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Abstract: In this paper we give necessary and sufficient conditions for the Cohen–Macaulayness of the tangent cone of
a monomial curve in 4-dimensional affine space. We particularly study the case where C is a Gorenstein noncomplete
intersection monomial curve and we generalize some results in the literature. Moreover, by using these results, we
construct families supporting Rossi’s conjecture, which is still open for monomial curves in 4-dimensional affine space.
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1. Introduction
Cohen–Macaulayness of tangent cones of monomial curves has been studied by many authors; see, for instance,
[1, 2, 5, 8–10, 13, 15, 19]. It constitutes an important problem, since for example Cohen–Macaulayness of
the tangent cone guarantees that the Hilbert function of the local ring associated to the monomial curve is
nondecreasing and therefore reduces its computation to the computation of the Hilbert function of an Artin
local ring.

Barucci and Fröberg ([2]) used Apery sets of semigroups to give a criterion for checking whether the
tangent cone of a monomial curve is Cohen–Macaulay or not. In this article our aim is to provide necessary
and sufficient conditions for the Cohen–Macaulayness of the tangent cone of a monomial curve in 4-dimensional
affine space by using a minimal generating set for the defining ideal of the curve. This information will allow
us to check the Cohen–Macaulay property by just computing a minimal generating set of the ideal.

We first deal with the above problem in the case of a general monomial curve in the 4-dimensional
affine space A4(K) , where K is a field. In Section 2, by using the classification in terms of critical binomials
given by Katsabekis and Ojeda [11], we study in detail the problem for Case 1 in this classification and give
sufficient conditions for the Cohen–Macaulayness of the tangent cone. Our method can be applied easily to all
the remaining cases.

In Section 3, we consider the problem for noncomplete intersection Gorenstein monomial curves. In this
case, Bresinsky not only showed that there is a minimal generating set for the defining ideal of the monomial
curve consisting of five generators, but also gave the explicit form of these generators [4]. Actually, there are
6 permutations of the above generator set. It is worth noting that Theorem 2.10 in [1] provides a sufficient
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condition for the Cohen–Macaulayness of the tangent cone in four of the aforementioned cases. In this paper,
we generalize their result and provide a necessary and sufficient condition for the Cohen–Macaulayness of the
tangent cone in all six permutations. Finally, we use these results to give some families of Gorenstein monomial
curves in A4(K) with corresponding local rings having nondecreasing Hilbert function, thus giving a partial
answer to Rossi’s problem [17]. This problem asks whether the Hilbert function of a Gorenstein local ring of
dimension one is nondecreasing. Recently, it has been shown that there are many families of monomial curves
giving a negative answer to this problem [14], but one should note that Rossi’s conjecture is still open for
Gorenstein local rings associated to monomial curves in A4(K) .

Our paper studies the Cohen–Macaulayness of tangent cones of Gorenstein monomial curves, namely
monomial curves associated with symmetric semigroups. It is worth noting that [18] studies the Cohen–
Macaulayness of tangent cones of monomial curves associated with pseudosymmetric semigroups.

Let {n1, . . . , nd} be a set of all-different positive integers with gcd(n1, . . . , nd) = 1 . Let K[x1, . . . , xd]

be the polynomial ring in d variables. We shall denote by xu the monomial xu1
1 · · ·xud

d of K[x1, . . . , xd] , with
u = (u1, . . . , ud) ∈ Nd , where N stands for the set of nonnegative integers. Consider the affine monomial curve
in the d -space Ad(K) defined parametrically by

x1 = tn1 , . . . , xd = tnd .

The toric ideal of C , denoted by I(C) , is the kernel of the K -algebra homomorphism ϕ : K[x1, . . . , xd] → K[t]

given by
ϕ(xi) = tni for all 1 ≤ i ≤ d.

We grade K[x1, . . . , xd] by the semigroup S := {g1n1 + · · · + gdnd|gi ∈ N} setting degS(xi) = ni for
i = 1, . . . , d . The S -degree of a monomial xu = xu1

1 · · ·xud

d is defined by

degS(xu) = u1n1 + · · ·+ udnd ∈ S.

The ideal I(C) is generated by all the binomials xu − xv such that degS(xu) = degS(xv) ; see, for example,
[20, Lemma 4.1].

For checking the Cohen–Macaulayness of the tangent cone of the monomial curve, the following theorem
from [8] is used throughout the article:

Theorem 1.1 [8] Let n1 < n2 < · · · < nd and n1 + S = {n1 +m|m ∈ S} . The monomial curve C defined
parametrically by x1 = tn1 , . . . , xd = tnd has Cohen–Macaulay tangent cone at the origin if and only if for all
integers v2 ≥ 0, v3 ≥ 0, . . . , vd ≥ 0 such that

∑d
i=2 vini ∈ n1 + S , there exist w1 > 0 , w2 ≥ 0, . . . , wd ≥ 0 such

that
∑d

i=2 vini =
∑d

i=1 wini and
∑d

i=2 vi ≤
∑d

i=1 wi .

Note that x
ni

gcd(n1,ni)

1 − x
n1

gcd(n1,ni)

i ∈ I(C) and also ni

gcd(n1,ni)
> n1

gcd(n1,ni)
, for every 2 ≤ i ≤ d . Thus, to

decide the Cohen–Macaulayness of the tangent cone of C it suffices to consider only such vi with the extra
condition that vi <

n1

gcd(n1,ni)
.

The computations of this paper are performed by using CoCoA.∗

∗CoCoATeam. CoCoA: A system for doing computations in commutative algebra. Available at http://cocoa.dima.unige.it.
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2. The general case

Let A = {n1, . . . , n4} be a set of relatively prime positive integers.

Definition 2.1 A binomial xai
i −

∏
j ̸=i x

uij

j ∈ I(C) is called critical with respect to xi if ai is the least positive
integer such that aini ∈

∑
j ̸=i Nnj . The critical ideal of A , denoted by CA , is the ideal of K[x1, . . . , x4]

generated by all the critical binomials of I(C).

The support supp(xu) of a monomial xu is the set

supp(xu) = {i ∈ {1, . . . , 4}|xi divides xu}.

The support of a binomial B = xu − xv is the set supp(xu) ∪ supp(xv) . If the support of B equals the set
{1, . . . , 4} , then we say that B has full support. Let µ(CA) be the minimal number of generators of the ideal
CA .

Theorem 2.2 [11] After permuting the variables, if necessary, there exists a minimal system of binomial
generators S of the critical ideal CA of the following form:

CASE 1: If aini ̸= ajnj , for every i ̸= j, then S = {xai
i − xui , i = 1, . . . , 4}.

CASE 2: If a1n1 = a2n2 and a3n3 = a4n4, then either a2n2 ̸= a3n3 and

(a) S = {xa1
1 − xa2

2 , xa3
3 − xa4

4 , xa4
4 − xu4} when µ(CA) = 3,

(b) S = {xa1
1 − xa2

2 , xa3
3 − xa4

4 } when µ(CA) = 2,

or a2n2 = a3n3 and

(c) S = {xa1
1 − xa2

2 , xa2
2 − xa3

3 , xa3
3 − xa4

4 }.

CASE 3: If a1n1 = a2n2 = a3n3 ̸= a4n4, then S = {xa1
1 − xa2

2 , xa2
2 − xa3

3 , xa4
4 − xu4}.

CASE 4: If a1n1 = a2n2 and aini ̸= ajnj for all {i, j} ̸= {1, 2}, then

(a) S = {xa1
1 − xa2

2 , xai
i − xui | i = 2, 3, 4} when µ(CA) = 4,

(b) S = {xa1
1 − xa2

2 , xai
i − xui | i = 3, 4} when µ(CA) = 3.

Here, in each case, xui denotes an appropriate monomial whose support has cardinality greater than or equal
to two.

Theorem 2.3 ([11]) The union of S, the set I of all binomials x
ui1
i1

x
ui2
i2

− x
ui3
i3

x
ui4
i4

∈ I(C) with 0 < uij <

aj , j = 1, 2 , ui3 > 0 , ui4 > 0 and x
ui3
i3

x
ui4
i4

indispensable, and the set R of all binomials xu1
1 xu2

2 − xu3
3 xu4

4 ∈
I(C) \ I with full support such that

• u1 ≤ a1 and xu3
3 xu4

4 is indispensable, in CASES 2(a) and 4(b),
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• u1 ≤ a1 and/or u3 ≤ a3 and there is no xv1
1 xv2

2 − xv3
3 xv4

4 ∈ I(C) with full support such that xv1
1 xv2

2

properly divides xu1+αc1
1 xu2−αc2

2 or xv3
3 xv4

4 properly divides xu3+αc3
3 xu4−αu4

4 for some α ∈ N, in CASE
2(b),

is a minimal system of generators of I(C) (up to permutation of indices).

A binomial B ∈ I(C) is called indispensable of I(C) if every system of binomial generators of I(C)

contains B or −B . By Corollary 2.16 in [11] every f ∈ I is an indispensable binomial of I(C) .

Notation 2.4 Given a monomial xu we will write deg(xu) :=
∑4

i=1 ui .

For the rest of this section we will assume that n1 < n2 < n3 < n4 . To prove our results we will make
repeated use of Theorem 1.1.

Theorem 2.5 Suppose that I(C) is given as in CASE 1. Let S = {xa1
1 − xu, xa2

2 − xv, xa3
3 − xw, xa4

4 − xz} be
a generating set of CA and let 1 ∈ supp(xv) . Let:

(C1.1) a2 ≤ deg(xv) .

(C1.2) a3 ≤ deg(xw) .

(C1.3) For every binomial f = M −N ∈ I with 1 ∈ supp(M) we have that deg(N) ≤ deg(M) .

(C1.4) For every monomial M = xd2
2 xd3

3 xd4
4 , where d2 < a2 and d3 < a3 , with d2n2 + d3n3 + d4n4 ∈ n1 + S ,

there exists a monomial N with 1 ∈ supp(N) such that M −N ∈ I(C) and also deg(M) ≤ deg(N) .

(C1.5) For every monomial M = xd2
2 xd3

3 xd4
4 , where d2 < a2 and d4 < a4 , with d2n2 + d3n3 + d4n4 ∈ n1 + S ,

there exists a monomial N with 1 ∈ supp(N) such that M −N ∈ I(C) and also deg(M) ≤ deg(N) .

(C1.6) For every monomial M = xd2
2 xd3

3 xd4
4 , where d2 < a2 , with d2n2 + d3n3 + d4n4 ∈ n1 + S , there exists a

monomial N with 1 ∈ supp(N) such that M −N ∈ I(C) and also deg(M) ≤ deg(N) .

In the following cases C has a Cohen–Macaulay tangent cone at the origin.
(i) 1 ∈ supp(xw) , 1 ∈ supp(xz) and the conditions (C1.1), (C1.2), and (C1.3) hold.
(ii) 1 ∈ supp(xw) , 1 /∈ supp(xz) and the conditions (C1.1), (C1.2), and (C1.4) hold.
(iii) 1 /∈ supp(xw) , 1 ∈ supp(xz) and the conditions (C1.1) and (C1.5) hold.
(iv) 1 /∈ supp(xw) , 1 /∈ supp(xz) and the conditions (C1.1) and (C1.6) hold.

Proof. (i) Let M = xd2
2 xd3

3 xd4
4 , where d2 ≥ 0 , d3 ≥ 0 and d4 ≥ 0 , with d2n2 + d3n3 + d4n4 ∈ n1 + S . Thus,

there exists a monomial P such that 1 ∈ supp(P ) and M − P ∈ I(C) . Let d2 ≥ a2 , and then we consider the
monomial P = xd2−a2

2 xd3
3 xd4

4 xv . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 ≤ d2 + d3 + d4 + (deg(xv)− a2) = deg(P ).

Let d3 ≥ a3 , and then we consider the monomial P = xd2
2 xd3−a3

3 xd4
4 xw . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 ≤ d2 + d3 + d4 + (deg(xw)− a3) = deg(P ).
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Let d4 ≥ a4 , and then we consider the monomial P = xd2
2 xd3

3 xd4−a4
4 xz . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 < d2 + d3 + d4 + (deg(xz)− a4) = deg(P ).

Suppose that d2 < a2 , d3 < a3 and d4 < a4 . There are 2 cases: (1) there exists a binomial f = G−H ∈ I with
1 ∈ supp(G) such that H divides M , so M = HH ′ . Note that deg(H) ≤ deg(G) . Then GH ′ −HH ′ ∈ I(C)

and also
deg(M) = deg(HH ′) ≤ deg(G) + deg(H ′).

(2) There exists no binomial f = G − H in I such that H divides M . Recall that M − P ∈ I(C) , S ∪ I
generates I(C) , and also 1 ∈ supp(xv) , 1 ∈ supp(xw) , and 1 ∈ supp(xz) . Then necessarily xu divides M , so
M = xuM ′ . Let P = M ′xa1

1 ; then M − P ∈ I(C) and also

deg(M) = deg(xu) + deg(M ′) < deg(xa1
1 ) + deg(M ′) = deg(P ).

(ii) Let M = xd2
2 xd3

3 xd4
4 , where d2 ≥ 0 , d3 ≥ 0 and d4 ≥ 0 , with d2n2 + d3n3 + d4n4 ∈ n1 + S . Let d2 ≥ a2 ,

and then we consider the monomial P = xd2−a2
2 xd3

3 xd4
4 xv . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 ≤ d2 + d3 + d4 + (deg(xv)− a2) = deg(P ).

Let d3 ≥ a3 , and then we consider the monomial P = xd2
2 xd3−a3

3 xd4
4 xw . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 ≤ d2 + d3 + d4 + (deg(xw)− a3) = deg(P ).

Suppose that d2 < a2 and d3 < a3 , and then we are done.
(iii) Let M = xd2

2 xd3
3 xd4

4 , where d2 ≥ 0 , d3 ≥ 0 and d4 ≥ 0 , with d2n2 + d3n3 + d4n4 ∈ n1 + S . Let d2 ≥ a2 ,
and then we consider the monomial P = xd2−a2

2 xd3
3 xd4

4 xv . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 ≤ d2 + d3 + d4 + (deg(xv)− a2) = deg(P ).

Let d4 ≥ a4 , and then we consider the monomial P = xd2
2 xd3

3 xd4−a4
4 xz . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 < d2 + d3 + d4 + deg(xz)− a4 = deg(P ).

Suppose that d2 < a2 and d4 < a4 , and then we are done.
(iv) Let M = xd2

2 xd3
3 xd4

4 , where d2 ≥ 0 , d3 ≥ 0 and d4 ≥ 0 , with d2n2 + d3n3 + d4n4 ∈ n1 + S . Let d2 ≥ a2 ,
and then we consider the monomial P = xd2−a2

2 xd3
3 xd4

4 xv . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 ≤ d2 + d3 + d4 + (deg(xv)− a2) = deg(P ).

Suppose that d2 < a2 , and then we are done. □

Theorem 2.6 Suppose that I(C) is given as in case 1. Let S = {xa1
1 − xu, xa2

2 − xv, xa3
3 − xw, xa4

4 − xz} be a
generating set of CA and let 1 /∈ supp(xv) . In the following cases, C has a Cohen–Macaulay tangent cone at
the origin.
(i) 1 ∈ supp(xw) , 1 ∈ supp(xz) , and
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1. a3 ≤ deg(xw) ,

2. for every binomial f = M −N ∈ I with 1 ∈ supp(M) we have that deg(N) ≤ deg(M) , and

3. for every monomial M = xd2
2 xd3

3 xd4
4 , where d2 ≥ a2 , d3 < a3 and d4 < a4 , with d2n2 + d3n3 + d4n4 ∈

n1+S , there exists a monomial N with 1 ∈ supp(N) such that M−N ∈ I(C) and also deg(M) ≤ deg(N) .

(ii) 1 ∈ supp(xw) , 1 /∈ supp(xz) , and

1. a3 ≤ deg(xw) and

2. for every monomial M = xd2
2 xd3

3 xd4
4 , where d3 < a3 , with d2n2 + d3n3 + d4n4 ∈ n1 + S , there exists a

monomial N with 1 ∈ supp(N) such that M −N ∈ I(C) and also deg(M) ≤ deg(N) .

(iii) 1 /∈ supp(xw) , 1 ∈ supp(xz) , and for every monomial M = xd2
2 xd3

3 xd4
4 , where d4 < a4 , with d2n2 +

d3n3 + d4n4 ∈ n1 + S , there exists a monomial N with 1 ∈ supp(N) such that M − N ∈ I(C) and also
deg(M) ≤ deg(N) .

Proof. (i) Let M = xd2
2 xd3

3 xd4
4 , where d2 ≥ 0 , d3 ≥ 0 and d4 ≥ 0 , with d2n2 + d3n3 + d4n4 ∈ n1 + S . Thus,

there exists a monomial P such that 1 ∈ supp(P ) and M − P ∈ I(C) . Let d3 ≥ a3 , and then we consider the
monomial P = xd2

2 xd3−a3
3 xd4

4 xw . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 ≤ d2 + d3 + d4 + (deg(xw)− a3) = deg(P ).

Let d4 ≥ a4 , and then we consider the monomial P = xd2
2 xd3

3 xd4−a4
4 xz . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 < d2 + d3 + d4 + (deg(xz)− a4) = deg(P ).

Suppose that d3 < a3 and d4 < a4 . If d2 ≥ a2 , then from (3) we are done. Assume that d2 < a2 . There are 2
cases: (1) there exists a binomial f = G −H ∈ I with 1 ∈ supp(G) such that H divides M , so M = HH ′ .
Note that deg(H) ≥ deg(G) from condition (2). Then GH ′−M ∈ I(C) and also deg(M) ≤ deg(G)+deg(H ′) .
(2) There exists no binomial f = G − H in I such that H divides M . Recall that M − P ∈ I(C) , S ∪ I
generates I(C) , and also 1 ∈ supp(xw) and 1 ∈ supp(xz) . Then necessarily xu or/and xv divides M . Let us
suppose that xu divides M , so M = xuM ′ . Let P = M ′xa1

1 ; then M − P ∈ I(C) and also

deg(M) = deg(xu) + deg(M ′) < deg(xa1
1 ) + deg(M ′) = deg(P ).

Suppose now that xv divides M , so M = xvM ′ . Then the binomial xa2
2 M ′ − M belongs to I(C) and also

degS(xa2
2 M ′) ∈ n1 + S . Thus, there exists a monomial N such that 1 ∈ supp(N) , degS(N) = degS(xa2

2 M ′)

and also deg(xa2
2 M ′) ≤ deg(N) . Consequently,

deg(M) = deg(xvM ′) < deg(xa2
2 M ′) ≤ deg(N).

(ii) Let M = xd2
2 xd3

3 xd4
4 , where d2 ≥ 0 , d3 ≥ 0 and d4 ≥ 0 , with d2n2 + d3n3 + d4n4 ∈ n1 + S . Let

d3 ≥ a3 , and then we consider the monomial P = xd2
2 xd3−a3

3 xd4
4 xw . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 ≤ d2 + d3 + d4 + (deg(xw)− a3) = deg(P ).
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Let d3 < a3 , and then from condition (2) we are done.
(iii) Let M = xd2

2 xd3
3 xd4

4 , where d2 ≥ 0 , d3 ≥ 0 and d4 ≥ 0 , with d2n2 + d3n3 + d4n4 ∈ n1 + S . Let d4 ≥ a4 ,
and then we consider the monomial P = xd2

2 xd3
3 xd4−a4

4 xz . We have that M − P ∈ I(C) and also

deg(M) = d2 + d3 + d4 < d2 + d3 + d4 + (deg(xz)− a4) = deg(P ).

Suppose that d4 < a4 ; then, from the assumption, we are done. □

3. The Gorenstein case
In this section we will study the case where C is a noncomplete intersection Gorenstein monomial curve, i.e.
the semigroup S = {g1n1 + · · · + g4n4|gi ∈ N} is symmetric. Given a polynomial f ∈ I(C) , we let f∗ be the
homogeneous summand of f of least degree. We shall denote by I(C)∗ the ideal generated by the polynomials
f∗ for f in I(C) and f∗ is the homogeneous summand of f of least degree. By [5, Theorem 7] C has
Cohen–Macaulay tangent cone if and only if x1 is not a zero divisor in the ring K[x1, . . . , x4]/I(C)∗ , where
n1 = min{n1, . . . , n4} . Thus, if C has a Cohen–Macaulay tangent cone at the origin, then I(C)∗ : ⟨x1⟩ = I(C)∗ .

Theorem 3.1 [4] Let C be a monomial curve having the parametrization

x1 = tn1 , x2 = tn2 , x3 = tn3 , x4 = tn4 .

The semigroup S is symmetric and C is a noncomplete intersection curve if and only if I(C) is minimally
generated by the set

G = {f1 = xa1
1 − xa13

3 xa14
4 , f2 = xa2

2 − xa21
1 xa24

4 , f3 = xa3
3 − xa31

1 xa32
2 ,

f4 = xa4
4 − xa42

2 xa43
3 , f5 = xa43

3 xa21
1 − xa32

2 xa14
4 },

where the polynomials fi are unique up to isomorphism and 0 < aij < aj .

Remark 3.2 Bresinsky [4] showed that S is symmetric and I(C) is as in the previous theorem if and only if
n1 = a2a3a14+a32a13a24 , n2 = a3a4a21+a31a43a24 , n3 = a1a4a32+a14a42a31 , n4 = a1a2a43+a42a21a13 with
gcd(n1, n2, n3, n4) = 1 , ai > 1, 0 < aij < aj for 1 ≤ i ≤ 4 , and a1 = a21 + a31 , a2 = a32 + a42 , a3 = a13 + a43 ,
a4 = a14 + a24 .

Remark 3.3 [1] The above theorem implies that for any noncomplete intersection Gorenstein monomial curve
with embedding dimension four, the variables can be renamed to obtain generators exactly of the given form,
and this means that there are six isomorphic possible permutations. which can be considered within three cases:

(1) f1 = (1, (3, 4))

(a) f2 = (2, (1, 4)) , f3 = (3, (1, 2)) , f4 = (4, (2, 3)) , f5 = ((1, 3), (2, 4))

(b) f2 = (2, (1, 3)) , f3 = (3, (2, 4)) , f4 = (4, (1, 2)) , f5 = ((1, 4), (2, 3))

(2) f1 = (1, (2, 3))

(a) f2 = (2, (3, 4)) , f3 = (3, (1, 4)) , f4 = (4, (1, 2)) , f5 = ((2, 4), (1, 3))
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(b) f2 = (2, (1, 4)) , f3 = (3, (2, 4)) , f4 = (4, (1, 3)) , f5 = ((1, 2), (4, 3))

(3) f1 = (1, (2, 4))

(a) f2 = (2, (1, 3)) , f3 = (3, (1, 4)) , f4 = (4, (2, 3)) , f5 = ((1, 2), (3, 4))

(b) f2 = (2, (3, 4)) , f3 = (3, (1, 2)) , f4 = (4, (1, 3)) , f5 = ((2, 3), (1, 4))

Here, the notations fi = (i, (j, k)) and f5 = ((i, j), (k, l)) denote the generators fi = xai
i − x

aij

j xaik

k and

f5 = xaki
i x

alj

j − x
ajk

k xail

l . Thus, given a Gorenstein monomial curve C , if we have the extra condition
n1 < n2 < n3 < n4 , then the generator set of I(C) is exactly given by one of these six permutations.

Remark 3.4 By [11, Corollary 3.13] the toric ideal I(C) of any noncomplete intersection Gorenstein monomial
curve C is generated by its indispensable binomials.

First, we use the technique in [16] to compute the Apery set of S relative to {n1} , defined by

Q = {q ∈ S|q − n1 /∈ S}.

Let lex− inf be the total order on the monomials of K[x1, . . . , x4] , which is defined as follows:

xu >lex−inf xv ⇔ xu <lex xv,

where lex order is the lexicographic order such that x1 is the largest variable in K[x1, . . . , x4] with respect to
<lex .

Proposition 3.5 The set G = {f1, f2, f3, f4, f5} is the reduced Gröbner basis of I(C) with respect to an
appropriate lex− inf order.

Proof. Suppose that I(C) is given as in case 1(a). Then

f1 = xa1
1 − xa13

3 xa14
4 , f2 = xa2

2 − xa21
1 xa24

4 , f3 = xa3
3 − xa31

1 xa32
2 ,

f4 = xa4
4 − xa42

2 xa43
3 , f5 = xa21

1 xa43
3 − xa32

2 xa14
4 .

With respect to lex− inf such that x1 >lex x2 >lex x3 >lex x4 we have that lm(f1) = xa13
3 xa14

4 , lm(f2) = xa2
2 ,

lm(f3) = xa3
3 , lm(f4) = xa4

4 , and lm(f5) = xa32
2 xa14

4 . We will prove that S(fi, fj)
G−→ 0 for any pair

{fi, fj} . Since lm(f1) and lm(f2) are relatively prime, we get that S(f1, f2)
G−→ 0 . Similarly, S(f2, f3)

G−→ 0 ,

S(f2, f4)
G−→ 0 , S(f3, f4)

G−→ 0 , and S(f3, f5)
G−→ 0 . We have that

S(f1, f3) = xa31
1 xa32

2 xa14
4 − xa1

1 xa43
3

f5−→ xa1
1 xa43

3 − xa1
1 xa43

3 = 0,

S(f1, f4) = xa42
2 xa3

3 − xa1
1 xa24

4

f3−→ xa31
1 xa2

2 − xa1
1 xa24

4

f2−→ xa1
1 xa24

4 − xa1
1 xa24

4 = 0,

S(f1, f5) = xa21
1 xa3

3 − xa1
1 xa32

2

f3−→ xa1
1 xa32

2 − xa1
1 xa32

2 = 0,

S(f2, f5) = xa21
1 xa42

2 xa43
3 − xa21

1 xa4
4

f4−→ xa21
1 xa42

2 xa43
3 − xa21

1 xa42
2 xa43

3 = 0,
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S(f4, f5) = xa21
1 xa43

3 xa24
4 − xa2

2 xa43
3

f2−→ xa21
1 xa43

3 xa24
4 − xa21

1 xa43
3 xa24

4 = 0.

Thus, G is a Gröbner basis for I(C) with respect to lex− inf such that x1 >lex x2 >lex x3 >lex x4 . It is not
hard to show that G is a Gröbner basis for I(C) with respect to lex− inf such that

1. x1 >lex x2 >lex x3 >lex x4 in case 1(b).

2. x1 >lex x3 >lex x2 >lex x4 in case 2(a).

3. x1 >lex x2 >lex x3 >lex x4 in case 2(b).

4. x1 >lex x2 >lex x3 >lex x4 in case 3(a).

5. x1 >lex x3 >lex x2 >lex x4 in case 3(b). □

Using Lemma 1.2 in [16], we compute the Apery set Q as follows:

Corollary 3.6 Let B be the set of monomials xu2
2 xu3

3 xu4
4 in the polynomial ring K[x2, x3, x4] , which are not

divisible by any of the monomials of the set

1. {xa13
3 xa14

4 , xa2
2 , xa3

3 , xa4
4 , xa32

2 xa14
4 } in case 1(a).

2. {xa13
3 xa14

4 , xa2
2 , xa3

3 , xa4
4 , xa42

2 xa13
3 } in case 1(b).

3. {xa12
2 xa13

3 , xa2
2 , xa3

3 , xa4
4 , xa12

2 xa34
4 } in case 2(a).

4. {xa12
2 xa13

3 , xa2
2 , xa3

3 , xa4
4 , xa13

3 xa24
4 } in case 2(b).

5. {xa12
2 xa14

4 , xa2
2 , xa3

3 , xa4
4 , xa23

3 xa14
4 } in case 3(a).

6. {xa12
2 xa14

4 , xa2
2 , xa3

3 , xa4
4 , xa12

2 xa43
3 } in case 3(b).

Then

Q = {m ∈ S|m =

4∑
i=2

uini where xu2
2 xu3

3 xu4
4 ∈ B}.

Theorem 3.7 Suppose that I(C) is given as in case 1(a). Then C has a Cohen–Macaulay tangent cone at
the origin if and only if a2 ≤ a21 + a24 .

Proof. In this case I(C) is minimally generated by the set

G = {f1 = xa1
1 − xa13

3 xa14
4 , f2 = xa2

2 − xa21
1 xa24

4 , f3 = xa3
3 − xa31

1 xa32
2 ,

f4 = xa4
4 − xa42

2 xa43
3 , f5 = xa21

1 xa43
3 − xa32

2 xa14
4 }.

If a2 ≤ a21 + a24 , then we have, from Theorem 2.8 in [1], that the curve C has Cohen–Macaulay tangent
cone at the origin. Conversely, suppose that C has Cohen–Macaulay tangent cone at the origin. Since I(C) is
generated by the indispensable binomials, every binomial fi , 1 ≤ i ≤ 5 , is indispensable of I(C) . In particular
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the binomial f2 is indispensable of I(C) . If there exists a monomial N ̸= xa21
1 xa24

4 such that g = xa2
2 − N

belongs to I(C) , then we can replace f2 in G by the binomials g and N − xa21
1 xa24

4 ∈ I(C) , a contradiction
to the fact that f2 is indispensable. Thus, N = xa21

1 xa24
4 , but a2n2 ∈ n1 + S and therefore we have, from

Theorem 1.1, that a2 ≤ a21 + a24 . □

Remark 3.8 Suppose that I(C) is given as in case 1(b). (1) It holds that a1 > a13 + a14 and a4 < a41 + a42 .
(2) If a42 ≤ a32 , then xa3+a13

3 − xa21
1 xa32−a42

2 x2a34
4 ∈ I(C) .

(3) If a14 ≤ a34 , then the binomial xa3+a13
3 − xa1

1 xa32
2 xa34−a14

4 belongs to I(C) .

Proposition 3.9 Suppose that I(C) is given as in case 1(b). Then C has Cohen–Macaulay tangent cone at
the origin if and only if

1. a2 ≤ a21 + a23 ,

2. a42 + a13 ≤ a21 + a34 , and

3. for every monomial M = xu2
2 x

u3

3 xu4
4 , where u2 < a42 , u3 ≥ a3 , and u4 < a14 , with u2n2+u3n3+u4n4 ∈

n1+S , there exists a monomial N with 1 ∈ supp(N) such that M−N ∈ I(C) and also deg(M) ≤ deg(N) .

Proof. In this case I(C) is minimally generated by the set

G = {f1 = xa1
1 − xa13

3 xa14
4 , f2 = xa2

2 − xa21
1 xa23

3 , f3 = xa3
3 − xa32

2 xa34
4 ,

f4 = xa4
4 − xa41

1 xa42
2 , f5 = xa21

1 xa34
4 − xa42

2 xa13
3 }.

Suppose that C has Cohen–Macaulay tangent cone at the origin. Since I(C) is generated by the indispensable
binomials, every binomial fi , 1 ≤ i ≤ 5 , is indispensable of I(C) . In particular the binomials f2 and f5 are
indispensable of I(C) . Therefore, both inequalities a2 ≤ a21+a23 and a42+a13 ≤ a21+a34 hold. By Theorem
1.1, condition (3) is also true.

Conversely, from Theorem 2.5 (iii), it is enough to consider a monomial M = xu2
2 xu3

3 xu4
4 , where u2 < a2 ,

u3 ≥ 0 and u4 < a4 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P )

and also M − P is in I(C) . Suppose that u3 ≥ a3 . If u4 ≥ a14 , then we let P = xa1
1 xu2

2 xu3−a13
3 xu4−a14

4 , so
we have that M − P ∈ I(C) and also deg(M) < deg(P ) since a13 + a14 < a1 . Similarly if u2 ≥ a42 , then
we let P = xa21

1 xu2−a42
2 xu3−a13

3 xu4+a34
4 . So we have that M − P ∈ I(C) and also deg(M) ≤ deg(P ) . If both

inequalities u4 < a14 and u2 < a42 hold, then condition (3) implies that there exists a monomial N with
1 ∈ supp(N) such that M −N ∈ I(C) and also deg(M) ≤ deg(N) .

Suppose now that u3 < a3 . Recall that M − P ∈ I(C) and G generates I(C) . Then M is divided
by at least one of the monomials xa42

2 xa13
3 , xa13

3 xa14
4 , and xa32

2 xa34
4 . If M is divided by xa42

2 xa13
3 , then M =

xa42+p
2 xa13+q

3 xu4
4 , for some nonnegative integers p and q , so M − xa21

1 xp
2x

q
3x

a34+u4
4 ∈ I(C) and also deg(M) ≤

deg(xa21
1 xp

2x
q
3x

a34+u4
4 ) . If M is divided by xa13

3 xa14
4 , then M = xu2

2 xa13+p
3 xa14+q

4 , for some nonnegative integers
p and q , and therefore the binomial M − xa1

1 xu2
2 xp

3x
q
4 ∈ I(C) and also deg(M) < deg(xa1

1 xu2
2 xp

3x
q
4) . Assume

that neither xa32
2 xa34

4 nor xa13
3 xa14

4 divides M . Then necessarily xa42
2 xa13

3 divides M . However, M is not
divided by any leading monomial of G with respect to lex− inf such that x1 >lex x2 >lex x3 >lex x4 . Thus,
m = u2n2 + u3n3 + u4n4 is in Q , a contradiction to the fact that m− n1 ∈ S . Therefore, from Theorem 2.5,
C has Cohen–Macaulay tangent cone at the origin. □
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Proposition 3.10 Suppose that I(C) is given as in case 1(b). Assume that C has Cohen–Macaulay tangent
cone at the origin and also a42 ≤ a32 .

1. If a34 < a14 , then a3 + a13 ≤ a21 + a32 − a42 + 2a34 .

2. If a14 ≤ a34 , then a3 + a13 ≤ a1 + a32 + a34 − a14 .

Proof. (1) Suppose that a34 < a14 and assume that a3 + a13 > a21 + a32 − a42 + 2a34 . Since xa3+a13
3 −

xa21
1 xa32−a42

2 x2a34
4 ∈ I(C) , we deduce that xa21

1 xa32−a42
2 x2a34

4 ∈ I(C)∗ , and therefore xa32−a42
2 x2a34

4 ∈ I(C)∗

since C has Cohen–Macaulay tangent cone at the origin. However, G = {xa1
1 − xa13

3 xa14
4 , xa2

2 − xa21
1 xa23

3 , xa3
3 −

xa32
2 xa34

4 , xa4
4 − xa41

1 xa42
2 , xa21

1 xa34
4 − xa42

2 xa13
3 } is a generating set for I(C) , so xa32−a42

2 x2a34
4 must be divided by

at least one of the monomials in G , a contradiction.
(2) Suppose that a14 ≤ a34 and let a3 + a13 > a1 + a32 + a34 − a14 . Since xa3+a13

3 − xa1
1 xa32

2 xa34−a14
4 ∈ I(C) ,

we deduce that xa1
1 xa32

2 xa34−a14
4 ∈ I(C)∗ and therefore xa32

2 xa34−a14
4 ∈ I(C)∗ . However, G is a generating set

for I(C) , so xa32
2 xa34−a14

4 must be divided by at least one of the monomials in G , a contradiction. □

Theorem 3.11 Suppose that I(C) is given as in case 1(b) and also that a42 ≤ a32 . Then C has Cohen–
Macaulay tangent cone at the origin if and only if

1. a2 ≤ a21 + a23 ,

2. a42 + a13 ≤ a21 + a34 , and

3. either a34 < a14 and a3 + a13 ≤ a21 + a32 − a42 +2a34 or a14 ≤ a34 and a3 + a13 ≤ a1 + a32 + a34 − a14 .

Proof. (=⇒) From Proposition 3.9 we have that conditions (1) and (2) are true. From Proposition 3.10
condition (3) is also true.
(⇐=) From Proposition 3.9 it is enough to consider a monomial N = xu2

2 xu3
3 xu4

4 , where u2 < a42 , u3 ≥ a3

and u4 < a14 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P ) and
also N − P is in I(C) . Suppose that u3 ≥ a3 + a13 and let M denote either the monomial xa21

1 xa32−a42
2 x2a34

4

when a34 < a14 or the monomial xa1
1 xa32

2 xa34−a14
4 when a14 ≤ a34 . Let P = xu2

2 xu3−a3−a13
3 xu4

4 M . We have
that N − P ∈ I(C) and

deg(N) = u2 + u3 + u4 ≤ u2 + u3 + u4 + deg(M)− a3 − a13 = deg(P ).

It suffices to consider the case where u3−a3 < a13 . Recall that G = {f1, . . . , f5} generates I(C) . The binomial
N − P belongs to I(C) , so N − P =

∑5
i=1 Hifi for some polynomials Hi ∈ K[x1, . . . , x4] and therefore N is

a term in the sum
∑5

i=1 Hifi . Note that N is not divided by any of the monomials xa13
3 xa14

4 , xa2
2 , xa32

2 xa34
4 ,

xa4
4 , and xa42

2 xa13
3 . Now the monomial N is divided by the monomial xa3

3 , so Q = −xu2+a32
2 xu3−a3

3 xu4+a34
4

is a term in the sum
∑5

i=1 Hifi and should be canceled with another term of the above sum. Remark that
u2 + a32 < a2 and u4 + a34 < a4 . Thus, xa42

2 xa13
3 divides −Q , so u3 − a3 ≥ a13 , a contradiction. □

Proposition 3.12 Suppose that I(C) is given as in case 1(b) and also that a32 < a42 . If C has Cohen–
Macaulay tangent cone at the origin, then

1435



ARSLAN et al./Turk J Math

1. a2 ≤ a21 + a23 ,

2. a42 + a13 ≤ a21 + a34 , and

3. a3 + a13 ≤ a1 + a32 + a34 − a14 .

Proof. By Proposition 3.9 conditions (1) and (2) are true. Suppose first that a14 ≤ a34 and let a3 + a13 >

a1 + a32 + a34 − a14 . Since xa3+a13
3 − xa1

1 xa32
2 xa34−a14

4 ∈ I(C) , we have that xa32
2 xa34−a14

4 ∈ I(C)∗ , but
G = {f1, . . . , f5} is a generating set for I(C) , so xa32

2 xa34−a14
4 must be divided by at least one of the monomials

in G , a contradiction. Suppose now that a14 > a34 . Note that xa1
1 xa32

2 − xa3+a13
3 xa14−a34

4 ∈ I(C) . If
a3 + a13 + a14 − a34 > a1 + a32 , then xa1

1 xa32
2 ∈ I(C)∗ and therefore xa32

2 ∈ I(C)∗ , a contradiction. Thus,
a3 + a13 ≤ a1 + a32 + a34 − a14 . □

Theorem 3.13 Suppose that I(C) is given as in case 1(b) and also that a32 < a42 . Assume that a14 ≤ a34 .
Then C has Cohen–Macaulay tangent cone at the origin if and only if

1. a2 ≤ a21 + a23 ,

2. a42 + a13 ≤ a21 + a34 , and

3. a3 + a13 ≤ a1 + a32 + a34 − a14 .

Proof. (=⇒) By Proposition 3.12 conditions (1), (2), and (3) are true.
(⇐=) From Proposition 3.9 it is enough to consider a monomial N = xu2

2 xu3
3 xu4

4 , where u2 < a42 , u3 ≥ a3 ,
and u4 < a14 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P ) and
also N −P is in I(C) . Suppose that u3 ≥ a3 + a13 . Let P = xa1

1 xu2+a32
2 xu3−a3−a13

3 xu4+a34−a14
4 . We have that

N − P ∈ I(C) and

deg(N) = u2 + u3 + u4 ≤ u2 + u3 + u4 + a1 + a32 + a34 − a14 − a3 − a13 = deg(P ).

It suffices to assume that u3 − a3 < a13 . Since the binomial N − P belongs to I(C) , we have that N −

P =
∑5

i=1 Hifi for some polynomials Hi ∈ K[x1, . . . , x4] , so N is a term in the sum
∑5

i=1 Hifi . Then

T = −xu2+a32
2 xu3−a3

3 xu4+a34
4 is a term in the sum

∑5
i=1 Hifi and it should be canceled with another term of

the above sum. Remark that u2 + a32 < a2 and u4 + a34 < a4 . Thus, xa42
2 xa13

3 divides −T , so u3 − a3 ≥ a13 ,
a contradiction. □

Example 3.14 Consider n1 = 1199 , n2 = 2051 , n3 = 2352 , and n4 = 3032 . The toric ideal I(C) is minimally
generated by the set

G = {x16
1 − x3

3x
4
4, x

19
2 − x7

1x
13
3 , x16

3 − x8
2x

7
4, x

11
4 − x9

1x
11
2 , x7

1x
7
4 − x11

2 x3
3}.

Here a1 = 16 , a32 = 8 , a42 = 11 , a14 = 4 , a34 = 7 , a13 = 3 , and a3 = 16 . Note that a2 = 19 < 20 = a21+a23

and a42 + a13 = 14 = a21 + a34 . We have that a3 + a13 = 19 < 27 = a1 + a32 + a34 − a14 . Thus, C has a
Cohen–Macaulay tangent cone at the origin.
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Remark 3.15 Suppose that I(C) is given as in case 2(a).
(1) It holds that a1 > a12 + a13 , a2 > a23 + a24 and a4 < a41 + a42 .
(2) If a34 ≤ a24 , then xa2+a12

2 − xa41
1 x2a23

3 xa24−a34
4 ∈ I(C) .

(3) If a13 ≤ a23 , then the binomial xa2+a12
2 − xa1

1 xa23−a13
3 xa24

4 belongs to I(C) .

Proposition 3.16 Suppose that I(C) is given as in case 2(a). Then C has Cohen–Macaulay tangent cone at
the origin if and only if

1. a3 ≤ a31 + a34 ,

2. a12 + a34 ≤ a41 + a23 , and

3. for every monomial M = xu2
2 x

u3

3 xu4
4 , where u2 ≥ a2 , u3 < a13 and u4 < a34 , with u2n2 +u3n3 +u4n4 ∈

n1+S , there exists a monomial N with 1 ∈ supp(N) such that M−N ∈ I(C) and also deg(M) ≤ deg(N) .

Proof. In this case I(C) is minimally generated by the set

G = {f1 = xa1
1 − xa12

2 xa13
3 , f2 = xa2

2 − xa23
3 xa24

4 , f3 = xa3
3 − xa31

1 xa34
4 ,

f4 = xa4
4 − xa41

1 xa42
2 , f5 = xa41

1 xa23
3 − xa12

2 xa34
4 }.

Suppose that C has Cohen–Macaulay tangent cone at the origin. Since I(C) is generated by the indispensable
binomials, every binomial fi , 1 ≤ i ≤ 5 , is indispensable of I(C) . In particular the binomials f3 and f5 are
indispensable of I(C) . Therefore, the inequalities a3 ≤ a31 + a34 and a12 + a34 ≤ a41 + a23 hold. By Theorem
1.1, condition (3) is also true.

To prove the converse statement, from Theorem 2.6 (i), it is enough to consider a monomial M =

xu2
2 xu3

3 xu4
4 , where u2 ≥ a2 , u3 < a3 , and u4 < a4 , with the following property: there exists at least

one monomial P such that 1 ∈ supp(P ) and also M − P is in I(C) . If u3 ≥ a13 , then we let P =

xa1
1 xu2−a12

2 xu3−a13
3 xu4

4 . We have that M − P ∈ I(C) and also deg(M) < deg(P ) . Similarly, if u4 ≥ a34 ,
then we let P = xa41

1 xu2−a12
2 xu3+a23

3 xu4−a34
4 , so we have that M − P ∈ I(C) and also deg(M) ≤ deg(P ) . If

both conditions u3 < a13 and u4 < a34 hold, then condition (3) implies that there exists a monomial N with
1 ∈ supp(N) such that M − N ∈ I(C) and also deg(M) ≤ deg(N) . Therefore, from Theorem 2.6, C has
Cohen–Macaulay tangent cone at the origin. □

The proof of the next proposition is similar to that of Proposition 3.10 and therefore it is omitted.

Proposition 3.17 Suppose that I(C) is given as in case 2(a). Assume that C has Cohen–Macaulay tangent
cone at the origin and also a34 ≤ a24 .

1. If a23 < a13 , then a2 + a12 ≤ a41 + 2a23 + a24 − a34 .

2. If a13 ≤ a23 , then a2 + a12 ≤ a1 + a23 − a13 + a24 .

Theorem 3.18 Suppose that I(C) is given as in case 2(a) and also that a34 ≤ a24 . Then C has Cohen–
Macaulay tangent cone at the origin if and only if

1. a3 ≤ a31 + a34 ,
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2. a12 + a34 ≤ a41 + a23 , and

3. either a23 < a13 and a2 + a12 ≤ a41 +2a23 + a24 − a34 or a13 ≤ a23 and a2 + a12 ≤ a1 + a23 − a13 + a24 .

Proof. (=⇒) From Proposition 3.16 we have that conditions (1) and (2) are true. From Proposition 3.17
condition (3) is also true.
(⇐=) From Proposition 3.16 it is enough to consider a monomial N = xu2

2 xu3
3 xu4

4 , where u2 ≥ a2 , u3 < a13 ,
and u4 < a34 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P ) and
also N − P is in I(C) . Suppose that u2 ≥ a2 + a12 and let M denote either the monomial xa41

1 x2a23
3 xa24−a34

4

when a23 < a13 or the monomial xa1
1 xa23−a13

3 xa24
4 when a13 ≤ a23 . Let P = xu2−a2−a12

2 xu3
3 xu4

4 M . We have
that N − P ∈ I(C) and

deg(N) = u2 + u3 + u4 ≤ u2 + u3 + u4 + deg(M)− a2 − a12 = deg(P ).

It suffices to consider the case that u2 − a2 < a12 . Since the binomial N − P belongs to I(C) , we have
that N − P =

∑5
i=1 Hifi for some polynomials Hi ∈ K[x1, . . . , x4] . Now the monomial N is divided by the

monomial xa2
2 , so Q = −xu2−a2

2 xu3+a23
3 xu4+a24

4 is a term in the sum
∑5

i=1 Hifi and should be canceled with
another term of the above sum. Remark that u3 + a23 < a3 and u4 + a24 < a4 . Thus, xa12

2 xa34
4 divides −Q ,

so u2 − a2 ≥ a12 , a contradiction. □

Proposition 3.19 Suppose that I(C) is given as in case 2(a) and also that a24 < a34 . If C has Cohen–
Macaulay tangent cone at the origin, then

1. a3 ≤ a31 + a34 ,

2. a12 + a34 ≤ a41 + a23 , and

3. a2 + a12 ≤ a1 + a23 − a13 + a24 .

Proof. From Proposition 3.16 we have that conditions (1) and (2) are true. Suppose first that a13 ≤
a23 . Assume that a2 + a12 > a1 + a23 − a13 + a24 . Since xa2+a12

2 − xa1
1 xa23−a13

3 xa24
4 ∈ I(C) , we deduce

that xa1
1 xa23−a13

3 xa24
4 ∈ I(C)∗ and therefore xa23−a13

3 xa24
4 ∈ I(C)∗ . However, G = {xa1

1 − xa12
2 xa13

3 , xa2
2 −

xa23
3 xa24

4 , xa3
3 − xa31

1 xa34
4 , xa4

4 − xa41
1 xa42

2 , xa41
1 xa23

3 − xa12
2 xa34

4 } is a generating set for I(C) , so xa23−a13
3 xa24

4 must
be divided by at least one of the monomials in G , a contradiction.
Suppose now that a13 > a23 . Note that xa1

1 xa24
4 −xa2+a12

2 xa13−a23
3 ∈ I(C) . Assume that a2 + a12 + a13 − a23 >

a1 + a24 ; then xa1
1 xa24

4 ∈ I(C)∗ and therefore xa24
4 ∈ I(C)∗ . However, G is a generating set for I(C) , so xa24

4

must be divided by at least one of the monomials in G , a contradiction. Thus, a2 + a12 + a13 − a23 ≤ a1 + a24 .
□

Theorem 3.20 Suppose that I(C) is given as in case 2(a) and also that a24 < a34 . Assume that a13 ≤ a23 .
Then C has Cohen–Macaulay tangent cone at the origin if and only if

1. a3 ≤ a31 + a34 ,

2. a12 + a34 ≤ a41 + a23 , and

3. a2 + a12 ≤ a1 + a23 − a13 + a24 .
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Proof. (=⇒) From Proposition 3.19 we have that conditions (1), (2), and (3) are true.
(⇐=) From Proposition 3.16 it is enough to consider a monomial N = xu2

2 xu3
3 xu4

4 , where u2 ≥ a2 , u3 < a13 ,
and u4 < a34 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P ) and
also N −P is in I(C) . Suppose that u2 ≥ a2 + a12 . Let P = xa1

1 xu2−a2−a12
2 xu3+a23−a13

3 xu4+a24
4 . We have that

N − P ∈ I(C) and

deg(N) = u2 + u3 + u4 ≤ u2 + u3 + u4 + a1 + a23 − a13 + a24 − a2 − a12 = deg(P ).

It suffices to assume that u2 − a2 < a12 . Since the binomial N − P belongs to I(C) , we have that N − P =∑5
i=1 Hifi for some polynomials Hi ∈ K[x1, . . . , x4] . Then T = −xu2−a2

2 xu3+a23
3 xu4+a24

4 is a term in the sum∑5
i=1 Hifi and it should be canceled with another term of the above sum. Thus, xa12

2 xa34
4 divides −T , so

u2 − a2 ≥ a12 , a contradiction. □

Example 3.21 Consider n1 = 627 , n2 = 1546 , n3 = 1662 , and n4 = 3377 . The toric ideal I(C) is minimally
generated by the set

G = {x18
1 − x3

2x
4
3, x

25
2 − x7

3x
8
4, x

11
3 − x13

1 x3
4, x

11
4 − x5

1x
22
2 , x5

1x
7
3 − x3

2x
3
4}.

Here a24 = 8 , a34 = 3 , a12 = 3 , a1 = 18 , a2 = 25 , and a13 = 4 < 7 = a23 . Note that a3 = 11 < 14 = a31+a34

and a12 + a34 = 6 < 12 = a41 + a23 . We have that a2 + a12 = 28 < 29 = a1 + a23 − a13 + a24 .
Thus, C has a Cohen–Macaulay tangent cone at the origin. Remark that x28

2 − x5
1x

14
3 x5

4 ∈ I(C) , but
deg(x28

2 ) = 28 > 24 = deg(x5
1x

14
3 x5

4) .

Remark 3.22 Suppose that I(C) is given as in case 2(b).
(1) It holds that a1 > a12 + a13 , a4 < a41 + a43 and a24 + a13 < a41 + a32 .
(2) If a24 ≤ a34 , then xa3+a13

3 − xa41
1 x2a32

2 xa34−a24
4 ∈ I(C) .

(3) If a12 ≤ a32 , then the binomial xa3+a13
3 − xa1

1 xa32−a12
2 xa34

4 belongs to I(C) .

Proposition 3.23 Suppose that I(C) is given as in case 2(b). Then C has Cohen–Macaulay tangent cone at
the origin if and only if

1. a2 ≤ a21 + a24 and

2. for every monomial xu2
2 x

u3

3 xu4
4 , where u2 < a12 , u3 ≥ a3 , and u4 < a24 , with u2n2+u3n3+u4n4 ∈ n1+S ,

there exists a monomial N with 1 ∈ supp(N) such that M −N ∈ I(C) and also deg(M) ≤ deg(N) .

Proof. In this case I(C) is minimally generated by the set

G = {f1 = xa1
1 − xa12

2 xa13
3 , f2 = xa2

2 − xa21
1 xa24

4 , f3 = xa3
3 − xa32

2 xa34
4 ,

f4 = xa4
4 − xa41

1 xa43
3 , f5 = xa41

1 xa32
2 − xa13

3 xa24
4 }.

Suppose that C has Cohen–Macaulay tangent cone at the origin. Since I(C) is generated by the indispensable
binomials, every binomial fi , 1 ≤ i ≤ 5 , is indispensable of I(C) . In particular, the binomial f2 is indispensable
of I(C) . Therefore, the inequality a2 ≤ a21 + a24 holds. By Theorem 1.1 condition (2) is also true.
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Conversely, from Theorem 2.5 (iii), it is enough to consider a monomial M = xu2
2 xu3

3 xu4
4 , where u2 < a2 ,

u3 ≥ 0 , and u4 < a4 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P )

and also degS(M) = degS(P ) . Suppose that u3 ≥ a3 . If u2 ≥ a12 , then we let P = xa1
1 xu2−a12

2 xu3−a13
3 xu4

4 ,
so we have that M − P ∈ I(C) and also deg(M) < deg(P ) . Similarly, if u4 ≥ a24 , then we let P =

xa41
1 xu2+a32

2 xu3−a13
3 xu4−a24

4 , so we have that M − P ∈ I(C) and also deg(M) < deg(P ) . If both conditions
u2 < a12 and u4 < a24 hold, then condition (2) implies that there exists a monomial N with 1 ∈ supp(N) such
that M−N ∈ I(C) and also deg(M) ≤ deg(N) . Suppose now that u3 < a3 . Then M is divided by at least one
of the monomials xa12

2 xa13
3 , xa13

3 xa24
4 , and xa32

2 xa34
4 . If M is divided by xa12

2 xa13
3 , then M = xa12+p

2 xa13+q
3 xu4

4 ,
for some nonnegative integers p and q , so M −xa1

1 xp
2x

q
3x

u4
4 ∈ I(C) and also deg(M) < deg(xa1

1 xp
2x

q
3x

u4
4 ) . If M

is divided by xa13
3 xa24

4 , then M = xu2
2 xa13+p

3 xa24+q
4 , for some nonnegative integers p and q , and therefore the

binomial M−xa41
1 xu2+a32

2 xp
3x

q
4 ∈ I(C) and also deg(M) ≤ deg(xa41

1 xu2+a32
2 xp

3x
q
4) . Assume that neither xa12

2 xa13
3

nor xa13
3 xa24

4 divides M . Then necessarily xa32
2 xa34

4 divides M . However, M is not divided by any leading
monomial of G with respect to lex− inf such that x1 >lex x2 >lex x3 >lex x4 . Thus, m = u2n2+u3n3+u4n4

is in Q , a contradiction to the fact that m−n1 ∈ S . By Theorem 2.5 C has Cohen–Macaulay tangent cone at
the origin. □

The proof of the following proposition is similar to that of Proposition 3.10 and therefore it is omitted.

Proposition 3.24 Suppose that I(C) is given as in case 2(b). Assume that C has Cohen–Macaulay tangent
cone at the origin and also a24 ≤ a34 .

1. If a32 < a12 , then a3 + a13 ≤ a41 + 2a32 + a34 − a24 .

2. If a12 ≤ a32 , then a3 + a13 ≤ a1 + a32 − a12 + a34 .

Theorem 3.25 Suppose that I(C) is given as in case 2(b) and also that a24 ≤ a34 . Then C has Cohen–
Macaulay tangent cone at the origin if and only if

1. a2 ≤ a21 + a24 and

2. either a32 < a12 and a3 + a13 ≤ a41 +2a32 + a34 − a24 or a12 ≤ a32 and a3 + a13 ≤ a1 + a32 − a12 + a34 .

Proof. (=⇒) From Proposition 3.23 we have that condition (1) is true. From Proposition 3.24 condition (3)
is also true.
(⇐=) From Proposition 3.23 it is enough to consider a monomial N = xu2

2 xu3
3 xu4

4 , where u2 < a12 , u3 ≥ a3 ,
and u4 < a24 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P ) and
also N − P is in I(C) . Suppose that u3 ≥ a3 + a13 and let M denote either the monomial xa41

1 x2a32
2 xa34−a24

4

when a32 < a12 or the monomial xa1
1 xa32−a12

2 xa34
4 when a12 ≤ a32 . Let P = xu2

2 xu3−a3−a13
3 xu4

4 M . We have
that N − P ∈ I(C) and

deg(N) = u2 + u3 + u4 ≤ u2 + u3 + u4 + deg(M)− a3 − a13 = deg(P ).

It suffices to consider the case where u3 − a3 < a13 . Since the binomial N − P belongs to I(C) , we have
that N − P =

∑5
i=1 Hifi for some polynomials Hi ∈ K[x1, . . . , x4] . Now the monomial N is divided by the

monomial xa3
3 , so Q = −xu2+a32

2 xu3−a3
3 xu4+a34

4 is a term in the sum
∑5

i=1 Hifi and it should be canceled with
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another term of the above sum. Remark that u2 + a32 < a2 and u4 + a34 < a4 . Thus, xa13
3 xa24

4 divides −Q ,
so u3 − a3 ≥ a13 , a contradiction. □

Proposition 3.26 Suppose that I(C) is given as in case 2(b) and also that a34 < a24 . If C has Cohen–
Macaulay tangent cone then

1. a2 ≤ a21 + a24 and

2. a3 + a13 ≤ a1 + a32 − a12 + a34 .

Theorem 3.27 Suppose that I(C) is given as in case 2(b) and also that a34 < a24 . Assume that a12 ≤ a32 .
Then C has Cohen–Macaulay tangent cone at the origin if and only if

1. a2 ≤ a21 + a24 and

2. a3 + a13 ≤ a1 + a32 − a12 + a34 .

Example 3.28 Consider n1 = 813 , n2 = 1032 , n3 = 1240 , and n4 = 1835 . The toric ideal I(C) is minimally
generated by the set

G = {x16
1 − x9

2x
3
3, x

14
2 − x11

1 x3
4, x

16
3 − x5

2x
8
4, x

11
4 − x5

1x
13
3 , x5

1x
5
2 − x3

3x
3
4}.

Here a13 = a24 = 3 , a34 = 8 , a41 = 5 , a3 = 16 , and a32 = 5 < 9 = a12 . Note that a2 = 14 = a21 + a24 . We
have that a3 + a13 = 19 < 20 = a41 + 2a32 + a34 − a24 . Consequently, C has a Cohen–Macaulay tangent cone
at the origin.

Theorem 3.29 Suppose that I(C) is given as in case 3(a). Then C has Cohen–Macaulay tangent cone at the
origin if and only if a2 ≤ a21 + a23 and a3 ≤ a31 + a34 .

Proof. In this case I(C) is minimally generated by the set

G = {f1 = xa1
1 − xa12

2 xa14
4 , f2 = xa2

2 − xa21
1 xa23

3 , f3 = xa3
3 − xa31

1 xa34
4 ,

f4 = xa4
4 − xa42

2 xa43
3 , f5 = xa31

1 xa42
2 − xa23

3 xa14
4 }.

If a2 ≤ a21 + a23 and a3 ≤ a31 + a34 , then we have, from Theorem 2.10 in [1], that the curve C has Cohen–
Macaulay tangent cone at the origin. Conversely, suppose that C has Cohen–Macaulay tangent cone at the
origin. Since I(C) is generated by the indispensable binomials, every binomial fi , 1 ≤ i ≤ 5 , is indispensable of
I(C) . In particular the binomials f2 and f3 are indispensable of I(C) . If there exists a monomial N ̸= xa31

1 xa34
4

such that g = xa3
3 −N belongs to I(C) , then we can replace f3 in S by the binomials g and N−xa31

1 xa34
4 ∈ I(C) ,

a contradiction to the fact that f3 is indispensable. Thus, N = xa31
1 xa34

4 and therefore, from Theorem 1.1, we
have that a3 ≤ a31 + a34 . Similarly, we get that a2 ≤ a21 + a23 . □

Remark 3.30 Suppose that I(C) is given as in case 3(b).
(1) It holds that a1 > a12 + a14 , a2 > a23 + a24 , a3 < a31 + a32 , and a4 < a41 + a43 .
(2) If a43 ≤ a23 , then xa2+a12

2 − xa31
1 xa23−a43

3 x2a24
4 ∈ I(C) .

(3) If a14 ≤ a24 , then the binomial xa2+a12
2 − xa1

1 xa23
3 xa24−a14

4 belongs to I(C) .
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Proposition 3.31 Suppose that I(C) is given as in case 3(b). Then C has Cohen-0Macaulay tangent cone at
the origin if and only if

1. a12 + a43 ≤ a31 + a24 and

2. for every monomial M = xu2
2 x

u3

3 xu4
4 , where u2 ≥ a2 , u3 < a43 , and u4 < a14 , with u2n2+u3n3+u4n4 ∈

n1+S , there exists a monomial N with 1 ∈ supp(N) such that M−N ∈ I(C) and also deg(M) ≤ deg(N) .

Proof. In this case I(C) is minimally generated by the set

G = {f1 = xa1
1 − xa12

2 xa14
4 , f2 = xa2

2 − xa23
3 xa24

4 , f3 = xa3
3 − xa31

1 xa32
2 ,

f4 = xa4
4 − xa41

1 xa43
3 , f5 = xa31

1 xa24
4 − xa12

2 xa43
3 }.

Suppose that C has Cohen–Macaulay tangent cone at the origin. Since I(C) is generated by the indispensable
binomials, every binomial fi , 1 ≤ i ≤ 5 , is indispensable of I(C) . In particular the binomial f5 is indispensable
of I(C) . Therefore, the inequality a12 + a43 ≤ a31 + a24 holds. By Theorem 1.1 condition (2) is also true.

Conversely, from Theorem 2.6 (i), it is enough to consider a monomial M = xu2
2 xu3

3 xu4
4 , where u2 ≥ a2 ,

u3 < a3 , and u4 < a4 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P )

and also M − P is in I(C) . If u3 ≥ a43 , then we let P = xa31
1 xu2−a12

2 xu3−a43
3 xu4+a24

4 , so we have that
M − P ∈ I(C) and also deg(M) ≤ deg(P ) . Similarly, if u4 ≥ a14 , then we let P = xa1

1 xu2−a12
2 xu3

3 xu4−a14
4 , so

we have that M − P ∈ I(C) and also deg(M) < deg(P ) . If both conditions u3 < a43 and u4 < a14 hold, then
condition (2) implies that there exists a monomial N with 1 ∈ supp(N) such that M − N ∈ I(C) and also
deg(M) ≤ deg(N) . Therefore, from Theorem 2.6, C has Cohen–Macaulay tangent cone at the origin. □

The proof of the next proposition is similar to that of Proposition 3.10 and therefore it is omitted.

Proposition 3.32 Suppose that I(C) is given as in case 3(b). Assume that C has Cohen–Macaulay tangent
cone at the origin and also a43 ≤ a23 .

1. If a24 < a14 , then a2 + a12 ≤ a31 + 2a24 + a23 − a43 .

2. If a14 ≤ a24 , then a2 + a12 ≤ a1 + a23 + a24 − a14 .

Theorem 3.33 Suppose that I(C) is given as in case 3(b) and a43 ≤ a23 . Then C has Cohen–Macaulay
tangent cone at the origin if and only if

1. a12 + a43 ≤ a31 + a24 and

2. either a24 < a14 and a2 + a12 ≤ a31 +2a24 + a23 − a43 or a14 ≤ a24 and a2 + a12 ≤ a1 + a23 + a24 − a14 .

Proof. (=⇒) From Proposition 3.31 we have that conditions (1) and (2) are true. From Proposition 3.32
condition (3) is also true.
(⇐=) From Proposition 3.31 it is enough to consider a monomial N = xu2

2 xu3
3 xu4

4 , where u2 ≥ a2 , u3 < a43 ,
and u4 < a14 , with the following property: there exists at least one monomial P such that 1 ∈ supp(P ) and
also N − P is in I(C) . Suppose that u2 ≥ a2 + a12 and let M denote either the monomial xa31

1 xa23−a43
3 x2a24

4
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when a24 < a14 or the monomial xa31
1 xa23

3 xa24−a14
4 when a14 ≤ a24 . Let P = xu2−a2−a12

2 xu3
3 xu4

4 M . We have
that N − P ∈ I(C) and

deg(N) = u2 + u3 + u4 ≤ u2 + u3 + u4 + deg(M)− a2 − a12 = deg(P ).

It suffices to consider the case where u2 − a2 < a12 . Since the binomial N − P belongs to I(C) , we have
that N − P =

∑5
i=1 Hifi for some polynomials Hi ∈ K[x1, . . . , x4] . Now the monomial N is divided by the

monomial xa2
2 , so Q = −xu2−a2

2 xu3+a23
3 xu4+a24

4 is a term in the sum
∑5

i=1 Hifi and it should be canceled with
another term of the above sum. Remark that u3 + a23 < a3 and u4 + a24 < a4 . Thus, xa12

2 xa43
3 divides −Q ,

so u2 − a2 ≥ a12 , a contradiction. □

Proposition 3.34 Suppose that I(C) is given as in case 3(b) and also that a23 < a43 . If C has Cohen–
Macaulay tangent cone at the origin then

1. a12 + a43 ≤ a31 + a24 and

2. a2 + a12 ≤ a1 + a23 + a24 − a14 .

Theorem 3.35 Suppose that I(C) is given as in case 3(b) and also that a23 < a43 . Assume that a14 ≤ a24 .
Then C has Cohen–Macaulay tangent cone at the origin if and only if

1. a12 + a43 ≤ a31 + a24 and

2. a2 + a12 ≤ a1 + a23 + a24 − a14 .

4. Families of monomial curves supporting Rossi’s problem

In this section, we give some examples showing how the criteria given in the previous section can be used to
give families of monomial curves supporting Rossi’s conjecture in A4(K) .

Example 4.1 Consider the family n1 = m3 +m2 −m , n2 = m3 + 2m2 +m − 1 , n3 = m3 + 3m2 + 2m − 2 ,
and n4 = m3 +4m2 +3m− 2 for m ≥ 2 given in [1]. Let Cm be the corresponding monomial curve. The toric
ideal I(Cm) is generated by the set

Sm = {xm+3
1 − x3x

m−1
4 , xm+2

2 − xm+2
1 x4, x

m
3 − x1x

m
2 , xm

4 − x2
2x

m−1
3 ,

xm+2
1 xm−1

3 − xm
2 xm−1

4 }.

Thus, we are in case 1(a) of Remark 3.3 and it is sufficient to consider the binomial xm+2
2 − xm+2

1 x4 , which
guarantees that Cm has Cohen–Macaulay tangent cone. For each fixed m , by using the technique given in [6],
we can construct a new family of monomial curves having Cohen–Macaulay tangent cone. For m = 2 , we have
the symmetric semigroup generated by n1 = 10 , n2 = 17 , n3 = 22 , and n4 = 28 . The corresponding monomial
curve is C2 and I(C2) is minimally generated by the set

S2 = {x5
1 − x3x4, x

4
2 − x4

1x4, x
2
3 − x1x

2
2, x

2
4 − x2

2x3, x
4
1x3 − x2

2x4}.
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By the method given in [6], the semigroup generated by m1 = 10 + 6t , m2 = 17 + 9t , m3 = 22 + 6t , and
m4 = 28+ 12t (for t a nonnegative integer) is symmetric, whenever gcd(10+ 6t, 17+ 9t, 22+ 6t, 28+ 12t) = 1 .
Moreover, the toric ideal of the corresponding monomial curve is minimally generated by the set

{xt+5
1 − xt+1

3 x4, x
4
2 − x4

1x4, x
t+2
3 − xt+1

1 x2
2, x

2
4 − x2

2x3, x
4
1x3 − x2

2x4}

by the construction in [6]. Here, if t = 1 , then m1 < m2 < m3 < m4 , and we are in case 1(a) again. From
the binomial x4

2 − x4
1x4 , we deduce that the corresponding monomial curve has Cohen–Macaulay tangent cone.

If t ≥ 1 , then m2 > m3 . In this case, we interchange them to get the semigroup generated by m′
1 = 10 + 6t ,

m′
2 = 22 + 6t , m′

3 = 17 + 9t , and m′
4 = 28 + 12t with m′

1 < m′
2 < m′

3 < m′
4 . Thus, the toric ideal of the

corresponding monomial curve is generated by the set

{xt+5
1 − xt+1

2 x4, x
t+2
2 − xt+1

1 x2
3, x

4
3 − x4

1x4, x
2
4 − x2x

2
3, x

4
1x2 − x2

3x4}.

Now we are in case 3(a) of Remark 3.3 and the binomials x4
3 − x4

1x4 and xt+2
2 − xt+1

1 x2
3 guarantee that the

corresponding monomial curve has Cohen–Macaulay tangent cone. In this way, we can construct infinitely
many families of Gorenstein monomial curves having Cohen–Macaulay tangent cones. In other words, the
corresponding local rings have nondecreasing Hilbert functions supporting Rossi’s problem.

In the literature, there are no examples of noncomplete intersection Gorenstein monomial curve families
supporting Rossi’s problem, although their tangent cones are not Cohen–Macaulay. The next example gives a
family of monomial curves with the above property.

Example 4.2 Consider the family n1 = 2m + 1 , n2 = 2m + 3 , n3 = 2m2 +m − 2 , and n4 = 2m2 +m − 1 ,
where m ≥ 4 is an integer. Let Cm be the corresponding monomial curve. The toric ideal I(Cm) is minimally
generated by the binomials

xm+1
1 − x2x3, x

m
2 − x1x4, x

2
3 − xm−1

2 x4, x
2
4 − xm

1 x3, x
m
1 xm−1

2 − x3x4.

Thus, we are in Case 2(b) of Remark 3.3. Consider the binomial xm
2 − x1x4 . Since m ≥ 4 , we have, from

Theorem 3.23, that the tangent cone of Cm is not Cohen–Macaulay. It is enough to show that the Hilbert
function of K[x1, x2, x3, x4]/I(Cm)∗ is nondecreasing. By a standard basis computation, I(Cm)∗ is generated
by the set

{x2x3, x
2
3, x1x4, x3x4, x

2
4, x

m
2 x4, x

m+2
1 x3, x

2m+1
2 }.

Let
J0 = I(Cm)∗, J1 = ⟨x2

3, x1x4, x3x4, x
2
4, x

m
2 x4, x

m+2
1 x3, x

2m+1
2 ⟩,

J2 = ⟨x2
3, x3x4, x

2
4, x

m
2 x4, x

m+2
1 x3, x

2m+1
2 ⟩, J3 = ⟨x2

3, x
2
4, x

m
2 x4, x

m+2
1 x3, x

2m+1
2 ⟩.

Note that Ji = ⟨Ji+1, qi⟩ , where q0 = x2x3 , q1 = x1x4 , and q2 = x3x4 . We apply [3, Proposition 2.2] to the
ideal Ji for 0 ≤ i ≤ 2 , so

p(Ji) = p(Ji+1)− t2p(Ji+1 : qi). (1)

In this case, we have J1 : (x2x3) = ⟨x3, x4, x
m+2
1 , x2m

2 ⟩ , J2 : (x1x4) = ⟨x3, x4, x
m
2 ⟩ , and J3 : (x3x4) =

⟨x3, x4, x
m+2
1 , xm

2 ⟩ . Since
K[x1, x2, x3, x4]/⟨x2

3, x
m+2
1 x3, x

2
4, x

m
2 x4, x

2m+1
2 ⟩
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is isomorphic to
K[x1, x3]/⟨x2

3, x
m+2
1 x3⟩ ⊗K[x2, x4]/⟨x2

4, x
m
2 x4, x

2m+1
2 ⟩,

we obtain
p(J3) = (1− t)3(1 + t− tm+3)(1 + 2t+ · · ·+ 2tm + tm+1 + · · ·+ t2m).

Substituting all these recursively in Eq. (1), we obtain that the Hilbert series of K[x1, x2, x3, x4]/J0 is

1 + 3t+ t2 + t3 + · · ·+ tm + tm+2 + tm+4 + tm+5 + · · ·+ t2m

1− t
.

Since the numerator does not have any negative coefficients, the Hilbert function is nondecreasing. In this
way, we have shown that the Hilbert function of the local ring corresponding to the noncomplete intersection
Gorenstein monomial curve Cm is nondecreasing for m ≥ 4 .
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