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Abstract: We introduce three types of helices in three-dimensional Lie groups with left-invariant metric and give their
geometrical description similar to that of Lancret. We generalize the results known for the case of three-dimensional Lie
groups with bi-invariant metric.
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1. Introduction
Letγ be a C3 -regular naturally parameterized curve in the Euclidean space E3 . Denote by T , N , and B the
standard Frenet frame of γ . The generalized helix can be defined in one of the following equivalent ways:

• T makes a constant angle with a fixed constant unit vector field on E3 ;

• N is orthogonal to a fixed constant unit vector field on E3 ;

• B makes a constant angle with a fixed constant unit vector field on E3 ;

• the ratio of torsion κ and curvature k is constant (the Lancret theorem), i.e.

κ
k

= const.

The Euclidean space E3 endowed with the usual cross-product belongs to the class of three-dimensional
Lie groups G with left-invariant metric. The invariant unit vector field ξ on G is a natural analog of the
constant unit vector field on E3 . It is natural to define three types of generalized helices in G by one of the first
three conditions and characterize them in terms similar to the fourth one. In the case of three-dimensional Lie
groups with biinvariant metric the problem was considered in [2] and [8]. The constant angle curve was defined
by the property that the tangent vector field T makes a constant angle with a fixed invariant unit vector field
ξ . As a result, in [2], the following assertion was proved :

Let γ be a parameterized curve in a three-dimensional Lie group with biinvariant metric. Denote by⟨
·, ·
⟩

the corresponding scalar product. The necessary and sufficient condition that there is a biinvariant unit
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vector field ξ such that
⟨
T, ξ

⟩
= const is

κ − κG

k
= const, (1.1)

where κG = 1
2

⟨
[T,N ], B

⟩
and [ , ] is the Lie bracket.

A slant helix was defined as a curve for which the principal normal vector field makes a constant angle
with a fixed invariant direction [8] and the following assertion was proved:

Let γ be a parameterized curve in a three-dimensional Lie group with biinvariant metric. The necessary
and sufficient condition that there is biinvariant unit vector field ξ such that

⟨
N, ξ

⟩
= const is

κ(H2 + 1)
3
2

Ḣ
= const, (1.2)

where H =
κ − κG

k
and Ḣ = dH

ds .

Observe that only two of three dimensional Lie groups can be endowed with the biinvariant metric. In
this paper we define three types of helices on 3-dimensional Lie groups with left-invariant metric and generalize
the above-mentioned assertions. The main results are Theorems 2.4, 2.6, and 2.8.

2. Generalized helices in Lie groups with left-invariant metric

Let G be a three-dimensional Lie group with left-invariant metric
⟨
·, ·
⟩

and let g denote the Lie algebra for G

which consists of the all smooth vector fields of G invariant under left translation.

Definition 2.1 Let G be a three-dimensional Lie group with left-invariant metric. Denote by
⟨
·, ·
⟩

the
corresponding scalar product. Let γ be a parameterized curve with the Frenet frame T,N , and B . The
curve γ is called the generalized helix of the first, second, or third kind with axis ξ if there is a left-invariant
along γ unit vector field ξ such that

⟨
T, ξ

⟩
= const ,

⟨
N, ξ

⟩
= const , or

⟨
B, ξ

⟩
= const , respectively.

There are two classes of three-dimensional Lie groups: unimodular and nonunimodular. In the case of the
unimodular group, there is a (positively oriented) orthonormal frame of left-invariant vector fields {e1, e2, e3}
such that the brackets satisfy [7]

[e1, e2] = λ3 e3, [e1, e3] = λ2 e2, [e2, e3] = λ1 e1.

The constants λi are called structure constants. The constants

µi =
1

2
(λ1 + λ2 + λ3)− λi

are called connection coefficients. In the case of the nonunimodular group, there is an orthonormal frame
{e1, e2, e3} such that [7]

[e1, e2] = αe2 + βe3, [e1, e3] = −βe2 + δe3, [e2, e3] = 0.
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Using the Koszul formula we can easily find the covariant derivatives ∇eiej that can be put in the tables

∇ e1 e2 e3

e1 0 µ1e3 −µ1e2
e2 −µ2e3 0 µ2e1
e3 µ3e2 −µ3e1 0

and

∇ e1 e2 e3

e1 0 βe3 −βe2
e2 −αe2 αe1 0
e3 −δe3 0 δe1

in unimodular and nonunimodular cases, respectively.
In the three-dimensional case one can naturally define the cross-product by e1 × e2 = e3, e2 × e3 =

e1, e3 × e1 = e2. We introduce the following affine transformation:

µ(X) =

[
µ1X

1e1 + µ2X
2e2 + µ3X

3e3 for unimodular group,

βX1e1 + δX3e2 − αX2e3 for nonunimodular group.
(2.1)

Then for both groups we have ∇eiek = µ(ei)× ek and hence

∇Xek = µ(X)× ek (2.2)

for arbitrary vector field X .
Let γ(s) be a naturally parameterized curve on the group and T = γ̇ be the unit tangent vector field.

Using (2.2), for arbitrary vector field ξ ◦ γ we have

∇T ξ = T i∇ei(ξ
kek) = T i(ei(ξ

k))ek + ξk∇T ek =

T (ξk)ek + ξkµ(T )× ek) =
dξk

ds
ek + µ(T )× ξ = ξ̇kek + µ(T )× ξ. (2.3)

In what follows, we call the vector field ξ̇ = dξi

ds ei the dot-derivative of the vector field ξ along the curve γ .

Observe that if ξ is left-invariant along γ , then ξ̇ = 0 and vice versa. Since the frame (e1, e3, e3) is left-
invariant, the dot-derivative is subject to the usual Leibnitz rule with respect to scalar and cross-products, i.e.

˙⟨ξ, η⟩ = ⟨ξ̇, η⟩+ ⟨ξ, η̇⟩, ˙(ξ × η) = ξ̇ × η + ξ × η̇.

Let T,N , and B be the vectors of the standard Frenet frame of γ . Using (2.3), we get

∇TT = Ṫ + µ(T )× T, ∇TB = Ḃ + µ(T )×B, ∇TN = Ṅ + µ(T )×N.

Assuming k0 =| Ṫ |≠ 0 , we can define a new frame {τ, ν, β} along the curve γ by

τ = T, ν =
1

k0
τ̇ , β = τ × ν. (2.4)

In what follows we call (2.4) the dot-Frenet frame. Set κ0 = |β̇| by definition.

Proposition 2.2 The dot-Frenet frame {τ, ν, β} satisfies the dot-Frenet formulas, namely

τ̇ = k0ν, ν̇ = −k0τ + κ0β, β̇ = −κ0ν. (2.5)
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The proof is straightforward and trivial. In what follows we call k0 and κ0 dot-curvature and dot-torsion,
respectively.

The Frenet and the dot-Frenet frames are connected by

τ = T, ν = cosαN + sinαB, β = − sinαN + cosαB, (2.6)

where α = α(s) is the angle function. The inverse transformation is of the form

T = τ, N = cosαν − sinαβ, B = sinαν + cosαβ. (2.7)

Proposition 2.3 The transformation µ(T ) can be given by

µ(T ) = (κ + α̇− κ0)T + k0 sinαN + (k − k0 cosα)B (2.8)

with respect to the Frenet frame {T,N,B} .

Proof The decomposition has evident form

µ(T ) =
⟨
µ(T ), T

⟩
T +

⟨
µ(T ), N

⟩
N +

⟨
µ(T ), B

⟩
B.

The first Frenet formula and (2.5) yield

∇TT = Ṫ + µ(T )× T = k0ν + µ(T )× T = kN.

Multiplying this relation by N , we get k = k0 cosα+
⟨
µ(T )×T,N

⟩
. Observe that

⟨
µ(T )×T,N

⟩
=
⟨
µ(T ), T ×

N
⟩
=
⟨
µ(T ), B

⟩
. Thus, we get k = k0 cosα+

⟨
µ(T ), B

⟩
and hence

⟨
µ(T ), B

⟩
= k − k0 cosα.

By the second Frenet formula,

∇TN = Ṅ + µ(T )×N = −kT + κB.

Calculating the dot-derivative of N in decomposition (2.7) and applying (2.5), we find

Ṅ = α̇(− sinαν − cosαβ) + cosα(−k0τ + κ0β)− sinα(−κ0ν) =

− α̇B + κ0(β cosα+ ν sinα)− k0τ cosα = (−α̇+ κ0)B − k0 cosαT, (2.9)

so we have (−α̇ + κ0)B − k0 cosαT + µ(T ) × N = −kT + κB and hence κ = −α̇ + κ0 +
⟨
µ(T ) × N,B

⟩
=

−α̇+ κ0 +
⟨
µ(T ), T

⟩
. Thus,

⟨
µ(T ), T

⟩
= κ + α̇− κ0.

By the third Frenet formula,

∇TB = Ḃ + µ(T )×B = −κN.

Calculating the dot-derivative of B in decomposition (2.7) and applying (2.5), we find

Ḃ = α̇(cosαν − sinαβ) + sinα(−k0τ + κ0β)− cosα(−κ0ν) =

− α̇N + κ0(β sinα− ν cosα)− k0τ sinα = (α̇− κ0)N − k0 sinαT,
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so we have −κN = (α̇− κ0)N − k0 sinαT + µ(T )×B and hence

0 = −k0 sinα+
⟨
µ(T )×B, T

⟩
= −k0 sinα+

⟨
µ(T ), N

⟩
.

Thus,
⟨
µ(T ), N

⟩
= k0 sinα. Collecting the results, we get

µ(T ) = (κ + α̇− κ0)T + k0 sinαN + (k − k0 cosα)B,

as was claimed. 2

Define a group-curvature kG and a group-torsion κG of a curve by

kG =| µ(T )× T |, κG =| µ(T )×B |,

respectively. As a consequence of (2.8), the dot-curvature and the dot-torsion of a curve can be expressed in
terms of the group-curvature kG , the group-torsion κG of a curve, and the angle function α by

k2G = (k − k0)
2 + 4kk0 sin2(α/2), κ2

G = k20 sinα2 + (κ − κ0 + α̇)2.

Theorem 2.4 The regular curve γ in three-dimensional group Lie G with left-invariant metric is the generalized
helix of the first kind if and only if

κ0

k0
= cot θ (k0 ̸= 0),

where θ = const .

Proof If γ : I ⊂ R → G is a parameterized helix of the first kind, then there exists a unit invariant vector
field ξ such that

⟨
T, ξ

⟩
= cos θ, where θ = const . Calculating the dot-derivative we find

⟨
Ṫ , ξ

⟩
+
⟨
T, ξ̇

⟩
= 0.

As ξ̇ = 0 , we get k0
⟨
ν, ξ
⟩
= 0 . Hence,

⟨
ν, ξ
⟩
= 0 . The next dot-derivative yields

⟨
− k0τ + κ0β, ξ

⟩
= 0 or

−k0 cos θ + κ0 sin θ = 0 and hence κ0

k0
= cot θ.

Conversely, suppose that κ0

k0
= cot θ = const. Put ξ = cos θT + sin θB . Evidently,

⟨
T, ξ

⟩
= cos θ. Then

ξ̇ = k0ν cos θ + (−κ0ν sin θ) = ν(k0 cos θ − κ0 sin θ) = 0 and hence ξ is left-invariant. 2

Remark 2.5 If the metric is biinvariant, then µ1 = µ2 = µ3 := µ and hence µ(T ) = µT . As a consequence,
α = 0 , kG = 0, k = k0 , κG = κ − κ0 , and we get (1.1).

Theorem 2.6 A regular curve γ in three-dimensional group Lie G with left-invariant metric is the generalized
helix of the second kind if and only if

k0 cosα(H2 + 1)
3
2

Ḣ − k0 sinα(H2 + 1)
= tan θ,

where H =
κ0 − α̇

k0 cosα .
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Proof If γ : I ⊂ R → G is a parameterized helix of the second kind, then there is a unit invariant vector field
ξ such that

⟨
N, ξ

⟩
= cos θ , where θ = const . As ξ̇ = 0 , then using (2.7) and dot-Frenet formulas we get

(−α̇+ κ0)
⟨
B, ξ

⟩
− k0 cosα

⟨
T, ξ

⟩
= 0.

Hence, ⟨
T, ξ

⟩
=

κ0 − α̇

k0 cosα
⟨
B, ξ

⟩
= H

⟨
B, ξ

⟩
, (2.10)

where H =
κ0 − α̇

k0 cosα . Therefore,
⟨
Ṫ , ξ

⟩
= Ḣ

⟨
B, ξ

⟩
+ H

⟨
Ḃ, ξ

⟩
. Formulas (2.5) and (2.7) imply k0

⟨
ν, ξ
⟩
=

Ḣ
⟨
B, ξ

⟩
+H

⟨
N(α̇− κ0)− k0T sinα, ξ

⟩
. Using (2.6) we get

k0
⟨
N cosα+B sinα, ξ

⟩
= Ḣ

⟨
B, ξ

⟩
+H(α̇− κ0)

⟨
N, ξ

⟩
− k0H sinα

⟨
T, ξ

⟩
.

By replacing
⟨
T, ξ

⟩
in accordance with (2.10) we get

k0 cosα cos θ + k0 sinα
⟨
B, ξ

⟩
= Ḣ

⟨
B, ξ

⟩
−H2k0 cosα cos θ − k0 sinαH2

⟨
B, ξ

⟩
.

Thus, k0 cosα cos θ(1 +H2) =
⟨
B, ξ

⟩
(Ḣ − k0H

2 sinα− k0 sinα). It means that

⟨
B, ξ

⟩
=

k0 cosα cos θ(1 +H2)

Ḣ − k0 sinα(1 +H2)
. (2.11)

In combination with (2.10) we get

ξ =

(
Hk0 cosα(1 +H2)

Ḣ − k0 sinα(1 +H2)
T +N +

k0 cosα(1 +H2)

Ḣ − k0 sinα(1 +H2)
B

)
cos θ.

Since |ξ| = 1 , (
H2 k20 cos2 α(1 +H2)2

(Ḣ − k0 sinα(1 +H2))2
+ 1 +

k20 cos2 α(1 +H2)2

(Ḣ − k0 sinα(1 +H2))2

)
=

1

cos2 θ .

After simple transformation we get

k0 cosα(H2 + 1)
3
2

Ḣ − k0 sinα(H2 + 1)
= tan θ, (2.12)

as was required. Moreover, (2.12) implies

ξ =

(
H√

1 +H2
sin θT + cos θN +

1√
1 +H2

sin θB

)
. (2.13)

Conversely, take ξ given by (2.13) with θ = const and suppose (2.12) is fulfilled. Then

(a)
⟨
ξ,N

⟩
= cos θ; (b)

⟨
ξ,B

⟩
=

1√
1 +H2

sin θ; (c)
⟨
ξ, T

⟩
=

H√
1 +H2

sin θ.
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The dot-derivative of (a) yields
⟨
ξ̇, N

⟩
+
⟨
ξ, Ṅ

⟩
= 0. Using (2.7), we obtain

⟨
ξ̇, N

⟩
+ (−α̇+ κ0)

⟨
ξ,B

⟩
− k0 cosα

⟨
ξ, T

⟩
= 0

or ⟨
ξ̇, N

⟩
+ k0 cosα

(
H
⟨
ξ,B

⟩
−
⟨
ξ, T

⟩)
= 0.

From (2.10) it follows that
⟨
ξ̇, N

⟩
= 0 .

By using (2.7) and (2.12), the dot-derivative of (b) yields

⟨
ξ̇, B

⟩
=

d

ds

⟨
ξ,B

⟩
−
⟨
ξ, Ḃ

⟩
=

d

ds

(
1√

1 +H2
sin θ

)
+ k0 sinα

⟨
T, ξ

⟩
+Hk0 cosα

⟨
N, ξ

⟩
=

− ḢH

(1 +H2)
3
2

sin θ + k0 sinα
⟨
T, ξ

⟩
+Hk0 cosα cos θ.

We can express Ḣ from (2.11) and then, by using (c), we continue with

⟨
ξ̇, B

⟩
= − H

(1 +H2)
3
2

sin θ

(
k0 cosα(1 +H2)

3
2

tan θ
+ k0 sinα(1 +H2)

)
+ k0 sinα

⟨
T, ξ

⟩
+Hk0 cosα cos θ =

(
−Hk0 cosα cos θ − k0H sinα sin θ√

1 +H2

)
+

k0H sinα sin θ√
1 +H2

+Hk0 cosα cos θ = 0.

In a similar way, by using (2.6), (2.7), and (2.12), we get

⟨
ξ̇, T

⟩
=

d

ds

⟨
ξ, T

⟩
−
⟨
ξ, Ṫ

⟩
=

d

ds

(
H√

1 +H2
sin θ

)
+ k0

⟨
cosαN + sinαB, ξ

⟩
=(

−Ḣ
H2

(1 +H2)
3
2

+
Ḣ

(1 +H2)
1
2

)
sin θ − k0 cosα cos θ − k0 sinα sin θ

1√
1 +H2

.

Again, we can express Ḣ from (2.12) and continue with

⟨
ξ̇, T

⟩
= sin θ

1

(1 +H2)
3
2

(
k0 cosα(1 +H2)

3
2

tan θ
+ k0 sinα(1 +H2)

)
−

k0 cosα cos θ − k0 sinα sin θ
1√

1 +H2
=

(
−k0 cosα cos θ − k0 sinα sin θ√

1 +H2

)
− k0 cosα cos θ − k0 sinα sin θ

1√
1 +H2

= 0.

Since
⟨
ξ̇, N

⟩
= 0 ,

⟨
ξ̇, B

⟩
= 0 , and

⟨
ξ̇, T

⟩
= 0 , we have ξ̇ = 0 and hence ξ is left-invariant.

2

Remark 2.7 If the metric is biinvariant, then α = 0 , kG = 0, k = k0 , κG = κ − κ0 , and we get (1.2).
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Theorem 2.8 A regular curve γ in three-dimensional group Lie G with left-invariant metric is a generalized
helix of the third kind if and only if

k0 sinα(Q2 + 1)
3
2

Q̇− k0 cosα(Q2 + 1)
= tan θ,

where Q =
α̇− κ0

k0 sinα
= −H cotα .

Proof If γ : I ⊂ R → G is a parameterized helix of the third kind, then there exists a unit invariant vector
field ξ such that

⟨
B, ξ

⟩
= cos θ, where θ is constant. Since ξ̇ = 0 , we have (α̇−κ0)

⟨
N, ξ

⟩
− k0 sinα

⟨
T, ξ

⟩
= 0,

so ⟨
T, ξ

⟩
=

α̇− κ0

k0 sinα

⟨
N, ξ

⟩
= Q

⟨
N, ξ

⟩
, (2.14)

where we put Q =
α̇− κ0

k0 sinα
. Calculating the dot-derivative, we get

⟨
Ṫ , ξ

⟩
= Q̇

⟨
N, ξ

⟩
+Q

⟨
Ṅ , ξ

⟩
.

Applying (2.5) and (2.9), we continue with

k0
⟨
ν, ξ
⟩
= Q̇

⟨
N, ξ

⟩
+Q(κ0 − α̇)

⟨
B, ξ

⟩
−Qk0 cosα

⟨
T, ξ

⟩
.

Using (2.6), we find

k0
⟨
N cosα+B sinα, ξ

⟩
= Q̇

⟨
N, ξ

⟩
+Q

⟨
N(κ0 − α̇)− k0T cosα, ξ

⟩
.

Replacing
⟨
T, ξ

⟩
by (2.14), we continue with

k0 cosα
⟨
N, ξ

⟩
+ k0 sinα cos θ = Q̇

⟨
N, ξ

⟩
−Q2k0 cos θ sinα−Q2k0 cosα

⟨
T, ξ

⟩
.

Hence,
k0 cos θ sinα(1 +Q2) =

⟨
N, ξ

⟩
(Q̇− k0Q

2 cosα− k0 cosα).

Thus, ⟨
N, ξ

⟩
=

k0 sinα(1 +Q2)

Q̇− k0 cosα(1 +Q2)
.

Since
⟨
T, ξ

⟩
= Q

⟨
N, ξ

⟩
, we get

ξ =

(
Q

k0 sinα(1 +Q2)

(Q̇− k0 cosα(1 +Q2))
T +

k0 sinα(1 +Q2)

(Q̇− k0 cosα(1 +Q2))
N +B

)
cos θ.

The condition |ξ| = 1 implies

(
Q2 k20 sin2 α(1 +Q2)2

(Q̇− k0 cosα(1 +Q2))2
+ 1 +

k20 sin2 α(1 +Q2)2

(Q̇− k0 cosα(1 +H2))2

)
=

1

cos2 θ .

1454



YAMPOLSKY and OPARIY/Turk J Math

After transformations we get
k0 sinα(Q2 + 1)

3
2

Q̇− k0 cosα(Q2 + 1)
= tan θ, (2.15)

as was claimed.
By using (2.15) we can decompose ξ as follows:

ξ =

(
Q√

1 +Q2
sin θT +

1√
1 +Q2

sin θN + cos θB
)
. (2.16)

Conversely, take the vector field given by (2.16) with θ = const and suppose (2.15) is fulfilled. By the
same procedure as in the proof of Theorem 2.6, one can check that ξ is left-invariant and

⟨
B, ξ

⟩
= cos θ . 2

3. Conclusion
We have defined three classes of slant helices in three-dimensional Lie groups with left invariant metric and
obtained their description in terms of new geometric invariants of the curve. The results generalize the
corresponding descriptions for helices in Euclidean 3-space and in 3-dimensional Lie groups with biinvariant
metric.
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