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Abstract: We introduce three types of helices in three-dimensional Lie groups with left-invariant metric and give their
geometrical description similar to that of Lancret. We generalize the results known for the case of three-dimensional Lie

groups with bi-invariant metric.

Key words: Slant helix, Lancret’s theorem, curves in Lie groups

1. Introduction

Lety be a C3-regular naturally parameterized curve in the Euclidean space E®. Denote by 7', N, and B the

standard Frenet frame of . The generalized helix can be defined in one of the following equivalent ways:
o T makes a constant angle with a fixed constant unit vector field on E3;
e N is orthogonal to a fixed constant unit vector field on E3;
o B makes a constant angle with a fixed constant unit vector field on E3;

o the ratio of torsion s and curvature k is constant (the Lancret theorem), i.e.

” ¢
— = Cconst.
k

The Euclidean space E? endowed with the usual cross-product belongs to the class of three-dimensional
Lie groups G with left-invariant metric. The invariant unit vector field £ on G is a natural analog of the
constant unit vector field on E3. It is natural to define three types of generalized helices in G by one of the first

three conditions and characterize them in terms similar to the fourth one. In the case of three-dimensional Lie
groups with biinvariant metric the problem was considered in [2] and [8]. The constant angle curve was defined

by the property that the tangent vector field 7" makes a constant angle with a fixed invariant unit vector field

&. As a result, in [2], the following assertion was proved :

Let v be a parameterized curve in a three-dimensional Lie group with biinvariant metric. Denote by

<-7 > the corresponding scalar product. The mecessary and sufficient condition that there is a bitnvariant unit
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vector field & such that <T,§> = const is

where »g = 3([T,N],B) and |, ] is the Lie bracket.

A slant heliz was defined as a curve for which the principal normal vector field makes a constant angle

with a fixed invariant direction [8] and the following assertion was proved:

Let v be a parameterized curve in a three-dimensional Lie group with biinvariant metric. The necessary

and sufficient condition that there is bitnvariant unit vector field & such that <N,§> = const is

»#(H%+1)3

= const, 1.2
= (12)

n — g
k
Observe that only two of three dimensional Lie groups can be endowed with the biinvariant metric. In

where H =

and H:‘Z—H.
S

this paper we define three types of helices on 3-dimensional Lie groups with left-invariant metric and generalize

the above-mentioned assertions. The main results are Theorems 2.4, 2.6, and 2.8.

2. Generalized helices in Lie groups with left-invariant metric

Let G be a three-dimensional Lie group with left-invariant metric <~, > and let g denote the Lie algebra for G

which consists of the all smooth vector fields of G invariant under left translation.

Definition 2.1 Let G be a three-dimensional Lie group with left-invariant metric. Denote by <,> the
corresponding scalar product. Let v be a parameterized curve with the Frenet frame T,N, and B. The

curve 7y is called the generalized helix of the first, second, or third kind with axis & if there is a left-invariant

along v unit vector field & such that <T,§> = const, <N,§> = const, or <B,§> = const, respectively.

There are two classes of three-dimensional Lie groups: unimodular and nonunimodular. In the case of the
unimodular group, there is a (positively oriented) orthonormal frame of left-invariant vector fields {ey, e, e3}
such that the brackets satisfy [7]

le1,e2] = Aze3, [e1,e3] = Aaea, [ez,e3] = Arer.
The constants \; are called structure constants. The constants
1
i = 5()\1 + A2+ A3) — N\

are called connection coefficients. In the case of the nonunimodular group, there is an orthonormal frame
{e1, ea,e3} such that [7]

le1,e2] = aep + Bes, [e1,e3] = —Pea + dez, ez, e3] = 0.
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Using the Koszul formula we can easily find the covariant derivatives V., e; that can be put in the tables

Vv €1 €9 €3 AV €1 €9 €3
el 0 paes | —pier and er | 0 | Bes | —Pes
ex | —uees 0 o€l ey | —aey | aeq 0
es | psex | —psep 0 es | —dez | 0 deq

in unimodular and nonunimodular cases, respectively.
In the three-dimensional case one can naturally define the cross-product by e; X es = e3, ex X e3 =

e1, e3 X e; =ey. We introduce the following affine transformation:

i X'ter + poX2ey + uzX3es  for unimodular group,

u(X) = (2.1)
BXler +6X3es — aX?es for nonunimodular group.
Then for both groups we have V., er = u(e;) x e; and hence
Vxer = p(X) X eg (2.2)

for arbitrary vector field X .
Let ~v(s) be a naturally parameterized curve on the group and T = 4 be the unit tangent vector field.

Using (2.2), for arbitrary vector field £ oy we have

Vré =TV, (¥ er) = T (ei(€¥))er, + Ve, =
k

T(ER)ex +Eu(T) X ex) = ey 4 p(T) x € = E¥ep 4 p(T) x € (23)

In what follows, we call the vector field § = ‘{Tiiei the dot-derivative of the vector field ¢ along the curve ~.

Observe that if ¢ is left-invariant along ~, then £ = 0 and vice versa. Since the frame (e1,es3,e3) is left-

invariant, the dot-derivative is subject to the usual Leibnitz rule with respect to scalar and cross-products, i.e.

(&m) = (&) + (&), (Exm) =Exn+Ex.
Let T, N, and B be the vectors of the standard Frenet frame of «. Using (2.3), we get

VT =T +u(T)xT, VyB=DB+uT)xB, VyN=N+uT)xN.

Assuming ko =| T' |# 0, we can define a new frame {r,v, 8} along the curve ~ by

In what follows we call (2.4) the dot-Frenet frame. Set s = |3| by definition.
Proposition 2.2 The dot-Frenet frame {1,v, 8} satisfies the dot-Frenet formulas, namely

T = kol/, V= 7]{07' + %Oﬂ, ﬁ = —xyl. (25)



YAMPOLSKY and OPARIY/Turk J Math

The proof is straightforward and trivial. In what follows we call kg and 3¢ dot-curvature and dot-torsion,

respectively.

The Frenet and the dot-Frenet frames are connected by
7=T, v=cosaN +sinaB, f=-sinaN +cosaB, (2.6)
where a = a(s) is the angle function. The inverse transformation is of the form
T=7, N=cosav—sinaf, B=sinav-+cosafp. (2.7)
Proposition 2.3 The transformation u(T) can be given by
w(T) = e+ & —500)T + kosina N + (k — ko cosa) B (2.8)
with respect to the Frenet frame {T, N, B}.
Proof The decomposition has evident form
u(T) = (u(T), TYT + (u(T), NIN + (u(T), B)B.
The first Frenet formula and (2.5) yield
VeT =T+ uw(T) x T = kov + u(T) x T = kN

Multiplying this relation by N, we get k = ko cos a4 (u(T) x T, N). Observe that (u(T) x T,N) = (u(T),T x
N) = {(u(T), B). Thus, we get k = kocosa + (u(T), B) and hence (u(T), B) =k — ko cos a.

By the second Frenet formula,
VN =N + u(T) x N = —kT + xB.

Calculating the dot-derivative of N in decomposition (2.7) and applying (2.5), we find

N = &(—sinav — cos aff) + cos a(—koT + 20f3) — sin a(—v) =

—aB 4 sp(Beosa+vsina) — kgTcosa = (=& + »9)B — kgcosaT, (2.9)

so we have (—d& + s)B — kgcosaT + u(T) x N = —kT + B and hence » = —& + s + (u(T) x N,B) =
—&+ 7 + </,L(T),T>. Thus, <,u(T),T> =%+ & — .
By the third Frenet formula,

VoB =B+ u(T) x B=—xN.

Calculating the dot-derivative of B in decomposition (2.7) and applying (2.5), we find

B = d(cos av — sin ) + sin a(—koT + 203) — cos a(—sor) =

— &N + s(Bsina —veosa) — koTsina = (& — s9)N — kosinaT,
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so we have —»N = (& — 59)N — kgsinaT + u(T) x B and hence
0= —kosina+ (u(T) x B, T) = —kgsina + (u(T), N).
Thus, </1,(T), N> = ko sina. Collecting the results, we get
w(T) = (34 & — 30)T + kosina N + (k — kg cos @) B,

as was claimed. O

Define a group-curvature kg and a group-torsion g of a curve by
ko =l W(T) x T, 3 =| u(T) x B,

respectively. As a consequence of (2.8), the dot-curvature and the dot-torsion of a curve can be expressed in

terms of the group-curvature k¢, the group-torsion »¢ of a curve, and the angle function a by
k% = (k — ko)? + 4kkosin®(a/2), »% = kZsina® + (3 — 39 + @)%

Theorem 2.4 The regular curve v in three-dimensional group Lie G with left-invariant metric is the generalized
heliz of the first kind if and only if

0 _ cotd (ko #0),
ko

where 0 = const.

Proof If v:I C R — G is a parameterized helix of the first kind, then there exists a unit invariant vector

field £ such that <T,§> = cosf, where 6§ = const. Calculating the dot-derivative we find <T, §> + <T,$> =0.
As f =0, we get k0<y,§> = 0. Hence, <1/,§> = 0. The next dot-derivative yields < — kot + %Oﬂ,§> =0 or

—kg cos @ + 3 sinf = 0 and hence % = cot 6.
0

Conversely, suppose that ? = cot 0 = const. Put £ = cos 0T + sinfB. Evidently, <T, §> = cos . Then
0

& = kovcost + (—susinb) = v(kgcos — s sind) = 0 and hence & is left-invariant. O

Remark 2.5 If the metric is biinvariant, then py = pe = p3 := p and hence u(T) = pT. As a consequence,
a=0, kg =0, k=ko, »xg = »— s, and we get (1.1).

Theorem 2.6 A regular curve 7 in three-dimensional group Lie G with left-invariant metric is the generalized
heliz of the second kind if and only if

ko cos (H? +1)3
H — kgsina(H? 4 1)

= tand,

%0—(54

where H = .
ko cos
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Proof If v:I CR — G is a parameterized helix of the second kind, then there is a unit invariant vector field

& such that <N7 §> — cos @, where 0 = const. As & =0, then using (2.7) and dot-Frenet formulas we get

(=6 + 20)(B, &) — ko cos a(T, ) = 0.

Hence,
6= 2 p.0) = H(B.6) 210)
where H = :chsa Therefore, <T,§> = H<B,§> + H<B,§>. Formulas (2.5) and (2.7) imply ko(v,&) =
0

H(B, &) + H(N(& — 30) — koT'sine, €). Using (2.6) we get
ko(N cosa + Bsina, &) = H(B, &) + H(& — 50)(N, &) — koH sin (T, ).
By replacing <T,§ > in accordance with (2.10) we get
ko cos acos B + kg Sina<B,§> = H<B,§> — H?%ko cos accos O — ko sinaH2<B,§>.
Thus, kocosacosf(1 + H?) = <B,§>(H — koH?sin o — kg sin «). It means that

ko cosacos (1 + H?)

B,¢) = : 2.11
(B.€) H — kosina(l + H?) @11)
In combination with (2.10) we get
H 1+ H? 1+ H?
5:( - ko cosa(l + H) T+ N+ .koCOSQ( + i) B>cos€.
H — kpsina(l + H?) H — kosina(l + H?)
Since [£] =1,
(H2 .k;gcosza(1+H2)2 14 .kgcos2a(1+H2)2 > 1 .
(H — kosina(1 + H?))? (H — kosina(1 + H?))? cos?
After simple transformation we get
k H?+1)2
FocosalH +1)> g (2.12)
H — kosina(H?2 +1)
as was required. Moreover, (2.12) implies
13 < a sin 071" + cos 0N + = i QB) (2.13)
= | ——=sin s ———sin : :
V1+ H? V1+ H?

Conversely, take ¢ given by (2.13) with 6 = const and suppose (2.12) is fulfilled. Then

(a) (&N)=cos; (b) (£,B)= sinf; (c) (§,7T) = ———==sind.

1
V14 H?
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The dot-derivative of (a) yields <§, N> + <§, N> = 0. Using (2.7), we obtain

(E,N) + (—i + 30) (€, B) — ko cosa(€, T) = 0

(§,N) +kocosa (H(¢,B) — (¢,T)) = 0.

From (2.10) it follows that <5,N> =0.
By using (2.7) and (2.12), the dot-derivative of (b) yields

(£,B) = %(g,m —(&,B) = d% (11H2 sin9> + kosina(T, &) + Hkg cos a{N, &) =

HH
m sin + ko sina<T,§> + Hkycosacosd.

We can express H from (2.11) and then, by using (c), we continue with

. k‘ocosoz(l—i-HQ)% ] ) .
sin tand + kosina(l + H?) +k051na<T,§>+Hkocosacosn9:
n

koH si in @ koH si in 6
(—Hkocosacosﬁ— ol S @S )+ 017 S A S + Hkgcosacosf = 0.
V1+ H? 1+ H?

In a similar way, by using (2.6), (2.7), and (2.12), we get

. d . d H
<£,T> = £<£,T> — <€7T> = % (m Sin9> —+ k0<COSO[N+SinOéB,£> =
. H? H 1
-H - + - | sinf@ — kg cos acos @ — kg sin asin  ————.
(1+H?)2 (1+H?)= 1+ H?

Again, we can express H from (2.12) and continue with

1 sa(l+ H?):
(k‘ocosa( + )+k0sina(1+H2)>—

<f,T>:sin9(1+H2)% —

ko sin asin 9)

1
—_— = —k Cosacosﬁ—i
1+t 02 ( 0 Vit H?

— ko cosacosf — kg sin o sin  ———
1+ H?

ko cosacos @ — kg sin aesin 0

Since <§, N> =0, <S,B> =0, and <§, T> =0, we have £ = 0 and hence ¢ is left-invariant.

Remark 2.7 If the metric is biinvariant, then « =0, kg =0, k = ko, g = » — 30, and we get (1.2).
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Theorem 2.8 A regqular curve v in three-dimensional group Lie G with left-invariant metric is a generalized
heliz of the third kind if and only if

kosino(Q? +1)2
Q — kocosa(Q? +1)

= tan#,

d—%o

where Q = = —Hcota.

ko sin a

Proof If v:I C R — G is a parameterized helix of the third kind, then there exists a unit invariant vector

field £ such that <B,§> = cos 6, where 6 is constant. Since 5 =0, we have (& — %0)<N7§> — ko sin a<T7§> =0,
SO
o O( —

(T.¢) (N,€) = Q(N,¢), (2.14)

ko sin «

d*%o

ko sin a

where we put @ = . Calculating the dot-derivative, we get

(T,6) = Q(N,€) + Q(N,¢).
Applying (2.5) and (2.9), we continue with
ko(v, €) = Q(N, &) + Q30 — &) (B, &) — Qko cos a(T, ).
Using (2.6), we find
ko(N cosa + Bsina, £) = Q(N,€) + Q(N (30 — &) — koT cos a, £).
Replacing (T, &) by (2.14), we continue with
kg cos a{ N, €) + kg sinacos 0 = Q(N, &) — Q%ko cos O sina — Q*kg cos (T, ).

Hence,

ko cos O sin a(1l + Q?) = <N,§>(Q — koQ? cos o — kg cos av).

Thus,
kosina(1 + Q?)
Q — kocosa(l+Q2)

(N.€) =

Since <T7§> = Q<N,§>, we get

€=

<Q( kosina(l + Q?) T4 kosina(1 + Q?)

: : N+B) cosf.
Q — kocosa(l + Q?)) (Q — kgcosa(l +Q2))

The condition [¢] =1 implies

<Q2 k2 sin? (1 + Q?)? 14 k2 sin® a(1 + Q?)? ) 1
(Q — kg cosa(l + Q2))? (Q — kocosa(l + H?2))2)  cos?f’
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After transformations we get

3

kosina(Q? +1)3

: = tané, (2.15)
Q — kocosa(Q? +1)
as was claimed.
By using (2.15) we can decompose ¢ as follows:
13 @ in 67T + = in0N + cos 0B (2.16)
= ———=S11 —F—= 511 COS . .
VI1+Q? V1t @2

Conversely, take the vector field given by (2.16) with 6 = const and suppose (2.15) is fulfilled. By the

same procedure as in the proof of Theorem 2.6, one can check that £ is left-invariant and <B, §> =cosf. O

3. Conclusion

We have defined three classes of slant helices in three-dimensional Lie groups with left invariant metric and

obtained their description in terms of new geometric invariants of the curve. The results generalize the

corresponding descriptions for helices in Euclidean 3-space and in 3-dimensional Lie groups with biinvariant

metric.
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