Ty∥+ ∥y − Tx∥ ̸= 0 .

Indeed, for the setting of nonexpansive mappings, it suffices to take n(x) = j − i (i < j) for all x ∈ C since we
have ∥T ix− T jx∥ ≤ ∥x− T j−ix∥ while if T satisfies 2 , then n(x) can be taken equal to 1 for all x ∈ C since
in this case, we have ∥T ix− T jx∥ ≤ ∥x− Tx∥ (for more details, see [14]).

Corollary 3.4 Let C be a convex subset of a Banach space X and let T be a nonexpansive self-mapping on
C . Set

S =

k∑
i=0

λiT
i (with the notation T 0 = IC),

where (λi)
k
i=0 ⊂ [0, 1] together with λ1 > 0 and

k∑
i=0

λi = 1 . Then F (S) = F (T ).

Proof The result follows from Theorem 3.2 by taking Ti = T i for all integer i . In this case, we have
k∩

i=1

F (T i) = F (T ) since F (T ) ⊂ F (T i) for all integer i ≥ 1 which completes the proof.

4. Convergence Results of Generalized Kirk’s Processes
Definition 4.1 Let C be a nonempty subset of a Banach space X and let T be a self-mapping on C . T is
said to be asymptotically regular if, for all x ∈ C , we have

lim
n−→∞

∥Tn+1(x)− Tn(x)∥ = 0.

It is easy to show that if T is a contraction, then T is asymptotically regular. However, if T is nonexpansive,
then the sequence δn = ∥Tn+1(x)− Tn(x)∥ is decreasing but does not converge necessarily to 0. To see this, it
suffices to take X = R equipped with its usual norm and T : R −→ R defined by T (x) = 1− x .

Now, we state the following theorem which will be used in the sequel. 2

Theorem 4.2 (see Theorem 4 in [11]) Let C be a closed convex subset of a uniformly convex Banach space
X and let T1, T2, ..., Tk be nonexpansive selfmappings on C . Denote by

S =

k∑
i=0

λiTi (with the notation T0 = IdC),

where (λi)
k
i=0 ⊂ [0, 1] and λ1 > 0 with

k∑
i=0

λi = 1 . If
k∩

i=1

F (Ti) ̸= ∅ then S is asymptotically regular.
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The rest of this section is devoted to the study of the convergence results concerning generalized Kirk’s
and nonstationary generalized Kirk’s processes to common fixed points of the given mappings.

Definition 4.3 Let X be a Banach space and let T be a (nonlinear) self-mapping on X . T is said to be
compact if T maps bounded subsets of X into precompacts subsets of X .

Our first convergence result in this section goes as follows.

Theorem 4.4 Let X be a uniformly convex Banach space and let T1, T2, ..., Tk(k ≥ 2) be nonexpansive
compact self-mappings on X satisfying the assumption (3). Denote by S the mapping

S =

k∑
i=0

λiTi (with the notation T0 = IdX),

where (λi)
k
i=0 ⊂ [0, 1], λ1 > 0 and

k∑
i=0

λi = 1 . If
k∩

i=1

F (Ti) ̸= ∅ , then for each x0 ∈ X the Picard sequence

{Sn(x0)} converges to a common fixed point of the mappings T1, T2, ..., Tk.

Proof By Theorem 4.2, it follows that S is asymptotically regular and F (S) =

k∩
i=1

F (Ti) ̸= ∅ . Now, we will

prove that the mapping I − S maps bounded closed subsets of X into closed subsets of X . To do it, let C

be an arbitrary bounded closed subset of X and assume that lim
n−→+∞

(yn − Syn) = y, yn ∈ C . We show that

y ∈ (I − S)(C) . Since each Ti, 1 ≤ i ≤ k is compact, we obtain the existence of a subsequence (yni(l))l such
that Ti(yni(l))l converges to zi ∈ X, 1 ≤ i ≤ k which proves the existence of a subsequence

(
yf(l)

)
l

of (yl)l

such that Ti(yf(l)) converges to zi ∈ X for each 1 ≤ i ≤ k . Thus,

(I − S)(yf(l)) =yf(l) −
k∑

i=0

λiTi(yf(l))

=(1− λ0)yf(l) −
k∑

i=1

λiTi(yf(l)).

Afterwards, since yf(l) − S(yf(l)) converges to y (l −→ +∞) , we get

lim
l−→+∞

(1− λ0)yf(l) = y +

k∑
i=1

λizi,

which implies that lim
l−→+∞

yf(l) =
y

1− λ0
+

k∑
i=1

(
λi

1− λ0
)zi ∈ C ( since C is closed ) . Hence, lim

l−→+∞
yf(l) = ỹ ∈ C ;

thus,

ỹ − Sỹ = y.

This proves that y ∈ (I − S)(C) . Now the result follows from Theorem 6 in [4]. 2
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Definition 4.5 A self-mapping T on X is said to be demiclosed if for each sequence {xn} ⊂ X with xn −→ x

weakly in X and Txn −→ y in norm in X, then Tx = y.

Theorem 4.6 Let X be a uniformly convex Banach space, C a closed bounded convex subset of X , and let
T1, T2, ..., Tk (k ≥ 2) be a nonexpansive mappings satisfying the assumption (3). Set

S =

k∑
i=0

λiTi (with the notation T0 = IdC),

where (λi)
k
i=0 ⊂ [0, 1], λ1 > 0 and

k∑
i=0

λi = 1 . Assume that
k∩

i=1

F (Ti) = {z0} . Then for each x0 ∈ C , the

Picard sequence {Sn(x0)} converges weakly to z0 in C .

Proof Since S is nonexpansive, the mapping I − S is demiclosed (see [2]). Next, let x0 ∈ C and let {xn}n
the Picard sequence xn = Snx0(n ∈ N) . Since X is uniformly convex, then X is reflexive (see [5, 8]), this fact
implies the existence of a subsequence {xnk

}k of {xn}n such that xnk
converges weakly to y0 . On the other

hand, Theorem 4.2 implies that S is asymptotically regular; thus,

lim
k−→+∞

(I − S)(xnk
) = lim

k−→+∞

(
Snk(x0)− Snk+1(x0)

)
= 0.

By definition of the demiclosedness, it follows that

(I − S)(y0) = 0,

which proves that y0 is a fixed point of S . However, F (S) =

k∩
i=1

F (Ti) (see Theorem 3.2). Hence y0 = z0

and consequently y0 is the unique fixed point of S . Therefore, every weakly convergent subsequence of {xn}
converges weakly to z0 . By a standard argument using the reflexivity of X and the fact that the sequence
{xn}n is bounded, we infer that {xn}n converges weakly to z0 which is the desired result. 2

Remark 4.7 It is worth to note that Theorems 4.2 and 4.4 are extensions of Corollary and Theorem 3 in [10]
by taking Ti = T i for all integer i ≥ 1 .

Finally, we study the convergence of a nonstationary generalized Kirk’s process involving T1, T2, ..., Tk to a
common fixed point for these mappings.

First of all, we recall the following preparatory result.

Lemma 4.8 (see Lemma 1 in [7]) If {xn}n and {yn}n are sequences in a uniformly convex space with
∥yn∥ ≤ ∥xn∥ and

xn+1 = (1− αn)xn + αnyn (0 ≤ αn ≤ 1),
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where
∞∑

n=1

min(αn, 1 − αn) = ∞ , then 0 ∈ {xn − yn, n ∈ N} (where C denotes the closure in norm of the set

C ).

Let (αij)
∞
i=0 (j = 0, 1, ..., k) be a set of positive reals such that 0 ≤ αij , 0 < α ≤ αi1 with

k∑
j=0

αij = 1 for each

i and
∞∑
i=0

min(αi0, 1− αi0) = ∞.

Define the mappings Si by

Si = αi0I + αi1T1 + ...+ αikTk (i = 0, 1, 2, ..., )

A nonstationary generalized Kirk’s process is given by the formula

xn+1 = Snxn (n = 0, 1, 2, ...) (4)

It is easy to observe that if T1, T2, ..., Tk are nonexpansive mappings and if z0 ∈
k∩

i=1

F (Ti) , then

∥xn+1 − z0∥ = ∥
k∑

j=0

αnj(Tjxn − Tjz0)∥ ≤ ∥xn − z0∥. (5)

Proposition 4.9 Let C be a convex subset of uniformly convex Banach space and let T1, T2, ..., Tk be

nonexpansive selfmappings on C with
k∩

i=1

F (Ti) ̸= ∅ and let {xn}n defined by equation (4). Then 0 ∈

{xn+1 − xn, n ∈ N}.

Proof Let x0 ∈
k∩

i=1

F (Ti) . Define yn = xn − x0 and

zn =
1

1− αn0

k∑
j=1

αnj(Tjxn − Tjx0).

Hence,

yn+1 = xn+1 − x0 =Snxn − x0 = αn0xn + ...+ αnkTkxn − (

k∑
j=0

αnj)x0

=αn0(xn − x0) +

k∑
j=1

αnj(Tjxn − Tjx0)

=αn0yn + (1− αn0)zn.
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By (5) , we obtain that ∥zn∥ ≤ ∥xn − x0∥ = ∥yn∥ . Now, Lemma 4.8 implies that 0 ∈ {yn − zn, n ∈ N} .
Moreover, we have

∥yn − zn∥ =∥xn − x0 −
1

1− αn0

k∑
j=1

αnjTjxn + x0∥

=∥xn − 1

1− αn0

k∑
j=0

αnjTjxn +
αn0

1− αn0
xn∥

=
1

1− αn0
∥xn − xn+1∥

≥∥xn − xn+1∥ since 1

1− αn0
≥ 1,

this proves the existence of a subsequence {xnk
} such that lim

k−→+∞
∥xnk

− xnk+1∥ = 0 , which is the desired

result. 2

Theorem 4.10 In addition to the hypotheses of Proposition 4.9, assume that the mappings T1, T2, ..., Tk (k ≥
2) satisfy the assumption (3) and each Ti (1 ≤ i ≤ k) is compact. Then for each x1 ∈ C , the sequence {xn}n
defined by the formula (4) converges to a common fixed point for the mappings T1, T2, ..., Tk .

Proof By Proposition 4.9, there exists a subsequence {xnl
} with xnl+1

− xnl
−→ 0 . Moreover, from

the assumption on the set {αij}∞i=0 (j = 0, 1, ..., k) , we can extract subsequences αmlj of the sequence
{αmlj} (j = 1, ...., k) such that lim

l−→+∞
αmlj = αj ∈ [0, 1] with α1 > 0 . Let

S = α0I + α1T1 + ...+ αkTk.

Then

xml
− Sxml

= xml
− Sml

xml
+ Sml

xml
− Sxml

,

where

xml
− Sml

xml
= xml

− xml+1 −→ 0.

If x0 ∈
k∩

i=1

F (Ti) , since the sequence {∥xn −x0∥}n is decreasing and the mappings T1, T2, ..., Tk are nonexpan-

sive, we obtain that

∥Tjxml
− x0∥ = ∥Tjxml

− Tjx0∥ ≤ ∥xml
− x0∥ ≤ ∥x1 − x0∥.

Similarly,

∥Tjxml
∥ ≤ ∥x1 − x0∥+ ∥x0∥ = γ for all j = 0, 1, ..., k

1403
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Thus,

∥Sml
xml

− Sxml
∥ =∥

k∑
j=0

(αmlj − αj)Tjxml
∥

≤γ

k∑
j=0

|αmlj − αj | −→ 0 (l −→ +∞).

This leads to xml
− Sxml

−→ 0 (l −→ +∞) . The fact that each Ti (i ≤ 1 ≤ k) is compact together with
the proof of Theorem 4.4 shows that I − S maps closed bounded subsets into closed subsets. Consequently,
from the decreaseness of the sequence {∥xn−x0∥}n , we deduce that {xn, n ∈ N} is closed and bounded. Next,
Proposition 4.9 gives that 0 ∈ (I − S)({xn, n ∈ N}) . This fact proves the existence of y0 ∈ {xn, n ∈ N} such

that S(y0) = y0 ; hence, y0 is a fixed point of S . Now, by Theorem 3.2, we get y0 ∈
k∩

i=1

F (Ti) . Apply for

a second time the decreaseness of the sequence {∥xn − y0∥}n , it follows that xn −→ y0 (n −→ +∞) , which
completes the proof. 2

5. Application

This section is motivated by the fact that many problems in applied sciences are given by a nonlinear system
of functional equations and the study of its resolution is reduced to the investigation of common fixed points of
specific mappings.

More precisely, let 
x− T1x =f1
........ =...
........ =...
........ =...
x− Tkx =fk

(⋆)

be the nonlinear system in a Banach space X where fi ∈ X for all i = 1, ...., k and T1, ..., Tk are self-mappings
on X .

Denote by Bi, i = 1, ...., k the mapping given by Bix = Tix + fi with the notation B0 = IdX . For all

(λi)
k
i=0 ⊂ [0, 1] with λ1 > 0 and

k∑
i=0

λi = 1 , set γi =
λi

1− λ0
(i = 1, ....., k) , then we have

Lemma 5.1 Let z0 ∈ X . Then z0 is a solution of the system (⋆) if and only if z0 is at the same time the
solution of the nonlinear equation

x =

k∑
i=1

γiBix (6)

and the system

1404
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x = Bi

 k∑
j=0

λjBj

x, i = 1, ...., k (⋆⋆)

Proof It is easy to prove that z0 is a solution of the system (⋆) if and only if z0 is a common fixed point for

the mappings (Bi)
k
i=1 . Now, the result is an immediate consequence of Lemma 3.1 . 2

Lemma 5.2 Assume that the mappings (Bi)
k
i=1(k ≥ 2) satisfy the assumption (3) . Then z0 is a solution of

the system (⋆) if and only if z0 is the solution of the nonlinear equation (6) .

Proof Follows by using Theorem 3.2 and the same reasoning as given in the proof of Lemma 5.1.

Let X be a Banach space and C a convex subset of X . Suppose that {Ti}ki=1 is a finite family of selfmappings
on C . For α ∈]0, 1[ , P. Kuhfittig [9, 12] defined the following iterative process

xn+1 = Uk(xn), n = 0, 1, ...,

where 
U0 =I
U1 =(1− α)I + αT1U0

... =............................

... =............................
Uk =(1− α)I + αTkUk−1

2

Theorem 5.3 Let C be a convex compact subset of a strictly convex Banach space X and let {Ti}ki=1(k ≥ 2)

be a family of nonexpansive selfmappings of C . If the nonlinear equation (6) has at least a solution and the
mappings {Bi}ki=1 satisfy the assumption (3) , then for each x0 ∈ C , the sequence {Un

k x0} converges in norm
to a solution of the system (⋆) .

Proof We have Ti is nonexpansive if and only if Bi is nonexpansive for all i = 1, ...., k . Next, Lemma 5.2
implies that z0 is a solution of the system (⋆) if and only if z0 is a solution of the equation (6) . Now, the
result follows from Theorem 1 in [12]. 2

From the previous proof and Theorem 2 in [12], we obtain the following.

Theorem 5.4 If X is a Hilbert space and C is a closed convex subset of X . Assume that {Ti}ki=1(k ≥ 2)

are nonexpansive selfmappings of C . If the nonlinear equation (6) has at least a solution and the mappings
{Bi}ki=1 satisfy the assumption (3) , then for each z0 ∈ C , the sequence {Un

k z0} converges weakly to a solution
of the system (⋆) .

Conclusion
Our results are obtained for not necessarily commuting mappings and so extend and improve those of [10].
Necessary and sufficient conditions are established to solve a nonlinear system of functional equations; we prove
in particular that if a given data of functions f1, ..., fk is chosen to assert that the perturbed mappings satisfy
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the controllable punctual inequality (3) , then we can obtain a convergence result of Kuhfittig’s iterative process
to the solution.

Open problem

Let C be nonempty subset of a metric space (X, d) . A self-mapping T : C −→ C is said to be asymptotically
nonexpansive if there is a sequence {kn} ⊂ [1,∞) with kn −→ 1 as n −→ ∞ such that d(Tnx, Tny) ≤ knd(x, y)

for all x, y ∈ C (if kn = 1 for all n ≥ 1 , T becomes nonexpansive).
Extend the results of this paper for asymptotically nonexpansive mappings on a nonlinear domain by

following the technique of Khan [9].
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