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Abstract: In this paper we introduce the concept of im-summand coinvariance and im-small coinvariance; that is, a
module M over a right perfect ring is said to be im-summand (im-small) coinvariant if, for any endomorphism φ of P

such that Imφ is a direct summand (a small submodule) of P , φ(ker ν) ⊆ ker ν , where (P, ν) is the projective cover of
M . We first give some fundamental properties of im-summand coinvariant modules and im-small coinvariant modules,
and we prove that, for modules M and N over a right perfect ring such that N is a small epimorphic image of M , M

is N -im-summand coinvariant if and only if M is (im-coclosed) N -projective. Moreover, we introduce ker-summand
invariance and ker-essential invariance as the dual concept of im-summand coinvariance and im-small coinvariance,
respectively, and show that, for modules M and N such that N is isomorphic to an essential submodule of M , M is
N -ker-summand invariant if and only if M is (ker-closed) N -injective.

Key words: Ker-summand invariant, im-summand coinvariant, quasi-injective, quasi-projective, pseudo-injective,
pseudo-projective, perfect ring

1. Preliminaries
In 1961, Johnson and Wong [13] showed that quasi-injective modules are fully invariant submodules of their
injective hulls. After that, Dickson and Fuller [5] considered that a module is invariant under any automorphism
of its injective hull. Such a module is called automorphism invariant. In 2013, Er et al. [7] proved that a
module is automorphism invariant if and only if it is pseudo-injective, and Lee and Zhou [19] showed that
for an extending module M , M is automorphism invariant iff M is quasi-injective. Moreover, Singh and
Srivastava [22] introduced a dual notion of an automorphism invariant module and proved that a lifting module
over a right perfect ring is dual automorphism invariant if and only if it is quasi-projective. After that, Guil
Asensio et al. [9] showed that a module over a right perfect ring is dual automorphism invariant if and only
if it is pseudo-projective. In this paper, we consider relationships between several relative injectivities and the
invariance for certain homomorphisms in their injective hulls, and dually study several relative projectivities
from the viewpoint of the dual invariant in their projective covers.

We consider associative rings R with identity and all modules considered are unitary right R -modules.
The notations N ⊆M , N ⊆e M , and N ⊆⊕ M mean that N is a submodule of M , an essential submodule of
M , and a direct summand of M , respectively. We will denote by E(M) the injective hull of a module M . A
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submodule A of a module M is said to be small in M if A+B ̸=M for any proper submodule B of M and
we write A ≪ M in this case. Let A and B be submodules of M with A ⊆ B . A is said to be a coessential
submodule of B in M if B/A ≪ M/A and we denote it by A ⊆M

c B in this case. B is said to be a coclosed
submodule in M if, whenever A ⊆M

c B , then B = A , and we denote it by B ⊆cc M in this case. A module M
is called lifting if, for any submodule X of M , there exists a direct summand A of M such that A ⊆M

c X . Let
{Mi | i ∈ I} be a family of modules. The direct sum decomposition M = ⊕IMi is said to be exchangeable if,
for any direct summand X of M , there exist M ′

i ⊆Mi (i ∈ I) such that M = X ⊕ (⊕IM
′
i) . A module M is

said to have the (finite) internal exchange property (or briefly (F)IEP) if any (finite) direct sum decomposition
M = ⊕IMi is exchangeable. It is well known that any projective module over a right perfect ring is a lifting
module with IEP and any injective module satisfies IEP (cf. [2, Theorems 1.2.17 and 1.2.19], [20, Theorems
1.21 and 4.41]). For the dual notions to the above notions we refer to [20, 24].

Let A and B be modules. An epimorphism f : A→ B is called a small epimorphism if ker f is small in
A . A is said to be (epi-)B -projective if, for any module X , any homomorphism (epimorphism) f : A→ X , and
any epimorphism g : B → X , there exists a homomorphism h : A→ B such that gh = f . A is said to be quasi-
(pseudo)-projective if A is (epi-)A -projective. A is said to be radical B -projective if, for any module X , any
homomorphism f : A → X , and any epimorphism g : B → X , there exists a homomorphism h : A → B such
that Im (f−gh) ≪ X (cf. [11, 16]), and equivalently, for any epimorphism g : B → X and any homomorphism
f : A→ X , there exist a small epimorphism ρ : X → Y for some module Y , a homomorphism h : A→ B such
that ρgh = ρf ([17, Proposition 1.2]). A is said to be im-summand (im-coclosed, im-small, resp.) B -projective
if, for any module X , any homomorphism f : A → X with Imf ⊆⊕ X (Imf ⊆cc X , Imf ≪ X , resp.), and
any epimorphism g : B → X , there exists a homomorphism h : A → B such that gh = f . Note that there
exist modules A and B such that A is epi-B -projective but A is not im-small B -projective (see [14, Example
2.7]). Let A and B be modules. A is said to be (mono-)B -injective if, for any module X , any homomorphism
(monomorphism) f : X → A , and any monomorphism g : X → B , there exists a homomorphism h : B → A

such that hg = f . A is said to be quasi (pseudo)-injective if A is (mono-)A -injective. A is said to be B -
ejective if, for any submodule X of B and any homomorphism f : X → A , there exist an essential submodule
X ′ of X and a homomorphism g : B → A such that g|X′ = f |X′ (see [1]). A is said to be ker-summand
(ker-closed, essentially, resp.) B -injective if, for any submodule X of B and any homomorphism f : X → A

with ker f ⊆⊕ X (ker f is closed in X , ker f ⊆e X , resp.), there exists a homomorphism g : B → A such that
g|X = f (see [6, 20, 24]).

A module M is called dual automorphism-invariant if, for any small submodules K1 , K2 of M and
any small epimorphism f : M/K1 → M/K2 , there exists an endomorphism g of M such that fπ1 = π2g ,
where πi : M → M/Ki (i = 1, 2) is the natural epimorphism ([22]). Guil Asensio et al. [9] called a dual
automorphism-invariant module over a right perfect ring as automorphism coinvariant and proved that over a
right perfect ring, a module M is automorphism coinvariant if and only if M is pseudo-projective. For the
notion of automorphism invariant modules we refer to [7, 23]. Note that a module M is automorphism invariant
if and only if it is pseudo-injective (see [7, Theorem 16]).

In this work, we introduce N -im-small coinvariant (N -ker-essential invariant) modules and N -im-
summand coinvariant (N -ker-summand invariant) modules for any module N . Let M and N be two modules.
Assume that (P, p) and (Q, q) are projective covers of M and N , respectively. M is called N -im-small
coinvariant if for any homomorphism φ : P → Q with Imφ ≪ Q , φ(kerp) ⊆ kerq . M is called N -im-
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summand coinvariant if for any homomorphism φ : P → Q with Imφ ⊆⊕ Q , φ(kerp) ⊆ kerq . We can see that
these coinvariances do not depend on the way of taking projective covers. M is called im-small (im-summand)
coinvariant if M is M -im-small (M -im-summand) coinvariant. Dually, M is called N -ker-essential invariant
if for any homomorphism φ : E(N) → E(M) with kerφ ⊆e E(N) , φ(N) ⊆ M . M is called N -ker-summand
invariant if for any homomorphism φ : E(N) → E(M) with kerφ ⊆⊕ E(N) , φ(N) ⊆ M . M is called
ker-essential (ker-summand) invariant if M is M -ker-essential (M -ker-summand) invariant.

In Section 2, we first give some fundamental properties of im-summand coinvariant modules and im-small
coinvariant modules over right perfect rings and prove that, for modules M and N over a right perfect ring
such that N is a small epimorphic image of M , M is N -im-summand coinvariant if and only if M is (im-
coclosed) N -projective. This immediately follows that a module M over a right perfect ring is im-summand
coinvariant if and only if M is quasi-projective. In Section 3, we consider ker-summand invariance and ker-
essential invariance for modules over any ring as the dual concept of im-summand coinvariance and im-small
coinvariance, respectively. In addition, using some fundamental properties of them, we show that for modules
M and N such that N is isomorphic to an essential submodule of M , M is N -ker-summand invariant if and
only if M is (ker-closed) N -injective. In particular, a module M is ker-summand invariant if and only if M is
quasi-injective.

For undefined terminologies, the reader is referred to [2, 3, 20, 24, 25].

2. Im-small coinvariant and im-summand coinvariant modules
We first give some fundamental properties of im-small coinvariant modules and im-summand coinvariant
modules.

Proposition 2.1 Let M , N , Mi (i ∈ I) , and Nj (j ∈ J) be modules over a right perfect ring. Then:

(1) If M is N -im-small coinvariant, then M is N/X -im-small coinvariant and X -im-small coinvariant for
any submodule X of N .

(2) If M is N -im-summand coinvariant, then M is N/X -im-summand coinvariant for any submodule X

of N . Moreover, for any coclosed submodule X of N , M is X -im-summand coinvariant.

(3) If M/S is N -im-small (N -im-summand, resp.) coinvariant for some S ≪ M , then M is N -im-small
(N -im-summand, resp.) coinvariant.

(4) If M is N -im-small (N -im-summand, resp.) coinvariant, then M ′ is N -im-small (N -im-summand,
resp.) coinvariant for any direct summand M ′ of M .

(5) If Mi is Nj -im-small coinvariant for any i ∈ I, j ∈ J , then ⊕IMi is ⊕JNj -im-small coinvariant.

Proof (1) Let X be a submodule of N and let (P, p) , (Q, q) , and (Q′, q′) be the projective covers of M , N ,
and N/X , respectively. Let φ : P → Q′ be a homomorphism with Imφ ≪ Q′ . Since Q is projective,
there exists a homomorphism f : Q → Q′ such that q′f = νq , where ν : N → N/X is the natural
epimorphism. By ker q′ ≪ Q′ and νq is onto, f is an epimorphism. Hence, there exists a monomorphism
g : Q′ → Q such that fg = 1Q′ . Since M is N -im-small coinvariant, we see gφ(ker p) ⊆ ker q . Thus,
φ(ker p) = fgφ(ker p) ⊆ f(ker q) . By q′f(ker q) = νq(ker q) = 0 , f(ker q) ⊆ ker q′ and hence φ(ker p) ⊆ ker q′ .
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Thus, M is N/X -im-small coinvariant. Next we show that M is X -im-small coinvariant. Let (Q′′, q′′) be the
projective cover of X and let ψ : P → Q′′ be a homomorphism with Imψ ≪ Q′′ . Since Q′′ is projective, there
exists a homomorphism h : Q′′ → Q such that qh = q′′ . As M is N -im-small coinvariant, hψ(ker p) ⊆ ker q
and hence ψ(ker p) ⊆ ker(qh) = ker q′′ . Thus, M is X -im-small coinvariant.

(2) We can see that M is N/X -im-summand coinvariant for any submodule X of N by a similar
proof of (1). Let X be a coclosed submodule of N and let (P, p) and (Q, q) be projective covers of M
and N , respectively. Since Q is lifting, by [3, 3.2 (7)], there exists a direct summand T of Q such that
X = q(T ) . Then (T, q|T ) is the projective cover of X . For any homomorphism f : P → T with Imf ⊆⊕ T ,
since M is N -im-summand coinvariant, f(ker p) ⊆ ker q . On the other hand, since f(ker p) ⊆ T , we see
f(ker p) ⊆ ker q ∩ T = ker q|T . Thus, M is X -im-summand coinvariant.

(3) We prove only for the case of N -im-small coinvariant. Let S be a small submodule of M and let
(P, p) , (Q, q) be the projective covers of M , N , respectively. By S ≪ M , (P, νp) is the projective cover of
M/S , where ν :M →M/S is the natural epimorphism. Let φ : P → Q be a homomorphism with Imφ≪ Q .
Since M/S is N -im-small coinvariant, φ(ker νp) ⊆ ker q and hence φ(ker p) ⊆ ker q . Thus, M is N -im-small
coinvariant.

(4) We prove only for the case of N -im-small coinvariant. Let M =M ′ ⊕M ′′ and let (P ′, p′) , (P ′′, p′′) ,
(Q, q) be the projective covers of M ′ , M ′′ , N , respectively. Let φ : P ′ → Q be a homomorphism with
Imφ ≪ Q . Put P = P ′ ⊕ P ′′ and p = p′ ⊕ p′′ . Then (P, p) is the projective cover of M . Since M is
N -im-small coinvariant, (φ⊕ 0)(ker p) ⊆ ker q . Hence, φ(ker p′) ⊆ ker q . Thus, M ′ is N -im-small coinvariant.

(5) First we show if each Mi is N -im-small coinvariant, then so is ⊕IMi . Let (Pi, pi) and (Q, q) be
the projective covers of Mi (i ∈ I) and N , respectively. Put M = ⊕IMi , P = ⊕IPi , and p = ⊕Ipi . Then
(P, p) is the projective cover of M . Let φ : P → Q with Imφ≪ Q . Since each Mi is N -im-small coinvariant,
(φ|Pi

)(ker pi) ⊆ ker q . Hence, φ(ker p) = φ(⊕I ker pi) =
∑

I φ(ker pi) ⊆ ker q .
Next we show if M is Nj -im-small coinvariant for any j ∈ J , then M is ⊕JNj -im-small coinvariant. Let

(P, p) and (Qj , qj) be the projective covers of M and Nj (j ∈ J) , respectively. Put N = ⊕JNj , Q = ⊕JQj ,
and q = ⊕Jqj . Then (Q, q) is the projective cover of N . Let πk : Q = ⊕JQj → Qk (k ∈ J) be the
projection and φ : P → Q with Imφ≪ Q . Since M is Nj -im-small coinvariant, (πjφ)(ker p) ⊆ ker qj . Hence,
φ(ker p) ⊆

∑
J πjφ(ker p) ⊆

∑
J ker qj = ker q . 2

Let M = A ⊕ B and let φ : A → B be a homomorphism. Then ⟨A φ→ B⟩ = {a − φ(a) | a ∈ A} is a

submodule of M , which is isomorphic to A , and we note that M = A⊕B = ⟨A φ→ B⟩ ⊕B .

Lemma 2.2 Let M1 , M2 be modules and put M =M1 ⊕M2 . If M = X ⊕M ′′
1 ⊕M ′′

2 for some X ⊆M and
M ′′

i ⊆ Mi (i = 1, 2) , then there exist M ′
i ⊆ Mi (i = 1, 2) and a homomorphism αi : M

′
i → M ′′

j (i ̸= j) such

that Mi =M ′
i ⊕M ′′

i and X = ⟨M ′
1

αi→M ′′
2 ⟩ ⊕ ⟨M ′

2
αi→M ′′

1 ⟩ .

Proof Let M = X ⊕ M ′′
1 ⊕ M ′′

2 , where M ′′
i ⊆ Mi , and put Mi = Ai ⊕ M ′′

i (i = 1, 2) . Let p : M =

A1 ⊕A2 ⊕M ′′
1 ⊕M ′′

2 → A1 ⊕A2 and q :M = A1 ⊕A2 ⊕M ′′
1 ⊕M ′′

2 →M ′′
1 ⊕M ′′

2 be the projections. Then we
can define a homomorphism f : p(X) → q(X) by f(p(x)) = −q(x) , where x ∈ X , and so we see

X = ⟨p(X)
f→ q(X)⟩ = ⟨A1 ⊕A2

f→M ′′
1 ⊕M ′′

2 ⟩ = ⟨A1

f |A1→ M ′′
1 ⊕M ′′

2 ⟩ ⊕ ⟨A2

f |A2→ M ′′
1 ⊕M ′′

2 ⟩.
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Let πi : M ′′
1 ⊕ M ′′

2 → M ′′
i be the projection and let βi : ⟨Ai

πif→ M ′′
i ⟩ → Ai be the natural isomorphism

(i = 1, 2) . Then we obtain ⟨Ai

f |Ai→ M ′′
1 ⊕M ′′

2 ⟩ = ⟨⟨Ai
πif→ M ′′

i ⟩
πjfβi→ M ′′

j ⟩ (i ̸= j) . Put M ′
i = ⟨Ai

πif→ M ′′
i ⟩ ,

αi = πjfβi (i ̸= j) and then Mi =M ′
i ⊕M ′′

i (i = 1, 2) and X = ⟨M ′
1

α1→M ′′
2 ⟩ ⊕ ⟨M ′

2
α2→M ′′

1 ⟩ . 2

Proposition 2.3 Let R be a right perfect ring and let M1,M2, . . . ,Mm , N1, N2, . . . , Nn be modules. If Mi

is Nj -im-summand coinvariant and Nj -im-small coinvariant (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) , then ⊕m
i=1Mi is

⊕n
j=1Nj -im-summand coinvariant.

Proof It is enough to show the case of m = n = 2 , by Proposition 2.1(5).
First we show that if M is Ni -im-summand coinvariant and Ni -im-small coinvariant (i = 1, 2) , then M

is N1 ⊕N2 -im-summand coinvariant. Let (P, p) and (Qi, qi) be the projective covers of M and Ni (i = 1, 2) ,
respectively, and put Q = Q1 ⊕ Q2 , q = q1 ⊕ q2 and let φ : P → Q be a homomorphism with φ(P ) ⊆⊕ Q .
Since Q satisfies FIEP, there exists Q′′

i ⊆ Qi (i = 1, 2) such that Q = φ(P ) ⊕ Q′′
1 ⊕ Q′′

2 . By Lemma 2.2,
there exist a direct summand Q′

i of Qi and a homomorphism αi : Q
′
i → Q′′

j (i ̸= j) such that Qi = Q′
i ⊕Q′′

i

and φ(P ) = ⟨Q′
1

α1→ Q′′
2⟩ ⊕ ⟨Q′

2
α2→ Q′′

1⟩ . Let πi : φ(P ) = ⟨Q′
1

α1→ Q′′
2⟩ ⊕ ⟨Q′

2
α2→ Q′′

1⟩ → ⟨Q′
i

αi→ Q′′
j ⟩ (i ̸= j) ,

s′i : Q = Q′
1 ⊕Q′

2 ⊕Q′′
1 ⊕Q′′

2 → Q′
i , s′′i : Q = Q′

1 ⊕Q′
2 ⊕Q′′

1 ⊕Q′′
2 → Q′′

i (i = 1, 2) be the projections. Since M
is Ni -im-summand coinvariant and s′iπiφ(P ) = Q′

i ⊆⊕ Qi , we see

s′iπiφ(ker p) ⊆ ker qi · · · (i)

for i = 1, 2 . As Q′′
j is lifting, there exists a decomposition Q′′

j = Q′′
j1 ⊕ Q′′

j2 such that Q′′
j1 ⊆Q′′

j
c s′′j πiφ(P )

(i ̸= j) . Let tij : Q′′
i = Q′′

i1⊕Q′′
i2 → Q′′

ij be the projections (i, j = 1, 2) . By s′′j πiφ(P ) = Q′′
j1⊕(s′′j πiφ(P )∩Q′′

j2) ,
we see tj1(s

′′
j πiφ(P )) = Q′′

j1 ⊆⊕ Qj and tj2(s
′′
j πiφ(P )) = s′′j πiφ(P ) ∩Q′′

i2 ≪ Q′′
i2 (i ̸= j) . Since M is Nj -im-

summand coinvariant we obtain tj1s
′′
j πiφ(ker p) ⊆ ker qj (i ̸= j) . On the other hand, since M is Nj -im-small

coinvariant, we see tj2s′′j πiφ(ker p) ⊆ ker qj (i ̸= j) . Hence, we obtain

s′′j πiφ(ker p) ⊆ tj1s
′′
j πiφ(ker p)⊕ tj2s

′′
j πiφ(ker p) ⊆ ker qj · · · (ii).

By (i), (ii) , πiφ(ker p) ⊆ ker q (i = 1, 2) , since πiφ(ker p) ⊆ Q′
i ⊕Q′′

j (i ̸= j) . Thus, we obtain

φ(ker p) ⊆ π1φ(ker p)⊕ π2φ(ker p) ⊆ ker q.

Therefore, M is N1 ⊕N2 -im-summand coinvariant.
Next we prove that if Mi is N -im-summand coinvariant and N -im-small coinvariant (i = 1, 2) , then

M1 ⊕M2 is N -im-summand coinvariant. Let (Pi, pi) and (Q, q) be the projective covers of Mi (i = 1, 2)

and N , respectively, and put P = P1 ⊕ P2 , p = p1 ⊕ p2 and let φ : P → Q be a homomorphism with
φ(P ) ⊆⊕ Q . Since φ(P ) is projective, kerφ is a direct summand of P . Since P satisfies FIEP, there exists
P ′′
i ⊆ Pi (i = 1, 2) such that P = kerφ ⊕ P ′′

1 ⊕ P ′′
2 . By Lemma 2.2, there exist a direct summand P ′

i of Pi

and a homomorphism βi : P
′
i → P ′′

j (i ̸= j) such that Pi = P ′
i ⊕ P ′′

i and kerφ = ⟨P ′
1

β1→ P ′′
2 ⟩ ⊕ ⟨P ′

2
β2→ P ′′

1 ⟩ .
Let u′i : P = P ′

1 ⊕ P ′
2 ⊕ P ′′

1 ⊕ P ′′
2 → P ′

i be the projection (i = 1, 2) . Then u′i|⟨P ′
i

βi→P ′′
j ⟩

is an isomorphism
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from ⟨P ′
i

βi→ P ′′
j ⟩ to P ′

i (i ̸= j) . Put εi = (u′i|⟨P ′
i

βi→P ′′
j ⟩
)−1 ⊕ 1P ′′

i
. Since Mi is N -im-summand coinvariant and

φεi(Pi) = φ(P ′′
i ) ⊆⊕ Q , we see

φεi(ker pi) ⊆ ker q · · · (iii).

As P ′′
j is lifting, there exists a decomposition P ′′

j = P ′′
j1 ⊕ P ′′

j2 such that P ′′
j1 ⊆P ′′

j
c βi(P

′
i ) (i ̸= j) . Let

vij : P ′′
i = P ′′

i1 ⊕ P ′′
i2 → P ′′

ij be the projections (i, j = 1, 2) . Since Mi is N -im-summand coinvariant and
φvj1βi(u

′
i|Pi

)(Pi) = φ(P ′′
j1) ⊆⊕ Q , we see φvj1βiu

′
i(ker pi) ⊆ ker q . On the other hand, by vj2βi(P

′
i ) =

βi(P
′
i ) ∩ P ′′

j2 ≪ P ′′
j2 , φvj2βi(u′i|Pi

)(Pi) = φ(βi(P
′
i ) ∩ P ′′

j2) ≪ Q . Since Mi is N -im-small coinvariant, we see
φvj2βi(u

′
i|Pi)(ker pi) ⊆ ker q . Hence,

φβiu
′
i(ker pi) = φ(vj1 + vj2)βiu

′
i(ker pi) ⊆ ker q · · · (iv).

For any ki ∈ ker pi , we express ki in Pi = P ′
i ⊕P ′′

i as ki = k′i + k′′i , where k′i ∈ P ′
i and k′′i ∈ P ′′

i . By (iii) and
(iv) , φ(ki) = φ(k′i+k

′′
i ) = φ(k′i−βi(k′i)+k′′i +βi(k′i)) = φεi(ki)+φβiu

′
i(ki) ∈ ker q and hence φ(ker pi) ⊆ ker q .

Thus, we obtain
φ(ker p) = φ(ker p1 ⊕ ker p2) ⊆ ker q.

Therefore, M1 ⊕M2 is N -im-summand coinvariant. 2

Now we consider a connection between im-small coinvariance and im-small projectivity over a right perfect
ring. First we give a useful lemma.

Lemma 2.4 (cf. [23, Theorem 27]) Let M and N be modules, (P, p) and (Q, q) projective covers of M and
N , respectively, and φ : P → Q a homomorphism and π : N → N/qφ(ker p) the natural epimorphism. Then
we can define a homomorphism f : M → N/qφ(ker p) by f(p(α)) = πqφ(α) , where α ∈ P . If f is lifted to a
homomorphism g :M → N , then φ(ker p) ⊆ ker q .

Proof Let φ : P → Q be a homomorphism. Then we can define a homomorphism f : M → N/qφ(ker p)
by f(p(α)) = πqφ(α) , where α ∈ P and π : N → N/qφ(ker p) is the natural epimorphism. If f is lifted
to a homomorphism g : M → N , then πg = f . Since P is projective, there exists a homomorphism
ψ : P → Q such that qψ = gp . Then qψ(ker p) = gp(ker p) = 0 and so ψ(ker p) ⊆ ker q . For any α ∈ P ,
πqφ(α) = f(p(α)) = πgp(α) = πqψ(α) and so q(φ − ψ)(α) ∈ kerπ = qφ(ker p) . Hence, there exists k ∈ ker p
such that q(φ − ψ)(α) = qφ(k) . By ψ(k) ∈ ker q , qψ(k) = 0 and hence q(φ − ψ)(α) = q(φ − ψ)(k) . Thus,
P = ker(q(φ − ψ)) + ker p = ker(q(φ − ψ)) , so we see qφ = qψ . Hence, qφ(ker p) = qψ(ker p) ⊆ q(ker q) = 0 .
Therefore, φ(ker p) ⊆ ker q . 2

Proposition 2.5 Let M and N be modules over a right perfect ring. Then M is N -im-small coinvariant if
and only if M is im-small N -projective.

Proof Let (P, p) and (Q, q) be projective covers of M and N , respectively.
(⇒) Let f : M → X be a homomorphism with Imf ≪ X and g : N → X an epimorphism.

Since P is projective, there exists a homomorphism φ : P → Q such that gqφ = fp . As Q is lifting,
there exists a decomposition Q = K ⊕ Q′ such that K ⊆Q

c ker gq . Let π : Q = K ⊕ Q′ → Q′ be the
projection. Suppose Q′ = πφ(P ) + T for some T ⊆ Q′ . By gq(πφ(P )) = gqφ(P ) = fp(P ) = f(M) ≪ X ,
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gq(Q′) = gq(πφ(P ))+ gq(T ) = gq(T ) , so Q′ = ker(gq|Q′)+T = T and hence πφ(P ) ≪ Q′ . Since M is N -im-
small coinvariant, πφ(ker p) ⊆ ker q . Thus, we can define a homomorphism h :M → N by h(p(α)) = qπφ(α) ,
where α ∈ P . For any m = p(α) ∈ M , gh(m) = gh(p(α)) = gqπφ(α) . By gqφ(α) = gqπφ(α) , we see
gh(m) = gqφ(α) = fp(α) = f(m) .

(⇐) Let φ : P → Q be a homomorphism with φ(P ) ≪ Q and let π : N → N/qφ(ker p) be the natural
epimorphism. Then we can define a homomorphism f : M → N/qφ(ker p) by f(p(α)) = πqφ(α) , where
α ∈ P . By φ(P ) ≪ Q , Imf ≪ N/qφ(ker p) . Since M is im-small N -projective, there exists a homomorphism
g :M → N such that πg = f . By Lemma 2.4, we obtain φ(ker p) ⊆ ker q . 2

Remark 2.6 Let R be a right perfect ring and M and N be two R -modules. Assume that (P, p) and (Q, q)

are projective covers of M and N , respectively. Then, by the similar proof of Proposition 2.5,
(1) M is N -projective if and only if for every homomorphism φ : P → Q , φ(ker p) ⊆ ker q .
(2) If M is epi-N -projective, then for every isomorphism φ : P → Q , φ(ker p) ⊆ ker q . The converse of this
fact is not true. In fact, Z/4Z -module Z/2Z is not epi-(Z/2Z ⊕ Z/4Z)Z/4Z -projective. However, since Z/4Z
and Z/4Z ⊕ Z/4Z are projective covers of Z/2Z and Z/2Z ⊕ Z/4Z , respectively, there are no isomorphisms
between the projective cover of Z/2Z and of Z/2Z⊕ Z/4Z . Hence, the converse does not hold.

Next we consider a connection between im-summand coinvariance and im-coclosed projectivity over a
right perfect ring.

Theorem 2.7 Let M and N be modules over a right perfect ring. Then M is N -im-summand coinvariant if
and only if M is im-coclosed N -projective.

Proof Let (P, p) and (Q, q) be projective covers of the modules M and N , respectively.
(⇒) Let f be a homomorphism from M to some module X such that f(M) is coclosed in X and

let g be an epimorphism from N to X . Since Q is lifting, there exists a decomposition Q = K ⊕ Q′ such
that K ⊆Q

c ker gq . Then gq|Q′ : Q′ → X is a small epimorphism. Since Q′ is also lifting, there exists a

decomposition Q′ = Q1 ⊕Q2 such that Q1 ⊆Q′

c (gq|Q′)−1(f(M)) . By [3, 3.2(7)], gq(Q1) ⊆X
c f(M) . As f(M)

is coclosed in X , we see gq(Q1) = f(M) . Since P is projective, there exists a homomorphism φ : P → Q1

such that (gq|Q1)φ = fp . By ker gq|Q1 ≪ Q1 , φ is onto. We see φ(ker p) ⊆ ker q . Hence, we can define a
homomorphism h :M → N by h(p(α)) = qφ(α) . Then gh = f .

(⇐) Let φ : P → Q be a homomorphism with φ(P ) ⊆⊕ Q . By qφ(ker p) ≪ N , the natural map
π : N → N/qφ(ker p) is a small epimorphism. Hence, πqφ(P ) ⊆cc N/qφ(ker p) by [3, 3.7(5)]. Now we define
a homomorphism f :M → N/qφ(ker p) by f(p(α)) = πqφ(α) for every α ∈ P . Since f(M) ⊆cc N/qφ(ker p) ,
there exists a homomorphism g :M → N such that πg = f . By Lemma 2.4, we obtain φ(ker p) ⊆ ker q . 2

Proposition 2.8 Let M and N be modules over a right perfect ring. Then M is X -im-summand coinvariant
for any submodule X of N if and only if M is N -projective.

Proof (⇐) By Theorem 2.7 and [20, Proposition 4.31].
(⇒) Let f : M → N/K be a homomorphism and let πN : N → N/K be the natural epimorphism,

where K is any submodule of N . Then we can denote Imf = A/K for some submodule A of N with
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K ⊆ A . Let (P, p) and (Q, q) be projective covers of M and A , respectively. Since Q is lifting, there exists a
decomposition Q = T ⊕ Q′ such that T ⊆Q

c kerπAq , where πA : A → A/K is the natural epimorphism. We
denote πAq|Q′ by q′ , and then (Q′, q′) is the projective cover of A/K . Since P is projective, there exists an
epimorphism g : P → Q′ such that fp = q′g . Since M is A -im-summand coinvariant by the assumption, we
see ιg(ker p) ⊆ ker q , where ι is the injection from Q′ to Q = T ⊕Q′ . Hence, we can define a homomorphism
φ :M → N by φ(p(α)) = qιg(α) , where α ∈ P . Then πNφ = f . 2

The following corollary is immediate from Propositions 2.1 and 2.5 and Theorem 2.7.

Corollary 2.9 Let M , N , Mi (i ∈ I) , and Nj (j ∈ J) be modules over a right perfect ring. Then:

(1) If M is im-small N -projective, then M is im-small N/X -projective and im-small X -projective for any
submodule X of N .

(2) If M is im-coclosed N -projective, then M is im-coclosed N/X -projective for any submodule X of N .
Moreover, for any coclosed submodule X of N , M is im-coclosed X -projective.

(3) If M/S is im-small (im-coclosed, resp.) N -projective for some S ≪M , then M is im-small (im-coclosed,
resp.) N -projective.

(4) If M is im-small (im-coclosed, resp.) N -projective, then M ′ is im-small (im-coclosed, resp.) N -projective
for any direct summand M ′ of M .

(5) If Mi is im-small Nj -projective for any i ∈ I, j ∈ J , then ⊕IMi is im-small ⊕JNj -projective.

Example 2.10 (1) An N -im-summand coinvariant module is not necessarily N -im-small coinvariant. Let

R =


K K K K
0 K 0 K
0 0 K 0
0 0 0 K

 , where K is any field. Then the ring R is Artinian, that is, right perfect. Let

M = (0,K,K,K)/(0, 0,K,K) and N = (K,K,K,K) . Since N is indecomposable lifting, N/X is also
indecomposable lifting for any submodule X of N , so N/X is lifting. A homomorphism f :M → N/X with
Imf ⊆cc N/X is only the zero map, because M is not isomorphic to N/X for any submodule X of N . Hence,
M is im-coclosed N -projective. On the other hand, the inclusion map ι :M → N/(0, 0,K,K) cannot be lifted
to a homomorphism from M to N . Since Imι is small in N/(0, 0,K,K) , M is not im-small N -projective.
Therefore, M is N -im-summand coinvariant but not N -im-small coinvariant by Theorem 2.7 and Proposition
2.5.

(2) Let R be the ring

K 0 K
0 K 0
0 0 K

 , where K is any field. Then R/J is im-small R -projective, but

not epi-R -projective. Therefore, the im-small N -projectivity does not imply the epi-N -projectivity.

According to the above example, in general, an N -im-summand coinvariant module M need not be
N -im-small coinvariant for a module M over a right perfect ring. However, if N is a small epimorphic image
of M , the following holds.
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Proposition 2.11 Let R be a right perfect ring and let M , N be modules. Suppose that there exists a small
epimorphism from M to N . If M is N -im-summand coinvariant, then M is N -im-small coinvariant.

Proof Let M be an N -im-summand coinvariant module and let f :M → N be a small epimorphism. Since
f is a small epimorphism, we can take (P, p) and (P, fp) as the projective covers of M and N , respectively.

Let φ : P → P be an endomorphism with φ(P ) ≪ P . By φ(P ) ≪ P , P = (1 − φ)(P ) + φ(P ) =

(1− φ)(P ) , so we see that 1− φ is onto. Since M is N -im-summand coinvariant, (1− φ)(ker p) ⊆ ker fp . By
ker p ⊆ ker fp , φ(ker p) ⊆ ker fp . Therefore, M is N -im-small coinvariant. 2

In the proof of Proposition 2.11, for any k ∈ ker(1−φ) , k = φ(k) ∈ φ(P ) . Thus, ker(1−φ) ⊆ Imφ≪ P .
On the other hand, ker(1− φ) is a direct summand of P by P/ ker(1− φ) ≃ (1− φ)(P ) = P . Thus, 1− φ is
a monomorphism. Hence, by the similar proof of Proposition 2.11, we obtain the following:

Corollary 2.12 Let M be a module over a right perfect ring and consider the following conditions:

(1) M is im-summand coinvariant,

(2) M is automorphism coinvariant,

(3) M is im-small coinvariant.

Then (1) ⇒ (2) ⇒ (3) holds.

Now we show that the implication in Corollary 2.12 is not reversible.

Example 2.13 Put GZ/4Z = Z/2Z⊕Z/4Z . Then G is an im-small G -projective Z/4Z -module but not epi-G -
projective, because (Z/2Z)Z/4Z is im-small (Z/4Z)Z/4Z -projective but not (epi-)(Z/4Z)Z/4Z -projective. Hence,
G is not automorphism coinvariant by [9, Theorem 2.3]. Also, G is im-small coinvariant by Proposition 2.5. In
addition, it is known that there exists an automorphism coinvariant right R -module that is not quasi-projective
(and hence not im-summand coinvariant by Theorem 2.17) over a noncommutative perfect ring R (see [10,
Example 5.1]). Thus, in general, the converse of the above corollary does not hold over a noncommutative
perfect ring R .

Proposition 2.14 Let M and N be modules over a right perfect ring. If M is im-summand N -projective,
then M is radical N -projective.

Proof Let f :M → X be a homomorphism and let g : N → X be an epimorphism. Let Y be a supplement of
Imf in X . By Imf ∩Y is small in X , the natural epimorphism ρ : X → X/(Imf ∩Y ) is a small epimorphism.
Then X/(Imf ∩ Y ) = Imf/(Imf ∩ Y )⊕ Y /(Imf ∩ Y ) and so Imρf = Imf/(Imf ∩ Y ) is a direct summand of
X/(Imf ∩ Y ) . Since M is im-summand N -projective, there exists a homomorphism h : M → N such that
ρf = ρgh . Therefore, M is radical N -projective. 2

Proposition 2.15 Let R be a right perfect ring and let M , N be modules. Then M is N -im-summand
coinvariant and N -im-small coinvariant if and only if M is N -projective.

Proof By Propositions 2.5 and 2.14 and [17, Proposition 1.3]. 2

The following is obtained by Propositions 2.1 and 2.15 and Remark 2.6.
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Corollary 2.16 Let R be a right perfect ring, N a module, and S ≪M . If M/S is N -projective then M is
N -projective.

Theorem 2.17 Let R be a right perfect ring, let M be a module, and let N be a small epimorphic image of
M . Then the following conditions are equivalent:

(a) M is N -projective,

(b) M is im-coclosed N -projective,

(c) M is N -im-summand coinvariant.

Proof By Theorem 2.7 and Propositions 2.11 and 2.15. 2

Next we show that M is quasi-projective if and only if M is im-summand M -projective, if and only if
M is im-summand coinvariant, for any module M over a right perfect ring. We first need to give the following
lemma:

Lemma 2.18 Let M be an im-summand M -projective module and let (P, ν) be the projective cover of M .
For any decomposition P = P1 ⊕ P2 , M = ν(P1)⊕ ν(P2) .

Proof Let M be im-summand M -projective, let (P, ν) be the projective cover of M , and let P = P1 ⊕ P2 .
Let pi : P = P1 ⊕ P2 → Pi be the projection (i = 1, 2) . Given ν(x1) = ν(x2) ∈ [ν(P1)/νp1(ker ν)] ∩ [(ν(P2) +

νp1(ker ν))/νp1(ker ν)] . By ν(x1 − x2) ∈ νp1(ker ν) , there exists k ∈ ker ν such that ν(x1 − x2) = ν(p1(k)) .
Then x1 − x2 − p1(k) ∈ ker ν and so x1 − p1(k) ∈ p1(ker ν) . By x1 ∈ p1(ker ν) , we see [ν(P1)/νp1(ker ν)] ∩
[(ν(P2) + νp1(ker ν))/νp1(ker ν)] = 0 . Now we define f : M → M/νp1(ker ν) by f(ν(α)) = νp1(α) , where
α ∈ P . Then Imf = ν(P1)/νp1(ker ν) ⊆⊕ M/νp1(ker ν) . Since M is im-summand M -projective, there exists
an endomorphism g of M such that πg = f , where π : M → M/νp1(ker ν) is the natural epimorphism. By
Lemma 2.4, we obtain p1(ker ν) ⊆ ker ν .

By ν(P1) ∩ ν(P2) ⊆ νp1(ker ν) ⊆ ν(ker ν) = 0 , we obtain that M = ν(P1)⊕ ν(P2) . 2

Theorem 2.19 Let M be a module over a right perfect ring. Then M is im-summand M -projective if and
only if M is im-summand coinvariant.

Proof (⇐) By Theorem 2.7.
(⇒) Let (P, p) be the projective cover of M and let φ be an endomorphism of P with Imφ ⊆⊕ P . Put

P = φ(P )⊕P ′ . By Lemma 2.18, we see M = pφ(P )⊕p(P ′) . Then M/pφ(ker p) = (pφ(P )/pφ(ker p))⊕((p(P ′)+

pφ(ker p))/pφ(ker p)) . Now we define the homomorphism f : M → M/pφ(ker p) by f(p(α)) = πpφ(α) , where
α ∈ P and π : M → M/pφ(ker p) is the natural epimorphism. Since M is im-summand M -projective
and pφ(P )/pφ(ker p) ⊆⊕ M/pφ(ker p) , we obtain φ(ker p) ⊆ ker p by Lemma 2.4. Thus, M is im-summand
coinvariant. 2

Corollary 2.20 Let M be a module over a right perfect ring. Then the following conditions are equivalent:

(a) M is quasi-projective,
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(b) M is im-coclosed M -projective,

(c) M is im-summand M -projective,

(d) M is im-summand coinvariant.

If M is lifting, then (a)–(d) are equivalent to:

(e) M is automorphism coinvariant.

Proof By Proposition 2.19, Theorem 2.17, [9, Theorem 2.3], and [14, Corollary 2.6]. 2

By [3, Exercises 4.45(8)] (cf.[4, Example 2.3 and Theorem 2.5]), there is a pseudo-projective module over
a noncommutative two-sided perfect ring but not quasi-projective. Hence, Corollary 2.20 (a) ⇔ (e) does not
hold in general.

3. Ker-essential invariant and ker-summand invariant modules
In this section, we first give some fundamental properties of ker-essential invariant modules and ker-summand
invariant modules.

Proposition 3.1 Let M , N , Mi (i ∈ I) , and Nj (j ∈ J) be modules. Then:

(1) If M is N -ker-essential invariant, then M is X -ker-essential invariant and N/X -ker-essential invariant
for any submodule X of N .

(2) If M is N -ker-summand invariant, then M is X -ker-summand invariant for any submodule X of N .

(3) If A is N -ker-essential (N -ker-summand, resp.) invariant for some essential submodule A of M , then
M is N -ker-essential (N -ker-summand, resp.) invariant.

(4) If M is N -ker-essential (N -ker-summand, resp.) invariant, then M ′ is N -ker-essential (N -ker-
summand, resp.) invariant for any direct summand M ′ of M .

(5) If Mi is Nj -ker-essential invariant (i ∈ I, j ∈ J) , then ΠIMi is ⊕JNj -ker-essential invariant.

Proof (1) Let X be a submodule of N and let f : E(X) → E(M) be a homomorphism with ker f ⊆e E(X) .
Let Y be a complement of X in N . Then E(N) = E(X)⊕E(Y ) . Now we define f∗ : E(N) = E(X)⊕E(Y ) →
E(M) by f∗(a+ b) = f(a) , where a ∈ E(X) and b ∈ E(Y ) . Then ker f∗ = ker f ⊕ E(Y ) ⊆e E(N) . Since M
is N -ker-essential invariant, we see f(X) ⊆ f∗(N) ⊆M .

Next we show that M is N/X -ker-essential invariant. Let g : E(N/X) → E(M) be a homomorphism
with ker g ⊆e E(N/X) and let π : N → N/X be the natural epimorphism. Since E(N/X) is injective,
there exists a homomorphism h : E(N) → E(N/X) such that h|N = π . By ker gh = h−1(ker g) ⊆e E(N) ,
g(N/X) = gh(N) ⊆M , so M is N/X -ker-essential invariant.

(2) We can see by the similar proof of (1).
(3) Obvious.
(4) We prove only for the case of N -ker-essential invariant. Let M =M ′⊕M ′′ and let f : E(N) → E(M ′)

be a homomorphism with ker f ⊆e E(N) . Since M is N -ker-essential invariant, f(N) ⊆ M = M ′ ⊕M ′′ . By
f(N) ⊆ E(M ′) , f(N) ⊆M ′ .
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(5) First we show if each Mi is N -ker-essential invariant, then so is a direct product ΠIMi . Since
ΠIE(Mi) is injective, we can take E(ΠIMi) as a direct summand of ΠIE(Mi) . Let ι : E(ΠIMi) → ΠIE(Mi)

be the injection and pk : ΠIE(Mi) → E(Mk) be the projection (k ∈ I) . Let f : E(N) → E(ΠIMi) be a
homomorphism with ker f ⊆e E(N) . Then ker piιf is essential in E(N) . Since each Mi is N -ker-essential
invariant, piιf(N) ⊆ Mi . Hence, f(N) = ιf(N) ⊆ ΠIpiιf(N) ⊆ ΠIMi . Therefore, ΠIMi is N -ker-essential
invariant.

Next we show that if M is Nj -ker-essential invariant for any j ∈ J , then M is ⊕JNj -ker-essential
invariant. Let f : E(⊕JNj) → E(M) be a homomorphism with ker f ⊆e E(⊕JNj) . For any l ∈ J ,
E(⊕JNj) = E(Nl) ⊕ E(⊕J−{l}Nj) and ker(f |E(Nl)) = ker f ∩ E(Nl) ⊆e E(Nl) . Since M is Nl -ker-essential
invariant, f(Nl) = f |E(Nl)(Nl) ⊆M . Hence, f(⊕JNj) =

∑
J f(Nj) ⊆M . 2

A module M is said to be extending if, for any submodule X of M , there exists a direct summand N

of M such that X ⊆e N . It is well known that any injective module is extending with FIEP.

Proposition 3.2 Let M1,M2, . . . ,Mm , N1, N2, . . . , Nn be modules. If Mi is Nj -ker-summand invariant and
Nj -ker-essential invariant (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) , then (M1⊕M2⊕· · ·⊕Mm) is (N1⊕N2⊕· · ·⊕Nn)-
ker-summand invariant.

Proof It is enough to show the case of m = n = 2 by Proposition 3.1(5).
First we show that if M is Ni -ker-summand invariant and Ni -ker-essential invariant (i = 1, 2) , then

M is N1 ⊕ N2 -ker-summand invariant. Put Ei = E(Ni) (i = 1, 2) , E = E1 ⊕ E2 , and let φ : E → E(M)

be a homomorphism with kerφ ⊆⊕ E . Since E satisfies FIEP, there exists E′′
i ⊆ Ei (i = 1, 2) such that

E = kerφ⊕E′′
1⊕E′′

2 . By Lemma 2.2, there exist a direct summand E′
i of Ei and a homomorphism αi : E

′
i → E′′

j

(i ̸= j) such that Ei = E′
i⊕E′′

i and kerφ = ⟨E′
1

α1→ E′′
2 ⟩⊕⟨E′

2
α2→ E′′

1 ⟩ . Let fi : Ei = E′
i⊕E′′

i → ⟨E′
i
αi→ E′′

j ⟩⊕E′′
i

be the natural isomorphism (i = 1, 2) . Then ker(φfi) = E′
i ⊆⊕ Ei (i = 1, 2) . Since M is Ni -ker-summand

invariant, we see
φfi(Ni) ⊆M · · · (i).

As E′
i is extending, there exists a decomposition E′

i = E′
i1 ⊕ E′

i2 such that kerαi ⊆e E
′
i1 . Let pi : Ei =

E′
i ⊕ E′′

i → E′
i and qij : E′

i = E′
i1 ⊕ E′

i2 → E′
ij (j = 1, 2) be the projections. By kerα1 ⊆e E′

11 ,
kerφα1q11p1 = E′

12 ⊕ E′′
1 ⊕ ker(φα1|E′

11
) ⊆e E1 . Since M is N1 -ker-essential invariant, φα1q11p1(N1) ⊆ M .

On the other hand, by kerφα1q12p1 = ker q12p1 = E′
11 ⊕ E′′

1 ⊆⊕ E1 , we see φα1q12p1(N1) ⊆ M , since M is
N1 -ker-summand invariant. Thus, we see

φα1p1(N1) ⊆ φα1q11p1(N1) + φα1q12p1(N1) ⊆M · · · (ii).

For any n1 ∈ N1 , we express n1 in E1 = E′
1 ⊕ E′′

1 as n1 = n′1 + n′′1 , where n′1 ∈ E′
1 and n′′1 ∈ E′′

1 .
By (i) and (ii) , φ(n1) = φ(n′1 − α1(n

′
1) + n′′1 + α1(n

′
1)) = φf1(n1) + φα1p1(n1) ∈ M , so we see φ(N1) ⊆ M .

Similarly we obtain φ(N2) ⊆M . Thus, φ(N1 ⊕N2) ⊆M .
Next we show that if Mi is N -ker-summand invariant and N -ker-essential invariant (i = 1, 2) , then

M1 ⊕M2 is N -ker-summand invariant. Put Fi = E(Mi) (i = 1, 2) , F = F1 ⊕ F2 , and let φ : E(N) → F

be a homomorphism with kerφ ⊆⊕ E(N) . As φ(E(N)) is injective, it is a direct summand of F . Since F

satisfies FIEP, there exists F ′′
i ⊆ Fi (i = 1, 2) such that F = φ(E(N)) ⊕ F ′′

1 ⊕ F ′′
2 . By Lemma 2.2, there
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exist a direct summand F ′
i of Fi and a homomorphism βi : F

′
i → F ′′

j (i ̸= j) such that Fi = F ′
i ⊕ F ′′

i and

φ(E(N)) = ⟨F ′
1

β1→ F ′′
2 ⟩ ⊕ ⟨F ′

2
β2→ F ′′

1 ⟩ . Let πi : φ(E(N)) = ⟨F ′
1

β1→ F ′′
2 ⟩ ⊕ ⟨F ′

2
β2→ F ′′

1 ⟩ → ⟨F ′
i

βi→ F ′′
j ⟩ (i ̸= j)

and s′i : F = F ′
1 ⊕ F ′

2 ⊕ F ′′
1 ⊕ F ′′

2 → F ′
i (i = 1, 2) be the projections. Then s′i|⟨F ′

i

βi→F ′′
j ⟩

is an isomorphism from

⟨F ′
i

βi→ F ′′
j ⟩ to F ′

i (i ̸= j) . Since Mi is N -ker-summand invariant and ker s′iπiφ ⊆⊕ E(N) , we see

s′iπiφ(N) ⊆Mi · · · (iii).

As F ′
i is extending, there exists a decomposition F ′

i = F ′
i1 ⊕ F ′

i2 such that kerβi ⊆e F
′
i1 . Let tij : F ′

i =

F ′
i1 ⊕ F ′

i2 → F ′
ij be the projections (i, j = 1, 2) . By kerβ1 ⊆e F

′
11 , ker(β1t11s′1π1φ) ⊆e E(N) . Since M2 is

N -ker-essential invariant, we see β1t11s
′
1π1φ(N) ⊆ M2 . On the other hand, by ker(β1t12s′1π1φ) ⊆⊕ E(N) ,

β1t12s
′
1π1φ(N) ⊆M2 since M2 is N -ker-summand invariant. Hence,

β1s
′
1π1φ(N) ⊆ β1t11s

′
1π1φ(N) + β1t12s

′
1π1φ(N) ⊆M2 · · · (iv).

For any n ∈ N , there exists x′1 ∈ F ′
1 such that π1φ(n) = x′1 − β1(x

′
1) . By (iii) , x′1 = s′1(x

′
1 − β1(x

′
1)) =

s′1π1φ(n) ∈ s′1π1φ(N) ⊆ M1 . In addition, by (iv) , β1(x
′
1) = β1s

′
1π1φ(n) ∈ β1s

′
1π1φ(N) ⊆ M2 . Thus,

π1φ(n) = x′1 − β1(x
′
1) ∈ M1 ⊕M2 . Similarly, we see π2φ(n) ∈ M1 ⊕M2 . Hence, φ(n) = π1φ(n) + π2φ(n) ∈

M1 ⊕M2 . Therefore, we obtain φ(N) ⊆M1 ⊕M2 . 2

Now we consider a connection between essential injectivity and ker-essential invariance.

Proposition 3.3 Let M and N be two modules. Then M is essentially N -injective if and only if M is
N -ker-essential invariant.

Proof (⇒) Let φ : E(N) → E(M) be a homomorphism with kerφ ⊆e E(N) . Then φ−1(M) ⊆e E(N) .
Put f = φ|φ−1(M)∩N . By ker f = kerφ ∩ N ⊆e E(N) ∩ N = N , we see ker f ⊆e φ

−1(M) ∩ N . Since M is
essentially N -injective, there exists a homomorphism g : N → M such that g|φ−1(M)∩N = f . Since E(M) is
injective, there exists a homomorphism ψ : E(N) → E(M) such that ψ|N = g . Clearly ψ(N) ⊆M . We claim
that M ∩ (φ − ψ)(N) = 0 . Let m ∈ M ∩ (φ − ψ)(N) . Then there exists n ∈ N such that m = (φ − ψ)(n) .
Hence, φ(n) = m+ ψ(n) ∈M , so we see n ∈ φ−1(M) ∩N and hence φ(n) = f(n) = ψ(n) . Thus, m = 0 . By
M ⊆e E(M) , (φ− ψ)(N) = 0 . Therefore, we obtain φ(N) = ψ(N) ⊆M .

(⇐) Let X be a submodule of N and let f : X →M be a homomorphism with ker f ⊆e X . Since E(M)

is injective, there exists a homomorphism φ : E(N) → E(M) such that φ|X = f . Since E(N) is extending,
there exists a decomposition E(N) = T ⊕Q such that X ⊆e T . Let π : E(N) = T ⊕Q→ T be the projection
map. Put ψ = φπ . By ker f ⊆e X ⊆e T , ker f ⊕Q ⊆e E(N) . By ker f ⊕Q ⊆ kerψ , kerψ ⊆e E(N) . Since
M is N -ker-essential invariant, we obtain ψ(N) ⊆ M . Put h = ψ|N . Then it is easy to check that h|X = f .
Therefore, M is essentially N -injective. 2

Recall that a module M is said to be ker-summand (ker-closed) N -injective if, for any submodule X of
N and any homomorphism f : X →M with ker f ⊆⊕ X (ker f is closed in X ), there exists a homomorphism
g : N →M such that g|X = f .

Proposition 3.4 Let M and N be modules and consider the following conditions:
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(1) M is ker-closed N -injective,

(2) M is N -ker-summand invariant,

(3) M is ker-summand N -injective.

Then (1) ⇒ (2) ⇒ (3) holds.

Proof (1) ⇒ (2) : Let φ : E(N) → E(M) be a homomorphism with kerφ ⊆⊕ E(N) . Put f = φ|φ−1(M)∩N .
We claim that ker f = kerφ∩N is a closed submodule of φ−1(M)∩N . Assume that there exists a submodule
T of φ−1(M)∩N such that kerφ∩N ⊊e T . By kerφ∩N ⊆ T ⊆ N , we see kerφ∩N = kerφ∩ T . Let A be
a complement of kerφ∩N in φ−1(M)∩N , and then T ∩A = 0 . Since (kerφ∩N)⊕A ⊆e φ

−1(M)∩N ⊆e N ,
we can write E(N) = kerφ⊕E(A) . Let x be an element of T \ (kerφ∩N) = T \ (kerφ∩T ) and let x = k+a ,
where k ∈ kerφ and a ∈ E(A) . Then a ̸= 0 . Since A ⊆e E(A) , there exists an element r of R such that ar
is a nonzero element of A . Then kr = xr − ar ∈ kerφ ∩ N = kerφ ∩ T , so 0 ̸= ar = xr − kr ∈ A ∩ T = 0 ,
a contradiction. Hence, ker f = kerφ ∩N is closed in φ−1(M) ∩N . Since M is ker-closed N -injective, there
exists a homomorphism g : N → M such that g|φ−1(M)∩N = f . Therefore, we see φ(N) ⊆ M by the same
proof as Proposition 3.3.

(2) ⇒ (3) : Let X be a submodule of N and let f : X → M be a homomorphism with ker f ⊆⊕ X .
Put X = ker f ⊕ X ′ . Let Y be a complement of X in N . Then ker f ⊕ X ′ ⊕ Y = X ⊕ Y ⊆e N , so
E(N) = E(ker f)⊕ E(X ′)⊕ E(Y ) . Since E(M) is injective and X ′ ⊆e E(X ′) , there exists a monomorphism
g : E(X ′) → E(M) such that g|X′ = f |X′ . Define g∗ : E(N) = E(ker f) ⊕ E(X ′) ⊕ E(Y ) → E(M) by
g∗(a1+a2+a3) = g(a2) , where a1 ∈ E(ker f) , a2 ∈ E(X ′) , and a3 ∈ E(Y ) . Then ker g∗ = E(ker f)⊕E(Y ) is a
direct summand of E(N) . Since M is N -ker-summand invariant, g∗(N) ⊆M . Hence, g∗|N is a homomorphism
from N to M . For any x ∈ X , we express x as x = k + x′ in X = ker f ⊕X ′ , where k ∈ ker f and x′ ∈ X ′ .
Then g∗(x) = g∗(k + x′) = g(x′) = f(x′) = f(k + x′) = f(x) . Thus, M is ker-summand N -injective. 2

The authors do not know whether the converse of Proposition 3.4 holds or not.

Proposition 3.5 Let M and N be modules. Then M is N/X -ker-summand invariant for any submodule X

of N if and only if M is N -injective.

Proof (⇐) By Proposition 3.4 and [20, Proposition 1.3].
(⇒) Let f : K → M be a homomorphism, where K is any submodule of N . Then we can define the

monomorphism f : K/ ker f → M by f(k + ker f) = f(k) , where k ∈ K . Since E(N/ ker f) is extending,
there exists a decomposition E(N/ ker f) = T ⊕ Q such that K/ ker f ⊆e T . Then T is the injective hull of
K/ ker f . Since E(M) is injective, there exists a monomorphism g : T → E(M) such that g|K/ ker f = f . Since
M is (N/ ker f )-ker-summand invariant by the assumption, gπ(N/ ker f) ⊆ M , where π is the projection
from E(N/ ker f) = T ⊕ Q to T . Let η : N → N/ ker f be the natural epimorphism. Then for any k ∈ K ,
gπη(k) = gπ(k + ker f) = g(k + ker f) = f(k + ker f) = f(k) . Therefore, gπη|K = f . 2

Example 3.6 An N -ker-summand invariant module is not necessarily N -ker-essential invariant. Let R =
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
K 0 0 0
K K 0 0
K 0 K 0
K K 0 K

 , M = (K,K, 0, 0)/(K, 0, 0, 0) , and N = (K,K,K,K) , where K is any field. Since N

is indecomposable extending (which is called uniform), X is indecomposable for any submodule X of N .
A homomorphism f : X → M with ker f closed in X is only the zero map because M is not isomorphic
to X for any submodule X of N . Hence, M is ker-closed N -injective. On the other hand, the natural
epimorphism f : (K,K, 0, 0) → M cannot be extended to a homomorphism from N to M . Since ker f is
essential in (K,K, 0, 0) , M is not essentially N -injective. Therefore, M is N -ker-summand invariant but not
N -ker-essential invariant by Propositions 3.3 and 3.4.

Next we consider a connection between ker-summand invariance and ker-summand injectivity. We first
give the following proposition:

Proposition 3.7 If M is N -ker-summand invariant, then it is N -ejective.

Proof Let X be a submodule of N and let f : X →M be a homomorphism. Since E(N) is extending, there
exists a decomposition E(N) = E1 ⊕ E′

1 such that ker f ⊆e E1 . By [21, Lemma 2.2], ker f ⊕ (E′
1 ∩X) ⊆e X .

As E′
1 is extending, there exists a decomposition E′

1 = E2 ⊕ E3 such that E′
1 ∩ X ⊆e E2 . Since f |E′

1∩X

is monic and E′
1 ∩ X ⊆e E2 , there exists a monomorphism g : E2 → E(M) such that g|E′

1∩X = f |E′
1∩X .

Now we define a homomophism φ from E(N) to E(M) by φ(x1 + x2 + x3) = g(x2) , where xi ∈ Ei

(i = 1, 2, 3) . Then kerφ = E1 ⊕ E3 ⊆⊕ E(N) and hence φ(N) ⊆ M . For any k + x ∈ ker f ⊕ (E′
1 ∩ X) ,

φ(k + x) = g(x) = f(x) = f(k + x) . Thus, M is N -ejective. 2

Corollary 3.8 Let N be a module and let X ⊆e M . If X is N -injective, then M is N -injective.

Proof Let X ⊆e M and let X be N -injective. By Propositions 3.1 and 3.3, M is essentially N -injective. On
the other hand, by Propositions 3.1, 3.4, and 3.7, M is N -ejective. Thus, M is N -injective by [18, Proposition
3]. 2

Proposition 3.9 Let M and N be modules. Suppose that there exists a monomorphism f : N →M such that
Imf ⊆e M . If M is N -ker-summand invariant, then M is N -ker-essential invariant.

Proof Let M be an N -ker-summand invariant module and let f : N → M be a monomorphism with
Imf ⊆e M . By Imf ⊆e M , there exists an isomorphism α : E(M) → E(N) such that α|f(N) = f−1 . Let
φ : E(N) → E(M) be a homomorphism with kerφ ⊆e E(N) . Given k ∈ ker(1E(M)−φα) . If k ̸= 0 , then there
exists r ∈ R such that 0 ̸= kr ∈ kerφα , by kerφα ⊆e E(M) . Then 0 = (1E(M)−φα)(kr) = kr−φα(kr) = kr ,
a contradiction. Thus, we see that 1E(M) − φα is a monomorphism.

Since M is N -ker-summand invariant, (1E(M) − φα)(α−1(N)) ⊆ M . By α−1(N) = f(N) ⊆ M ,
φ(N) = φα(α−1(N)) ⊆M . Thus, M is N -ker-essential invariant. 2

In the proof of Proposition 3.9, by kerφα ⊆e E(M) , we see (1E(M) − φα)(E(M)) ⊆e E(M) . Since
(1E(M) − φα)(E(M)) ≃ E(M) is injective, (1E(M) − φα)(E(M)) = E(M) . Hence, 1E(M) − φα is onto. Thus,
by Proposition 3.3 and the similar proof of Proposition 3.9, we obtain the following:
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Corollary 3.10 If M is an automorphism invariant module, then it is essentially M -injective.

Remark 3.11 (1) From Corollary 3.10, we see that the “extending” condition on M in [15, Proposition 2.4]
can be removed. Also, there exists a mono-N -injective module M with N ≇M such that M is not essentially
N -injective by [15, Example 2.5].

(2) By [12, Lemma 2] and [7, Theorem 16], we see that the converse in the above does not hold in general.

Proposition 3.12 Let M and N be modules. Then M is N -ker-summand invariant and N -ker-essential
invariant if and only if M is N -injective.

Proof By Propositions 3.3, 3.4, and 3.7 and [18, Proposition 3]. 2

Theorem 3.13 Let M be a module and let N be a module that is isomorphic to an essential submodule of M .
Then the following conditions are equivalent:

(a) M is N -injective,

(b) M is ker-closed N -injective,

(c) M is N -ker-summand invariant.

Proof By Propositions 3.4, 3.9, and 3.12. 2

Theorem 3.14 Let M be a module. Then the following conditions are equivalent:

(a) M is quasi-injective,

(b) M is ker-closed M -injective,

(c) M is ker-summand M -injective,

(d) M is ker-summand invariant.

Proof (a) ⇔ (b) ⇔ (d) : By Theorem 3.13.
(b) ⇒ (c) is clear.
(c) ⇒ (d) : Let f be an endomorphism of E(M) with ker f ⊆⊕ E(M) . Put E(M) = ker f ⊕ E .

By f−1(M) ⊆e E(M) , we see M ∩ f−1(M) ⊆e E(M) . Let 0 ̸= m ∈ M ∩ f−1(M) and express m

in E(M) = ker f ⊕ E as m = k + n , where k ∈ ker f and n ∈ E . In the case of k = 0 we see
m = n ∈ M ∩ f−1(M) ∩ E . If k ̸= 0 , then there exists r ∈ R such that 0 ̸= kr ∈ M ∩ ker f by
M ∩ ker f = ker f ∩ (M ∩ f−1(M)) ⊆e ker f . By M ∩ f−1(M) ∩ E ⊆e E , if nr /∈ M ∩ f−1(M) ∩ E ,
then there exists r′ ∈ R such that 0 ̸= nrr′ ∈M ∩ f−1(M) ∩ E . Thus, we see

(M ∩ ker f)⊕ (M ∩ f−1(M) ∩ E) ⊆e M ∩ f−1(M) ⊆e E(M).

Put X = (M ∩ ker f) ⊕ (M ∩ f−1(M) ∩ E) . Then ker(f |X) is a direct summand of X . By (c), there exists
an endomorphism g of M such that g|X = f |X . By X ⊆ ker((f − g)|M ) ⊆ M ∩ f−1(M) , ker((f − g)|M ) ⊆e
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M ∩ f−1(M) . By [7, Theorem 16] and Proposition 3.10, M is essentially M -injective and hence there exists
an endomorphism h of M such that h|M∩f−1(M) = (f − g)|M∩f−1(M) .

Given m = (f − h − g)(n) ∈ (f − (h + g))(M) ∩ M . Then n ∈ f−1(M) ∩ M and hence m =

(f−g)(n)−h(n) = h(n)−h(n) = 0 . We see (f−(h+g))(M)∩M = 0 . By M ⊆e E(M) , (f−(h+g))(M) = 0 .
Thus, f(M) = (h+ g)(M) ⊆M . 2

Corollary 3.15 Let M be an extending module. Then the following conditions are equivalent:

(a) M is automorphism invariant,

(b) M is ker-summand invariant,

(c) M is quasi-injective.

Proof By [7, Theorem 16], [8, Theorem 5.9], and Theorem 3.14. 2

By [7, Example 9], there is an automorphism invariant module that is not quasi-injective. Finally, we

will give another such example. Let R =

K K K
0 K 0
0 0 K

 , where K is any field. Then the right R -module M =

(K,K,K) is not extending. Put N1 = (0,K, 0) and N2 = (0, 0,K) . Then we see E(N1) =M/N2 = (K,K, 0) ,
E(N2) =M/N2 = (K, 0,K) , and E(M) = E(N1)⊕E(N2) . Since there is no nonzero homomorphism between
E(N1) and E(E2) , M is automorphism invariant, but M is not quasi-injective since it is not extending. Hence,
the condition “extending” in the above corollary is not superfluous.
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