Generalized helices in three-dimensional Lie groups

Alexander YAMPOLSKY* ${ }^{*}$, Anastasiya OPARIY
Department of Pure Mathematics, Faculty of Mathematics and Computer Science, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

$\begin{array}{lllll}\text { Received: 06.06.2018 } & \text { Accepted/Published Online: } 26.03 .2019 & \text { Final Version: } 29.05 .2019\end{array}$

Abstract

We introduce three types of helices in three-dimensional Lie groups with left-invariant metric and give their geometrical description similar to that of Lancret. We generalize the results known for the case of three-dimensional Lie groups with bi-invariant metric.

Key words: Slant helix, Lancret's theorem, curves in Lie groups

1. Introduction

Let γ be a C^{3}-regular naturally parameterized curve in the Euclidean space E^{3}. Denote by T, N, and B the standard Frenet frame of γ. The generalized helix can be defined in one of the following equivalent ways:

- T makes a constant angle with a fixed constant unit vector field on E^{3};
- N is orthogonal to a fixed constant unit vector field on E^{3};
- B makes a constant angle with a fixed constant unit vector field on E^{3};
- the ratio of torsion \varkappa and curvature k is constant (the Lancret theorem), i.e.

$$
\frac{\varkappa}{k}=\text { const } .
$$

The Euclidean space E^{3} endowed with the usual cross-product belongs to the class of three-dimensional Lie groups G with left-invariant metric. The invariant unit vector field ξ on G is a natural analog of the constant unit vector field on E^{3}. It is natural to define three types of generalized helices in G by one of the first three conditions and characterize them in terms similar to the fourth one. In the case of three-dimensional Lie groups with biinvariant metric the problem was considered in [2] and [8]. The constant angle curve was defined by the property that the tangent vector field T makes a constant angle with a fixed invariant unit vector field ξ. As a result, in [2], the following assertion was proved :

Let γ be a parameterized curve in a three-dimensional Lie group with biinvariant metric. Denote by $\langle\cdot, \cdot\rangle$ the corresponding scalar product. The necessary and sufficient condition that there is a biinvariant unit

[^0]vector field ξ such that $\langle T, \xi\rangle=$ const is
\[

$$
\begin{equation*}
\frac{\varkappa-\varkappa_{G}}{k}=\text { const } \tag{1.1}
\end{equation*}
$$

\]

where $\varkappa_{G}=\frac{1}{2}\langle[T, N], B\rangle$ and $[$,$] is the Lie bracket.$
A slant helix was defined as a curve for which the principal normal vector field makes a constant angle with a fixed invariant direction [8] and the following assertion was proved:

Let γ be a parameterized curve in a three-dimensional Lie group with biinvariant metric. The necessary and sufficient condition that there is biinvariant unit vector field ξ such that $\langle N, \xi\rangle=$ const is

$$
\begin{equation*}
\frac{\varkappa\left(H^{2}+1\right)^{\frac{3}{2}}}{\dot{H}}=\text { const } \tag{1.2}
\end{equation*}
$$

where $H=\frac{\varkappa-\varkappa_{G}}{k}$ and $\dot{H}=\frac{d H}{d s}$.
Observe that only two of three dimensional Lie groups can be endowed with the biinvariant metric. In this paper we define three types of helices on 3-dimensional Lie groups with left-invariant metric and generalize the above-mentioned assertions. The main results are Theorems 2.4, 2.6, and 2.8.

2. Generalized helices in Lie groups with left-invariant metric

Let G be a three-dimensional Lie group with left-invariant metric $\langle\cdot, \cdot\rangle$ and let \mathfrak{g} denote the Lie algebra for G which consists of the all smooth vector fields of G invariant under left translation.

Definition 2.1 Let G be a three-dimensional Lie group with left-invariant metric. Denote by $\langle\cdot, \cdot\rangle$ the corresponding scalar product. Let γ be a parameterized curve with the Frenet frame T, N, and B. The curve γ is called the generalized helix of the first, second, or third kind with axis ξ if there is a left-invariant along γ unit vector field ξ such that $\langle T, \xi\rangle=$ const, $\langle N, \xi\rangle=$ const, or $\langle B, \xi\rangle=$ const, respectively.

There are two classes of three-dimensional Lie groups: unimodular and nonunimodular. In the case of the unimodular group, there is a (positively oriented) orthonormal frame of left-invariant vector fields $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that the brackets satisfy [7]

$$
\left[e_{1}, e_{2}\right]=\lambda_{3} e_{3}, \quad\left[e_{1}, e_{3}\right]=\lambda_{2} e_{2}, \quad\left[e_{2}, e_{3}\right]=\lambda_{1} e_{1}
$$

The constants λ_{i} are called structure constants. The constants

$$
\mu_{i}=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)-\lambda_{i}
$$

are called connection coefficients. In the case of the nonunimodular group, there is an orthonormal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that [7]

$$
\left[e_{1}, e_{2}\right]=\alpha e_{2}+\beta e_{3}, \quad\left[e_{1}, e_{3}\right]=-\beta e_{2}+\delta e_{3}, \quad\left[e_{2}, e_{3}\right]=0
$$

Using the Koszul formula we can easily find the covariant derivatives $\nabla_{e_{i}} e_{j}$ that can be put in the tables

∇	e_{1}	e_{2}	e_{3}
e_{1}	0	$\mu_{1} e_{3}$	$-\mu_{1} e_{2}$
e_{2}	$-\mu_{2} e_{3}$	0	$\mu_{2} e_{1}$
e_{3}	$\mu_{3} e_{2}$	$-\mu_{3} e_{1}$	0

and

∇	e_{1}	e_{2}	e_{3}
e_{1}	0	βe_{3}	$-\beta e_{2}$
e_{2}	$-\alpha e_{2}$	αe_{1}	0
e_{3}	$-\delta e_{3}$	0	δe_{1}

in unimodular and nonunimodular cases, respectively.
In the three-dimensional case one can naturally define the cross-product by $e_{1} \times e_{2}=e_{3}, \quad e_{2} \times e_{3}=$ $e_{1}, \quad e_{3} \times e_{1}=e_{2}$. We introduce the following affine transformation:

$$
\mu(X)=\left[\begin{array}{ll}
\mu_{1} X^{1} e_{1}+\mu_{2} X^{2} e_{2}+\mu_{3} X^{3} e_{3} & \text { for unimodular group } \tag{2.1}\\
\beta X^{1} e_{1}+\delta X^{3} e_{2}-\alpha X^{2} e_{3} & \text { for nonunimodular group. }
\end{array}\right.
$$

Then for both groups we have $\nabla_{e_{i}} e_{k}=\mu\left(e_{i}\right) \times e_{k}$ and hence

$$
\begin{equation*}
\nabla_{X} e_{k}=\mu(X) \times e_{k} \tag{2.2}
\end{equation*}
$$

for arbitrary vector field X.
Let $\gamma(s)$ be a naturally parameterized curve on the group and $T=\dot{\gamma}$ be the unit tangent vector field. Using (2.2), for arbitrary vector field $\xi \circ \gamma$ we have

$$
\begin{align*}
& \nabla_{T} \xi=T^{i} \nabla_{e_{i}}\left(\xi^{k} e_{k}\right)=T^{i}\left(e_{i}\left(\xi^{k}\right)\right) e_{k}+\xi^{k} \nabla_{T} e_{k}= \\
& \left.\quad T\left(\xi^{k}\right) e_{k}+\xi^{k} \mu(T) \times e_{k}\right)=\frac{d \xi^{k}}{d s} e_{k}+\mu(T) \times \xi=\dot{\xi}^{k} e_{k}+\mu(T) \times \xi \tag{2.3}
\end{align*}
$$

In what follows, we call the vector field $\dot{\xi}=\frac{d \xi^{i}}{d s} e_{i}$ the dot-derivative of the vector field ξ along the curve γ. Observe that if ξ is left-invariant along γ, then $\dot{\xi}=0$ and vice versa. Since the frame $\left(e_{1}, e_{3}, e_{3}\right)$ is leftinvariant, the dot-derivative is subject to the usual Leibnitz rule with respect to scalar and cross-products, i.e. $\langle\dot{\xi}, \eta\rangle=\langle\dot{\xi}, \eta\rangle+\langle\xi, \dot{\eta}\rangle,(\xi \dot{\times} \eta)=\dot{\xi} \times \eta+\xi \times \dot{\eta}$.

Let T, N, and B be the vectors of the standard Frenet frame of γ. Using (2.3), we get

$$
\nabla_{T} T=\dot{T}+\mu(T) \times T, \quad \nabla_{T} B=\dot{B}+\mu(T) \times B, \quad \nabla_{T} N=\dot{N}+\mu(T) \times N
$$

Assuming $k_{0}=|\dot{T}| \neq 0$, we can define a new frame $\{\tau, \nu, \beta\}$ along the curve γ by

$$
\begin{equation*}
\tau=T, \quad \nu=\frac{1}{k_{0}} \dot{\tau}, \quad \beta=\tau \times \nu \tag{2.4}
\end{equation*}
$$

In what follows we call (2.4) the dot-Frenet frame. Set $\varkappa_{0}=|\dot{\beta}|$ by definition.

Proposition 2.2 The dot-Frenet frame $\{\tau, \nu, \beta\}$ satisfies the dot-Frenet formulas, namely

$$
\begin{equation*}
\dot{\tau}=k_{0} \nu, \quad \dot{\nu}=-k_{0} \tau+\varkappa_{0} \beta, \quad \dot{\beta}=-\varkappa_{0} \nu \tag{2.5}
\end{equation*}
$$

YAMPOLSKY and OPARIY/Turk J Math

The proof is straightforward and trivial. In what follows we call k_{0} and \varkappa_{0} dot-curvature and dot-torsion, respectively.

The Frenet and the dot-Frenet frames are connected by

$$
\begin{equation*}
\tau=T, \quad \nu=\cos \alpha N+\sin \alpha B, \quad \beta=-\sin \alpha N+\cos \alpha B \tag{2.6}
\end{equation*}
$$

where $\alpha=\alpha(s)$ is the angle function. The inverse transformation is of the form

$$
\begin{equation*}
T=\tau, \quad N=\cos \alpha \nu-\sin \alpha \beta, \quad B=\sin \alpha \nu+\cos \alpha \beta \tag{2.7}
\end{equation*}
$$

Proposition 2.3 The transformation $\mu(T)$ can be given by

$$
\begin{equation*}
\mu(T)=\left(\varkappa+\dot{\alpha}-\varkappa_{0}\right) T+k_{0} \sin \alpha N+\left(k-k_{0} \cos \alpha\right) B \tag{2.8}
\end{equation*}
$$

with respect to the Frenet frame $\{T, N, B\}$.
Proof The decomposition has evident form

$$
\mu(T)=\langle\mu(T), T\rangle T+\langle\mu(T), N\rangle N+\langle\mu(T), B\rangle B
$$

The first Frenet formula and (2.5) yield

$$
\nabla_{T} T=\dot{T}+\mu(T) \times T=k_{0} \nu+\mu(T) \times T=k N
$$

Multiplying this relation by N, we get $k=k_{0} \cos \alpha+\langle\mu(T) \times T, N\rangle$. Observe that $\langle\mu(T) \times T, N\rangle=\langle\mu(T), T \times$ $N\rangle=\langle\mu(T), B\rangle$. Thus, we get $k=k_{0} \cos \alpha+\langle\mu(T), B\rangle$ and hence $\langle\mu(T), B\rangle=k-k_{0} \cos \alpha$.

By the second Frenet formula,

$$
\nabla_{T} N=\dot{N}+\mu(T) \times N=-k T+\varkappa B
$$

Calculating the dot-derivative of N in decomposition (2.7) and applying (2.5), we find

$$
\begin{align*}
\dot{N}=\dot{\alpha}(-\sin \alpha \nu-\cos \alpha \beta)+\cos \alpha & \left(-k_{0} \tau+\varkappa_{0} \beta\right)-\sin \alpha\left(-\varkappa_{0} \nu\right) \\
& -\dot{\alpha} B+\varkappa_{0}(\beta \cos \alpha+\nu \sin \alpha)-k_{0} \tau \cos \alpha=\left(-\dot{\alpha}+\varkappa_{0}\right) B-k_{0} \cos \alpha T \tag{2.9}
\end{align*}
$$

so we have $\left(-\dot{\alpha}+\varkappa_{0}\right) B-k_{0} \cos \alpha T+\mu(T) \times N=-k T+\varkappa B$ and hence $\varkappa=-\dot{\alpha}+\varkappa_{0}+\langle\mu(T) \times N, B\rangle=$ $-\dot{\alpha}+\varkappa_{0}+\langle\mu(T), T\rangle$. Thus, $\langle\mu(T), T\rangle=\varkappa+\dot{\alpha}-\varkappa_{0}$.

By the third Frenet formula,

$$
\nabla_{T} B=\dot{B}+\mu(T) \times B=-\varkappa N
$$

Calculating the dot-derivative of B in decomposition (2.7) and applying (2.5), we find

$$
\begin{aligned}
\dot{B}=\dot{\alpha}(\cos \alpha \nu-\sin \alpha \beta)+\sin \alpha\left(-k_{0} \tau+\right. & \left.\varkappa_{0} \beta\right)-\cos \alpha\left(-\varkappa_{0} \nu\right)= \\
& -\dot{\alpha} N+\varkappa_{0}(\beta \sin \alpha-\nu \cos \alpha)-k_{0} \tau \sin \alpha=\left(\dot{\alpha}-\varkappa_{0}\right) N-k_{0} \sin \alpha T
\end{aligned}
$$

YAMPOLSKY and OPARIY/Turk J Math

so we have $-\varkappa N=\left(\dot{\alpha}-\varkappa_{0}\right) N-k_{0} \sin \alpha T+\mu(T) \times B$ and hence

$$
0=-k_{0} \sin \alpha+\langle\mu(T) \times B, T\rangle=-k_{0} \sin \alpha+\langle\mu(T), N\rangle
$$

Thus, $\langle\mu(T), N\rangle=k_{0} \sin \alpha$. Collecting the results, we get

$$
\mu(T)=\left(\varkappa+\dot{\alpha}-\varkappa_{0}\right) T+k_{0} \sin \alpha N+\left(k-k_{0} \cos \alpha\right) B,
$$

as was claimed.
Define a group-curvature k_{G} and a group-torsion \varkappa_{G} of a curve by

$$
k_{G}=|\mu(T) \times T|, \quad \varkappa_{G}=|\mu(T) \times B|
$$

respectively. As a consequence of (2.8), the dot-curvature and the dot-torsion of a curve can be expressed in terms of the group-curvature k_{G}, the group-torsion \varkappa_{G} of a curve, and the angle function α by

$$
k_{G}^{2}=\left(k-k_{0}\right)^{2}+4 k k_{0} \sin ^{2}(\alpha / 2), \quad \varkappa_{G}^{2}=k_{0}^{2} \sin \alpha^{2}+\left(\varkappa-\varkappa_{0}+\dot{\alpha}\right)^{2} .
$$

Theorem 2.4 The regular curve γ in three-dimensional group Lie G with left-invariant metric is the generalized helix of the first kind if and only if

$$
\frac{\varkappa_{0}}{k_{0}}=\cot \theta \quad\left(k_{0} \neq 0\right)
$$

where $\theta=$ const.
Proof If $\gamma: I \subset \mathbb{R} \rightarrow G$ is a parameterized helix of the first kind, then there exists a unit invariant vector field ξ such that $\langle T, \xi\rangle=\cos \theta$, where $\theta=$ const. Calculating the dot-derivative we find $\langle\dot{T}, \xi\rangle+\langle T, \dot{\xi}\rangle=0$. As $\dot{\xi}=0$, we get $k_{0}\langle\nu, \xi\rangle=0$. Hence, $\langle\nu, \xi\rangle=0$. The next dot-derivative yields $\left\langle-k_{0} \tau+\varkappa_{0} \beta, \xi\right\rangle=0$ or $-k_{0} \cos \theta+\varkappa_{0} \sin \theta=0$ and hence $\frac{\varkappa_{0}}{k_{0}}=\cot \theta$.

Conversely, suppose that $\frac{\varkappa_{0}}{k_{0}}=\cot \theta=$ const. Put $\xi=\cos \theta T+\sin \theta B$. Evidently, $\langle T, \xi\rangle=\cos \theta$. Then $\dot{\xi}=k_{0} \nu \cos \theta+\left(-\varkappa_{0} \nu \sin \theta\right)=\nu\left(k_{0} \cos \theta-\varkappa_{0} \sin \theta\right)=0$ and hence ξ is left-invariant.

Remark 2.5 If the metric is biinvariant, then $\mu_{1}=\mu_{2}=\mu_{3}:=\mu$ and hence $\mu(T)=\mu T$. As a consequence, $\alpha=0, k_{G}=0, k=k_{0}, \varkappa_{G}=\varkappa-\varkappa_{0}$, and we get (1.1).

Theorem 2.6 A regular curve γ in three-dimensional group Lie G with left-invariant metric is the generalized helix of the second kind if and only if

$$
\frac{k_{0} \cos \alpha\left(H^{2}+1\right)^{\frac{3}{2}}}{\dot{H}-k_{0} \sin \alpha\left(H^{2}+1\right)}=\tan \theta
$$

where $H=\frac{\varkappa_{0}-\dot{\alpha}}{k_{0} \cos \alpha}$.

YAMPOLSKY and OPARIY/Turk J Math

Proof If $\gamma: I \subset \mathbb{R} \rightarrow G$ is a parameterized helix of the second kind, then there is a unit invariant vector field ξ such that $\langle N, \xi\rangle=\cos \theta$, where $\theta=$ const. As $\dot{\xi}=0$, then using (2.7) and dot-Frenet formulas we get

$$
\left(-\dot{\alpha}+\varkappa_{0}\right)\langle B, \xi\rangle-k_{0} \cos \alpha\langle T, \xi\rangle=0
$$

Hence,

$$
\begin{equation*}
\langle T, \xi\rangle=\frac{\varkappa_{0}-\dot{\alpha}}{k_{0} \cos \alpha}\langle B, \xi\rangle=H\langle B, \xi\rangle, \tag{2.10}
\end{equation*}
$$

where $H=\frac{\varkappa_{0}-\dot{\alpha}}{k_{0} \cos \alpha}$. Therefore, $\langle\dot{T}, \xi\rangle=\dot{H}\langle B, \xi\rangle+H\langle\dot{B}, \xi\rangle$. Formulas (2.5) and (2.7) imply $k_{0}\langle\nu, \xi\rangle=$ $\dot{H}\langle B, \xi\rangle+H\left\langle N\left(\dot{\alpha}-\varkappa_{0}\right)-k_{0} T \sin \alpha, \xi\right\rangle$. Using (2.6) we get

$$
k_{0}\langle N \cos \alpha+B \sin \alpha, \xi\rangle=\dot{H}\langle B, \xi\rangle+H\left(\dot{\alpha}-\varkappa_{0}\right)\langle N, \xi\rangle-k_{0} H \sin \alpha\langle T, \xi\rangle
$$

By replacing $\langle T, \xi\rangle$ in accordance with (2.10) we get

$$
k_{0} \cos \alpha \cos \theta+k_{0} \sin \alpha\langle B, \xi\rangle=\dot{H}\langle B, \xi\rangle-H^{2} k_{0} \cos \alpha \cos \theta-k_{0} \sin \alpha H^{2}\langle B, \xi\rangle .
$$

Thus, $k_{0} \cos \alpha \cos \theta\left(1+H^{2}\right)=\langle B, \xi\rangle\left(\dot{H}-k_{0} H^{2} \sin \alpha-k_{0} \sin \alpha\right)$. It means that

$$
\begin{equation*}
\langle B, \xi\rangle=\frac{k_{0} \cos \alpha \cos \theta\left(1+H^{2}\right)}{\dot{H}-k_{0} \sin \alpha\left(1+H^{2}\right)} \tag{2.11}
\end{equation*}
$$

In combination with (2.10) we get

$$
\xi=\left(\frac{H k_{0} \cos \alpha\left(1+H^{2}\right)}{\dot{H}-k_{0} \sin \alpha\left(1+H^{2}\right)} T+N+\frac{k_{0} \cos \alpha\left(1+H^{2}\right)}{\dot{H}-k_{0} \sin \alpha\left(1+H^{2}\right)} B\right) \cos \theta
$$

Since $|\xi|=1$,

$$
\left(H^{2} \frac{k_{0}^{2} \cos ^{2} \alpha\left(1+H^{2}\right)^{2}}{\left(\dot{H}-k_{0} \sin \alpha\left(1+H^{2}\right)\right)^{2}}+1+\frac{k_{0}^{2} \cos ^{2} \alpha\left(1+H^{2}\right)^{2}}{\left(\dot{H}-k_{0} \sin \alpha\left(1+H^{2}\right)\right)^{2}}\right)=\frac{1}{\cos ^{2} \theta}
$$

After simple transformation we get

$$
\begin{equation*}
\frac{k_{0} \cos \alpha\left(H^{2}+1\right)^{\frac{3}{2}}}{\dot{H}-k_{0} \sin \alpha\left(H^{2}+1\right)}=\tan \theta \tag{2.12}
\end{equation*}
$$

as was required. Moreover, (2.12) implies

$$
\begin{equation*}
\xi=\left(\frac{H}{\sqrt{1+H^{2}}} \sin \theta T+\cos \theta N+\frac{1}{\sqrt{1+H^{2}}} \sin \theta B\right) \tag{2.13}
\end{equation*}
$$

Conversely, take ξ given by (2.13) with $\theta=$ const and suppose (2.12) is fulfilled. Then
(a) $\langle\xi, N\rangle=\cos \theta ;$
(b) $\langle\xi, B\rangle=\frac{1}{\sqrt{1+H^{2}}} \sin \theta$;
(c) $\langle\xi, T\rangle=\frac{H}{\sqrt{1+H^{2}}} \sin \theta$.

The dot-derivative of (a) yields $\langle\dot{\xi}, N\rangle+\langle\xi, \dot{N}\rangle=0$. Using (2.7), we obtain

$$
\langle\dot{\xi}, N\rangle+\left(-\dot{\alpha}+\varkappa_{0}\right)\langle\xi, B\rangle-k_{0} \cos \alpha\langle\xi, T\rangle=0
$$

or

$$
\langle\dot{\xi}, N\rangle+k_{0} \cos \alpha(H\langle\xi, B\rangle-\langle\xi, T\rangle)=0
$$

From (2.10) it follows that $\langle\dot{\xi}, N\rangle=0$.
By using (2.7) and (2.12), the dot-derivative of (b) yields

$$
\begin{aligned}
\langle\dot{\xi}, B\rangle=\frac{d}{d s}\langle\xi, B\rangle-\langle\xi, \dot{B}\rangle=\frac{d}{d s}\left(\frac{1}{\sqrt{1+H^{2}}} \sin \theta\right)+ & k_{0} \sin \alpha\langle T, \xi\rangle+H k_{0} \cos \alpha\langle N, \xi\rangle= \\
& -\frac{\dot{H} H}{\left(1+H^{2}\right)^{\frac{3}{2}}} \sin \theta+k_{0} \sin \alpha\langle T, \xi\rangle+H k_{0} \cos \alpha \cos \theta
\end{aligned}
$$

We can express \dot{H} from (2.11) and then, by using (c), we continue with

$$
\begin{array}{r}
\langle\dot{\xi}, B\rangle=-\frac{H}{\left(1+H^{2}\right)^{\frac{3}{2}}} \sin \theta\left(\frac{k_{0} \cos \alpha\left(1+H^{2}\right)^{\frac{3}{2}}}{\tan \theta}+k_{0} \sin \alpha\left(1+H^{2}\right)\right)+k_{0} \sin \alpha\langle T, \xi\rangle+H k_{0} \cos \alpha \cos \theta= \\
\left(-H k_{0} \cos \alpha \cos \theta-\frac{k_{0} H \sin \alpha \sin \theta}{\sqrt{1+H^{2}}}\right)+\frac{k_{0} H \sin \alpha \sin \theta}{\sqrt{1+H^{2}}}+H k_{0} \cos \alpha \cos \theta=0
\end{array}
$$

In a similar way, by using (2.6), (2.7), and (2.12), we get

$$
\begin{aligned}
\langle\dot{\xi}, T\rangle=\frac{d}{d s}\langle\xi, T\rangle-\langle\xi, \dot{T}\rangle= & \frac{d}{d s}\left(\frac{H}{\sqrt{1+H^{2}}} \sin \theta\right)+k_{0}\langle\cos \alpha N+\sin \alpha B, \xi\rangle= \\
& \left(-\dot{H} \frac{H^{2}}{\left(1+H^{2}\right)^{\frac{3}{2}}}+\frac{\dot{H}}{\left(1+H^{2}\right)^{\frac{1}{2}}}\right) \sin \theta-k_{0} \cos \alpha \cos \theta-k_{0} \sin \alpha \sin \theta \frac{1}{\sqrt{1+H^{2}}}
\end{aligned}
$$

Again, we can express \dot{H} from (2.12) and continue with

$$
\begin{aligned}
& \langle\dot{\xi}, T\rangle=\sin \theta \frac{1}{\left(1+H^{2}\right)^{\frac{3}{2}}}\left(\frac{k_{0} \cos \alpha\left(1+H^{2}\right)^{\frac{3}{2}}}{\tan \theta}+k_{0} \sin \alpha\left(1+H^{2}\right)\right)- \\
& k_{0} \cos \alpha \cos \theta-k_{0} \sin \alpha \sin \theta \frac{1}{\sqrt{1+H^{2}}}=\left(-k_{0} \cos \alpha \cos \theta-\frac{k_{0} \sin \alpha \sin \theta}{\sqrt{1+H^{2}}}\right) \\
& \quad-k_{0} \cos \alpha \cos \theta-k_{0} \sin \alpha \sin \theta \frac{1}{\sqrt{1+H^{2}}}=0
\end{aligned}
$$

Since $\langle\dot{\xi}, N\rangle=0,\langle\dot{\xi}, B\rangle=0$, and $\langle\dot{\xi}, T\rangle=0$, we have $\dot{\xi}=0$ and hence ξ is left-invariant.

Remark 2.7 If the metric is biinvariant, then $\alpha=0, k_{G}=0, k=k_{0}, \varkappa_{G}=\varkappa-\varkappa_{0}$, and we get (1.2).

YAMPOLSKY and OPARIY/Turk J Math

Theorem 2.8 A regular curve γ in three-dimensional group Lie G with left-invariant metric is a generalized helix of the third kind if and only if

$$
\frac{k_{0} \sin \alpha\left(Q^{2}+1\right)^{\frac{3}{2}}}{\dot{Q}-k_{0} \cos \alpha\left(Q^{2}+1\right)}=\tan \theta
$$

where $Q=\frac{\dot{\alpha}-\varkappa_{0}}{k_{0} \sin \alpha}=-H \cot \alpha$.
Proof If $\gamma: I \subset \mathbb{R} \rightarrow G$ is a parameterized helix of the third kind, then there exists a unit invariant vector field ξ such that $\langle B, \xi\rangle=\cos \theta$, where θ is constant. Since $\dot{\xi}=0$, we have $\left(\dot{\alpha}-\varkappa_{0}\right)\langle N, \xi\rangle-k_{0} \sin \alpha\langle T, \xi\rangle=0$, so

$$
\begin{equation*}
\langle T, \xi\rangle=\frac{\dot{\alpha}-\varkappa_{0}}{k_{0} \sin \alpha}\langle N, \xi\rangle=Q\langle N, \xi\rangle \tag{2.14}
\end{equation*}
$$

where we put $Q=\frac{\dot{\alpha}-\varkappa_{0}}{k_{0} \sin \alpha}$. Calculating the dot-derivative, we get

$$
\langle\dot{T}, \xi\rangle=\dot{Q}\langle N, \xi\rangle+Q\langle\dot{N}, \xi\rangle
$$

Applying (2.5) and (2.9), we continue with

$$
k_{0}\langle\nu, \xi\rangle=\dot{Q}\langle N, \xi\rangle+Q\left(\varkappa_{0}-\dot{\alpha}\right)\langle B, \xi\rangle-Q k_{0} \cos \alpha\langle T, \xi\rangle
$$

Using (2.6), we find

$$
k_{0}\langle N \cos \alpha+B \sin \alpha, \xi\rangle=\dot{Q}\langle N, \xi\rangle+Q\left\langle N\left(\varkappa_{0}-\dot{\alpha}\right)-k_{0} T \cos \alpha, \xi\right\rangle
$$

Replacing $\langle T, \xi\rangle$ by (2.14), we continue with

$$
k_{0} \cos \alpha\langle N, \xi\rangle+k_{0} \sin \alpha \cos \theta=\dot{Q}\langle N, \xi\rangle-Q^{2} k_{0} \cos \theta \sin \alpha-Q^{2} k_{0} \cos \alpha\langle T, \xi\rangle .
$$

Hence,

$$
k_{0} \cos \theta \sin \alpha\left(1+Q^{2}\right)=\langle N, \xi\rangle\left(\dot{Q}-k_{0} Q^{2} \cos \alpha-k_{0} \cos \alpha\right) .
$$

Thus,

$$
\langle N, \xi\rangle=\frac{k_{0} \sin \alpha\left(1+Q^{2}\right)}{\dot{Q}-k_{0} \cos \alpha\left(1+Q^{2}\right)}
$$

Since $\langle T, \xi\rangle=Q\langle N, \xi\rangle$, we get

$$
\xi=\left(Q \frac{k_{0} \sin \alpha\left(1+Q^{2}\right)}{\left(\dot{Q}-k_{0} \cos \alpha\left(1+Q^{2}\right)\right)} T+\frac{k_{0} \sin \alpha\left(1+Q^{2}\right)}{\left(\dot{Q}-k_{0} \cos \alpha\left(1+Q^{2}\right)\right)} N+B\right) \cos \theta
$$

The condition $|\xi|=1$ implies

$$
\left(Q^{2} \frac{k_{0}^{2} \sin ^{2} \alpha\left(1+Q^{2}\right)^{2}}{\left(\dot{Q}-k_{0} \cos \alpha\left(1+Q^{2}\right)\right)^{2}}+1+\frac{k_{0}^{2} \sin ^{2} \alpha\left(1+Q^{2}\right)^{2}}{\left(\dot{Q}-k_{0} \cos \alpha\left(1+H^{2}\right)\right)^{2}}\right)=\frac{1}{\cos ^{2} \theta}
$$

After transformations we get

$$
\begin{equation*}
\frac{k_{0} \sin \alpha\left(Q^{2}+1\right)^{\frac{3}{2}}}{\dot{Q}-k_{0} \cos \alpha\left(Q^{2}+1\right)}=\tan \theta \tag{2.15}
\end{equation*}
$$

as was claimed.
By using (2.15) we can decompose ξ as follows:

$$
\begin{equation*}
\xi=\left(\frac{Q}{\sqrt{1+Q^{2}}} \sin \theta T+\frac{1}{\sqrt{1+Q^{2}}} \sin \theta N+\cos \theta B\right) \tag{2.16}
\end{equation*}
$$

Conversely, take the vector field given by (2.16) with $\theta=$ const and suppose (2.15) is fulfilled. By the same procedure as in the proof of Theorem 2.6, one can check that ξ is left-invariant and $\langle B, \xi\rangle=\cos \theta$.

3. Conclusion

We have defined three classes of slant helices in three-dimensional Lie groups with left invariant metric and obtained their description in terms of new geometric invariants of the curve. The results generalize the corresponding descriptions for helices in Euclidean 3-space and in 3-dimensional Lie groups with biinvariant metric.

References

[1] Barros M. General helices and a theorem of Lancret. Proceedings of the American Mathematical Society 1997; 125 (5): 1503-1509.
[2] Ciftci U. A generalization of Lancret's theorem. Journal of Geometry and Physics 2009; 59: 1597-1603.
[3] Dogan F. The detailed proof of theorem which characterizes a slant helix. New Trends in Mathematical Sciences 2016; 4 (2): 56-60.
[4] Izumiya S, Takeuchi N. New special curves and developable surfaces. Turkish Journal of Mathematics 2004; 28: 153-163.
[5] Lucas P, Ortega-Yagües JA. Slant helices in the three-dimensional sphere. Journal of the Korean Mathematical Society 2017; 54: 1331-1343.
[6] Menninger A. Characterization of the slant helix as successor curve of the general helix. International Electronic Journal of Geometry 2014; 7 (2): 84-91.
[7] Milnor J. Curvatures of left invariant metrics on Lie Groups. Advances in Mathematics 1976; 21: 293-329.
[8] Okuyucu OZ, Gok I, Yayli Y, Ekmekci N. Slant helices in three dimensional Lie groups. Applied Mathematics and Computation 2013; 221: 672-683.
[9] Özgör C, Gezgin F. On some curves of AW (k)-type. Differential Geometry - Dynamical Systems 2005; 7: 74-80.

[^0]: *Correspondence: a.yampolsky@karazin.ua
 2010 AMS Mathematics Subject Classification: Primary, 53A04, 53C40; Secondary, 22E15

