Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tübitak
Research Article

Turk J Math
(2019) 43: 1414 - 1424
© TÜBİTAK
doi:10.3906/mat-1902-21

A new comprehensive subclass of analytic bi-close-to-convex functions

Serap BULUT*

Faculty of Aviation and Space Sciences, Kocaeli University, Kocaeli, Turkey
Received: 05.02.2019 \quad Accepted/Published Online: 26.03.2019 \quad - Final Version: 29.05 .2019

Abstract

In a very recent work, Şeker and Sümer Eker [On subclasses of bi-close-to-convex functions related to the odd-starlike functions. Palestine Journal of Mathematics 2017; 6: 215-221] defined two subclasses of analytic bi-close-to-convex functions related to the odd-starlike functions in the open unit disk \mathbb{U}. The main purpose of this paper is to generalize and improve the results of Şeker and Sümer Eker (in the aforementioned study) defining a comprehensive subclass of bi-close-to-convex functions. Also, we investigate the Fekete-Szegö type coefficient bounds for functions belonging to this new class.

Key words: Analytic and univalent functions, bi-univalent functions, close-to-convex functions, starlike functions, subordination principle, Fekete-Szegö problem

1. Introduction

Let \mathcal{A} denote the family of analytic functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Also let $\mathcal{S}:=\{f \in \mathcal{A}: f$ is univalent in $\mathbb{U}\}$.
The family of starlike functions of order $\beta(0 \leq \beta<1)$ shall be denoted by $\mathcal{S}^{*}(\beta)$ and is defined by the conditions that $f \in \mathcal{A}$ and

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta \quad(z \in \mathbb{U})
$$

It is well known that

$$
\mathcal{S}^{*}(\beta) \subset \mathcal{S}^{*}(0)=\mathcal{S}^{*} \subset \mathcal{S}
$$

A function $f \in \mathcal{A}$ is said to be close-to-convex if there exists a function $g \in \mathcal{S}^{*}$ such that the inequality

$$
\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0 \quad(z \in \mathbb{U})
$$

holds. We will denote the class which consists of all functions $f \in \mathcal{A}$ that are close-to-convex by \mathcal{K}.

[^0]
BULUT/Turk J Math

We have well-known inclusion relations:

$$
\mathcal{S}^{*} \subset \mathcal{K} \subset \mathcal{S}
$$

Gao and Zhou [2] introduced the subclass \mathcal{K}_{s} of close-to-convex analytic functions as follows:
Definition 1 [2] Let the function f be analytic in \mathbb{U} and normalized by the condition (1.1). We say that $f \in \mathcal{K}_{s}$ if there exists a function $g \in \mathcal{S}^{*}(1 / 2)$ such that

$$
\Re\left(\frac{z^{2} f^{\prime}(z)}{-g(z) g(-z)}\right)>0 \quad(z \in \mathbb{U})
$$

In recent years, the subclasses of close-to-convex functions are studied by several authors (see, for example, $[3,5,11,13 ?-15])$. Motivated by this works, Goyal and Singh [4] defined the general subclass of close-to-convex functions by using the principle of subordination (see [8]) as follows:

Definition 2 [4] For a function φ with positive real part, a function $f \in \mathcal{A}$ is said to be in the class $\mathcal{K}_{s}(\lambda, \mu, \varphi)$ if it satisfies the following subordination condition:

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)+(\lambda-\mu+2 \lambda \mu) z^{3} f^{\prime \prime}(z)+\lambda \mu z^{4} f^{\prime \prime \prime}(z)}{-g(z) g(-z)} \prec \varphi(z) \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

where $0 \leq \mu \leq \lambda \leq 1$ and $g \in \mathcal{S}^{*}(1 / 2)$.

Remark 1 (i) For $\mu=0$ and $\varphi(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$, we get the class $\mathcal{K}_{s}(\lambda, A, B)$ studied by Wang and Chen [13].
(ii) For $\mu=\lambda=0$ and $\varphi(z)=\frac{1+\beta z}{1-\alpha \beta z}(0 \leq \alpha \leq 1,0<\beta \leq 1)$, we get the class $\mathcal{K}_{s}(\alpha, \beta)$ studied by Wang et al. [15].
(iii) For $\mu=\lambda=0$ and $\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$, we get the class $\mathcal{K}_{s}(\beta)$ studied by Kowalczyk and Leś-Bomba [5].
(iv) For $\mu=\lambda=0$ and $\varphi(z)=\frac{1+z}{1-z}$, we get the class \mathcal{K}_{s} defined in the Definition 1.

Theorem 1.1 [1] (Koebe One-Quarter Theorem) The range of every function of class \mathcal{S} contains the disk of radius $\left\{w:|w|<\frac{1}{4}\right\}$.

Thus, by Theorem 1.1, every function $f \in \mathcal{A}$ has an inverse f^{-1} defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U}) \quad \text { and } \quad f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

For the inverse function $F=f^{-1}$, we have:

$$
\begin{equation*}
F(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.3}
\end{equation*}
$$

Definition 3 [7] If both the function f and its inverse function f^{-1} are univalent in \mathbb{U}, then the function f is called bi-univalent. We will denote the class which consists of functions f that are bi-univalent by Σ.

BULUT/Turk J Math

In a recent paper, Şeker and Sümer Eker [12] defined new subclasses of the bi-univalent function class Σ given in Definitions 4 and 5 as follows:

Definition 4 (see [12]) A function $f \in \mathcal{A}$ given by (1.1) is said to be in the class $\mathcal{K}_{\Sigma}^{s}(\alpha)$ if there exists a function

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}^{*}(1 / 2), \quad G(w)=w+\sum_{n=2}^{\infty} c_{n} w^{n} \in \mathcal{S}^{*}(1 / 2)
$$

and the following conditions are satisfied:

$$
f \in \Sigma \quad \text { and } \quad\left|\arg \left(\frac{-z^{2} f^{\prime}(z)}{g(z) g(-z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

and

$$
\left|\arg \left(\frac{-w^{2} F^{\prime}(w)}{G(w) G(-w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in \mathbb{U})
$$

where the function $F=f^{-1}$ is defined by (1.3).

Theorem 1.2 (see [12]) Let the function $f(z)$ given by (1.1) be in the class $\mathcal{K}_{\Sigma}^{s}(\alpha)(0<\alpha \leq 1)$, then

$$
\left|a_{2}\right| \leq \sqrt{\frac{\alpha(1+2 \alpha)}{2+\alpha}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)+1}{3}
$$

Definition 5 (see [12]) A function $f \in \mathcal{A}$ given by (1.1) is said to be in the class $\mathcal{K}_{\Sigma}^{s}(\beta)$ if there exists a function

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}^{*}(1 / 2), \quad G(w)=w+\sum_{n=2}^{\infty} c_{n} w^{n} \in \mathcal{S}^{*}(1 / 2)
$$

and the following conditions are satisfied:

$$
f \in \Sigma \quad \text { and } \quad \Re\left(\frac{-z^{2} f^{\prime}(z)}{g(z) g(-z)}\right)>\beta \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

and

$$
\Re\left(\frac{-w^{2} F^{\prime}(w)}{G(w) G(-w)}\right)>\beta \quad(0 \leq \beta<1, w \in \mathbb{U})
$$

where the function $F=f^{-1}$ is defined by (1.3).
Theorem 1.3 (see [12]) Let the function $f(z)$ given by (1.1) be in the class $\mathcal{K}_{\Sigma}^{s}(\beta)(0 \leq \beta<1)$, then

$$
\left|a_{2}\right| \leq \sqrt{\frac{3-2 \beta}{3}} \quad \text { and } \quad\left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)+1}{3}
$$

Now we introduce the a new comprehensive subclass of \mathcal{A} which includes Definitions 4 and 5 .

BULUT/Turk J Math

Definition 6 For $0 \leq \mu \leq \lambda \leq 1$ and a function φ with positive real part, a function $f \in \Sigma$ given by (1.1) is said to be in the class $\mathcal{K}_{\Sigma_{s}}(\lambda, \mu, \varphi)$ if there exist the functions

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}^{*}(1 / 2), \quad G(w)=w+\sum_{n=2}^{\infty} c_{n} w^{n} \in \mathcal{S}^{*}(1 / 2)
$$

and the following conditions are satisfied:

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)+(\lambda-\mu+2 \lambda \mu) z^{3} f^{\prime \prime}(z)+\lambda \mu z^{4} f^{\prime \prime \prime}(z)}{-g(z) g(-z)} \prec \varphi(z) \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w^{2} F^{\prime}(w)+(\lambda-\mu+2 \lambda \mu) w^{3} F^{\prime \prime}(w)+\lambda \mu w^{4} F^{\prime \prime \prime}(w)}{-G(w) G(-w)} \prec \varphi(w) \quad(w \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

where the function $F=f^{-1}$ is defined by (1.3).
Remark 2 (i) For $\mu=0$, we have a new class $\mathcal{K}_{\Sigma_{s}}(\lambda, \varphi)$ of bi-close-to-convex functions satisfying the conditions

$$
\frac{z^{2} f^{\prime}(z)+\lambda z^{3} f^{\prime \prime}(z)}{-g(z) g(-z)} \prec \varphi(z) \quad(z \in \mathbb{U})
$$

and

$$
\frac{w^{2} F^{\prime}(w)+\lambda w^{3} F^{\prime \prime}(w)}{-G(w) G(-w)} \prec \varphi(w) \quad(w \in \mathbb{U})
$$

(ii) For $\mu=\lambda=0$, we have a new class $\mathcal{K}_{\Sigma_{s}}(\varphi)$ of bi-close-to-convex functions satisfying the conditions

$$
\frac{z^{2} f^{\prime}(z)}{-g(z) g(-z)} \prec \varphi(z) \quad(z \in \mathbb{U})
$$

and

$$
\frac{w^{2} F^{\prime}(w)}{-G(w) G(-w)} \prec \varphi(w) \quad(w \in \mathbb{U})
$$

(iii) In addition to the conditions given in (ii), if we set

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1)
$$

or

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1)
$$

then we have the classes $\mathcal{K}_{\Sigma}^{s}(\alpha)$ and $\mathcal{K}_{\Sigma}^{s}(\beta)$ defined in Definitions 4 and 5 , respectively.
In the light of the work of Şeker and Sümer Eker [12], we obtain initial coefficient estimates for functions $f \in \mathcal{A}$ given by (1.1) belonging to the bi-close-to-convex function class $\mathcal{K}_{\Sigma_{s}}(\lambda, \mu, \varphi)$ introduced in Definition 6 above. We obtain the improvements of results of Şeker and Sümer Eker [12] given in Theorems 1.2 and 1.3 as a result of our main theorem (Theorem 2.1). Also, we find Fekete-Szegö type coefficient bounds for the bi-close-to-convex functions $f \in \mathcal{K}_{\Sigma_{s}}(\lambda, \mu, \varphi)$. The following lemmas will be required for proving our main results.

Lemma 1.4 [2] If $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}^{*}(1 / 2)$, then

$$
\begin{equation*}
\psi(z)=\frac{-g(z) g(-z)}{z}=z+\sum_{n=2}^{\infty} B_{2 n-1} z^{2 n-1} \in \mathcal{S}^{*} \subset \mathcal{S} \tag{1.6}
\end{equation*}
$$

where the coefficients of the odd-starlike function ψ satisfy the condition

$$
\left|B_{2 n-1}\right|=\left|2 b_{2 n-1}-2 b_{2} b_{2 n-2}+\cdots+2(-1)^{n} b_{n-1} b_{n+1}+(-1)^{n+1} b_{n}^{2}\right| \leq 1 \quad(n \geq 2)
$$

Lemma 1.5 [9] Let the function h given by

$$
h(z)=1+\sum_{k=1}^{\infty} h_{k} z^{k} \quad(z \in \mathbb{U})
$$

be holomorphic in \mathbb{U} and the function q given by

$$
q(z)=1+\sum_{k=1}^{\infty} q_{k} z^{k} \quad(z \in \mathbb{U})
$$

be convex in \mathbb{U}. If

$$
h(z) \prec q(z) \quad(z \in \mathbb{U}),
$$

then

$$
\left|h_{k}\right| \leq\left|q_{1}\right| \quad(k=1,2, \ldots)
$$

Lemma 1.6 [17] Let $k, l \in \mathbb{R}$ and $z_{1}, z_{2} \in \mathbb{C}$. If $\left|z_{1}\right|<R$ and $\left|z_{2}\right|<R$, then

$$
\left|(k+l) z_{1}+(k-l) z_{2}\right| \leq \begin{cases}2 R|k| \quad, & |k| \geq|l| \\ 2 R|l| & |k| \leq|l|\end{cases}
$$

2. Initial coefficient estimates

Throughout this paper, we assume that $0 \leq \mu \leq \lambda \leq 1$ and φ be a function with positive real part.

Theorem 2.1 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma_{s}}(\lambda, \mu, \varphi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{\left|\varphi^{\prime}(0)\right|}{2(1+\lambda-\mu+2 \lambda \mu)}, \sqrt{\frac{1+\left|\varphi^{\prime}(0)\right|}{3[1+2(\lambda-\mu)+6 \lambda \mu]}}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{1+\left|\varphi^{\prime}(0)\right|}{3[1+2(\lambda-\mu)+6 \lambda \mu]} \tag{2.2}
\end{equation*}
$$

Proof Firstly, we will re-arrange the relations in (1.4) and (1.5) as follows:

$$
\begin{align*}
h(z) & =\frac{z^{2} f^{\prime}(z)+(\lambda-\mu+2 \lambda \mu) z^{3} f^{\prime \prime}(z)+\lambda \mu z^{4} f^{\prime \prime \prime}(z)}{-g(z) g(-z)} \\
& =\frac{z f^{\prime}(z)+(\lambda-\mu+2 \lambda \mu) z^{2} f^{\prime \prime}(z)+\lambda \mu z^{3} f^{\prime \prime \prime}(z)}{\frac{-g(z) g(-z)}{z}} \\
& =\frac{z f^{\prime}(z)+(\lambda-\mu+2 \lambda \mu) z^{2} f^{\prime \prime}(z)+\lambda \mu z^{3} f^{\prime \prime \prime}(z)}{\psi(z)} \tag{2.3}\\
& \prec \varphi(z) \quad(z \in \mathbb{U}) \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
p(w) & =\frac{w^{2} F^{\prime}(w)+(\lambda-\mu+2 \lambda \mu) w^{3} F^{\prime \prime}(w)+\lambda \mu w^{4} F^{\prime \prime \prime}(w)}{-G(w) G(-w)} \\
& =\frac{w F^{\prime}(w)+(\lambda-\mu+2 \lambda \mu) w^{2} F^{\prime \prime}(w)+\lambda \mu w^{3} F^{\prime \prime \prime}(w)}{\frac{-G(w) G(-w)}{w}} \\
& =\frac{w F^{\prime}(w)+(\lambda-\mu+2 \lambda \mu) w^{2} F^{\prime \prime}(w)+\lambda \mu w^{3} F^{\prime \prime \prime}(w)}{\Omega(w)} \tag{2.5}\\
& \prec \varphi(w) \quad(w \in \mathbb{U}), \tag{2.6}
\end{align*}
$$

respectively, where

$$
\psi(z):=\frac{-g(z) g(-z)}{z} \quad \text { and } \quad \Omega(w):=\frac{-G(w) G(-w)}{w}
$$

Here h and p are two functions with positive real part defined by

$$
h(z):=1+h_{1} z+h_{2} z^{2}+\cdots
$$

and

$$
p(w):=1+p_{1} w+p_{2} w^{2}+\cdots
$$

respectively. The relations (2.4) and (2.6) imply by Lemma 1.5 that for all $k=1,2, \ldots$,

$$
\begin{equation*}
\left|h_{k}\right| \leq\left|\varphi^{\prime}(0)\right| \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{k}\right| \leq\left|\varphi^{\prime}(0)\right| \tag{2.8}
\end{equation*}
$$

Furthermore, by Lemma 1.4, we have following equations:

$$
\begin{gather*}
\psi(z)=\frac{-g(z) g(-z)}{z}=z+\sum_{n=2}^{\infty} B_{2 n-1} z^{2 n-1} \in \mathcal{S}^{*} \quad \text { and } \quad\left|B_{2 n-1}\right| \leq 1 \tag{2.9}\\
\Omega(w)=\frac{-G(w) G(-w)}{w}=w+\sum_{n=2}^{\infty} C_{2 n-1} w^{2 n-1} \in \mathcal{S}^{*} \quad \text { and } \quad\left|C_{2 n-1}\right| \leq 1 \tag{2.10}
\end{gather*}
$$

BULUT/Turk J Math

Now, upon equating the coefficients in (2.3) and (2.5), we obtain

$$
\begin{align*}
2(1+\lambda-\mu+2 \lambda \mu) a_{2} & =h_{1} \tag{2.11}\\
3[1+2(\lambda-\mu)+6 \lambda \mu] a_{3}-B_{3} & =h_{2} \tag{2.12}\\
-2(1+\lambda-\mu+2 \lambda \mu) a_{2} & =p_{1} \tag{2.13}\\
3[1+2(\lambda-\mu)+6 \lambda \mu]\left(2 a_{2}^{2}-a_{3}\right)-C_{3} & =p_{2} . \tag{2.14}
\end{align*}
$$

From (2.11) and (2.13), we get

$$
h_{1}=-p_{1}
$$

and

$$
\begin{equation*}
8(1+\lambda-\mu+2 \lambda \mu)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{2.15}
\end{equation*}
$$

We thus find (by (2.7) - (2.10)) that

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\left|\varphi^{\prime}(0)\right|}{2(1+\lambda-\mu+2 \lambda \mu)} \tag{2.16}
\end{equation*}
$$

Furthermore, from the equalities (2.12) and (2.14), we find

$$
\begin{equation*}
6[1+2(\lambda-\mu)+6 \lambda \mu] a_{2}^{2}-B_{3}-C_{3}=h_{2}+p_{2} \tag{2.17}
\end{equation*}
$$

Consequently (by (2.7) - (2.10)), we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{1+\left|\varphi^{\prime}(0)\right|}{3[1+2(\lambda-\mu)+6 \lambda \mu]}} \tag{2.18}
\end{equation*}
$$

Hence, we get the desired result on the coefficient a_{2} as asserted in (2.1) from the inequalities (2.16) and (2.18).

Now, in order to obtain the bound on the coefficient a_{3}, we subtract (2.14) from (2.12). We thus get

$$
3[1+2(\lambda-\mu)+6 \lambda \mu]\left(2 a_{3}-2 a_{2}^{2}\right)-B_{3}+C_{3}=h_{2}-p_{2}
$$

or

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{h_{2}-p_{2}+B_{3}-C_{3}}{6[1+2(\lambda-\mu)+6 \lambda \mu]} . \tag{2.19}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (2.15) into (2.19), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{8(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{h_{2}-p_{2}+B_{3}-C_{3}}{6[1+2(\lambda-\mu)+6 \lambda \mu]}
$$

We thus find (by (2.7) - (2.10)) that

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|\varphi^{\prime}(0)\right|^{2}}{4(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{1+\left|\varphi^{\prime}(0)\right|}{3[1+2(\lambda-\mu)+6 \lambda \mu]} \tag{2.20}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (2.17) into (2.19), it follows that

$$
a_{3}=\frac{h_{2}+p_{2}+B_{3}+C_{3}}{6[1+2(\lambda-\mu)+6 \lambda \mu]}+\frac{h_{2}-p_{2}+B_{3}-C_{3}}{6[1+2(\lambda-\mu)+6 \lambda \mu]}=\frac{h_{2}+B_{3}}{3[1+2(\lambda-\mu)+6 \lambda \mu]} .
$$

Consequently (by $(2.7),(2.8),(2.9)$ and (2.10)), we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{1+\left|\varphi^{\prime}(0)\right|}{3[1+2(\lambda-\mu)+6 \lambda \mu]} \tag{2.21}
\end{equation*}
$$

Combining (2.20) and (2.21), we get the desired result on the coefficient a_{3} as asserted in (2.2).
Letting $\mu=0$ in Theorem 2.1, we have the following consequence.
Corollary 2.2 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma_{s}}(\lambda, \varphi)$, then

$$
\left|a_{2}\right| \leq \min \left\{\frac{\left|\varphi^{\prime}(0)\right|}{2(1+\lambda)}, \sqrt{\frac{1+\left|\varphi^{\prime}(0)\right|}{3(1+2 \lambda)}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{1+\left|\varphi^{\prime}(0)\right|}{3(1+2 \lambda)}
$$

Letting $\lambda=0$ in Corollary 2.2, we have the following consequence.
Corollary 2.3 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma_{s}}(\varphi)$, then

$$
\left|a_{2}\right| \leq \min \left\{\frac{\left|\varphi^{\prime}(0)\right|}{2}, \sqrt{\frac{1+\left|\varphi^{\prime}(0)\right|}{3}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{1+\left|\varphi^{\prime}(0)\right|}{3}
$$

Setting

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1)
$$

in Corollary 2.3, we have the following result.
Corollary 2.4 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma}^{s}(\alpha)$, then

$$
\left|a_{2}\right| \leq \alpha \quad \text { and } \quad\left|a_{3}\right| \leq \frac{1+2 \alpha}{3}
$$

Remark 3 Note that Corollary 2.4 is an improvement of the Theorem 1.2.
Setting

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1)
$$

in Corollary 2.3, we have the following result.

BULUT/Turk J Math

Corollary 2.5 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma}^{s}(\beta)$, then

$$
\left|a_{2}\right| \leq 1-\beta \quad \text { and } \quad\left|a_{3}\right| \leq \frac{3-2 \beta}{3}
$$

Remark 4 Note that Corollary 2.5 is an improvement of the Theorem 1.3.

3. Fekete-Szegö problem

Theorem 3.1 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma_{s}}(\lambda, \mu, \varphi)$, then, for $\delta \in \mathbb{R}$,

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \frac{1+\left|\varphi^{\prime}(0)\right|}{3[1+2(\lambda-\mu)+6 \lambda \mu]}\left\{\begin{array}{cc}
|1-\delta| & , \quad \delta \in(-\infty, 0] \cup[2, \infty) \\
1 & , \quad \delta \in[0,2]
\end{array}\right.
$$

Proof By using the equality (2.19) in the proof of Theorem 2.1, we obtain

$$
\begin{aligned}
a_{3}-\delta a_{2}^{2} & =a_{2}^{2}+\frac{h_{2}-p_{2}+B_{3}-C_{3}}{6[1+2(\lambda-\mu)+6 \lambda \mu]}-\delta a_{2}^{2} \\
& =(1-\delta) a_{2}^{2}+\frac{h_{2}-p_{2}+B_{3}-C_{3}}{6[1+2(\lambda-\mu)+6 \lambda \mu]}
\end{aligned}
$$

Upon substituting the value of a_{2}^{2} from (2.17) into the above equality, it follows that

$$
\begin{aligned}
a_{3}-\delta a_{2}^{2} & =(1-\delta) \frac{h_{2}+p_{2}+B_{3}+C_{3}}{6[1+2(\lambda-\mu)+6 \lambda \mu]}+\frac{h_{2}-p_{2}+B_{3}-C_{3}}{6[1+2(\lambda-\mu)+6 \lambda \mu]} \\
& =\frac{1}{6[1+2(\lambda-\mu)+6 \lambda \mu]}\left[(2-\delta)\left(h_{2}+B_{3}\right)-\delta\left(p_{2}+C_{3}\right)\right]
\end{aligned}
$$

Thus, by Lemma 1.6, we get desired estimate.
Letting $\mu=0$ in Theorem 3.1, we have the following consequence.
Corollary 3.2 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma_{s}}(\lambda, \varphi)$, then, for $\delta \in \mathbb{R}$,

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \frac{1+\left|\varphi^{\prime}(0)\right|}{3(1+2 \lambda)}\left\{\begin{array}{cc}
|1-\delta| & , \quad \delta \in(-\infty, 0] \cup[2, \infty) \\
1 & ,
\end{array}\right.
$$

Letting $\lambda=0$ in Corollary 3.2, we have the following consequence.
Corollary 3.3 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma_{s}}(\varphi)$, then, for $\delta \in \mathbb{R}$,

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \frac{1+\left|\varphi^{\prime}(0)\right|}{3}\left\{\begin{array}{cc}
|1-\delta| & , \quad \delta \in(-\infty, 0] \cup[2, \infty) \\
1 & ,
\end{array}\right.
$$

Setting

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1)
$$

in Corollary 3.3, we have the following result.

Corollary 3.4 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma}^{s}(\alpha)$, then, for $\delta \in \mathbb{R}$,

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \frac{1+2 \alpha}{3}\left\{\begin{array}{cc}
|1-\delta| & , \quad \delta \in(-\infty, 0] \cup[2, \infty) \\
1 & ,
\end{array}\right.
$$

Setting

$$
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1)
$$

in Corollary 3.3, we have the following result.

Corollary 3.5 If the function $f(z)$ given by (1.1) be in the function class $\mathcal{K}_{\Sigma}^{s}(\beta)$, then, for $\delta \in \mathbb{R}$,

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \frac{3-2 \beta}{3}\left\{\begin{array}{cc}
|1-\delta| & , \quad \delta \in(-\infty, 0] \cup[2, \infty) \\
1 & ,
\end{array}\right.
$$

References

[1] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, vol. 259. New York, NY, USA: Springer, 1983.
[2] Gao CY, Zhou SQ. On a class of analytic functions related to the starlike functions. Kyungpook Mathematical Journal 2005; 45: 123-130.
[3] Goswami P, Bulut S, Bulboaca T. Certain properties of a new subclass of close-to-convex functions. Arabian Journal of Mathematics 2012; 1: 309-317.
[4] Goyal SP, Singh O. Certain subclasses of close-to-convex functions. Vietnam Journal of Mathematics 2014; 42: 53-62.
[5] Kowalczyk J, Leś-Bomba E. On a subclass of close-to-convex functions. Applied Mathematics Letters 2010; 23: 1147-1151.
[6] Lewandowski Z, Miller SS, Złotkiewicz E. Generating functions for some classes of univalent functions. Proceedings of the American Mathematical Society 1976; 56: 111-117.
[7] Lewin M. On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society 1967; 18: 63-68.
[8] Miller SS, Mocanu PT. Differential Subordinations. Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225. New York, NY, USA: Marcel Dekker Inc., 2000.
[9] Rogosinski W. On the coefficients of subordinate functions. Proceedings of the London Mathematical Society (Ser. 2) $1943 ; 48: 48-82$.
[10] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters 2010; 23: 1188-1192.
[11] Şeker B. On certain new sublcass of close-to-convex functions. Applied Mathematics and Computation 2011; 218: 1041-1045.
[12] Şeker B, Sümer Eker S. On subclasses of bi-close-to-convex functions related to the odd-starlike functions. Palestine Journal of Mathematics 2017; 6: 215-221.
[13] Wang ZG, Chen DZ. On a subclass of close-to-convex functions. Hacettepe Journal of Mathematics and Statistics 2009; 38: 95-101.
[14] Wang ZG, Gao CY, Yuan SM. On certain new subclass of close-to-convex functions. Matematički Vesnik 2006; 58: 171-177.
[15] Wang ZG, Gao CY, Yuan SM. On certain subclass of close-to-convex functions. Acta Mathematica Academiae Paedagogiace Nyíregyháziensis (N.S.) 2006; 22: 171-177.
[16] Xu QH, Srivastva HM, Li Z. On certain subclass of analytic and close-to-convex functions. Applied Mathematics Letters 2011; 24: 396-401.
[17] Zaprawa P. Estimates of initial coefficients for bi-univalent functions. Abstract and Applied Analysis 2014; Art. ID 357480, 6 pp.

[^0]: *Correspondence: serap.bulut@kocaeli.edu.tr
 2010 AMS Mathematics Subject Classification: Primary 30C45, 30C50; Secondary 30C80

