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Abstract: In this work, we construct a relationship between matched pairs and triples of groupoids. Given two 3-
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1. Introduction
Matched pairs of groups were introduced by Takeuchi [17] as a group version of Singer’s work [16] for Hopf
algebras. Majid introduced the Lie algebra analogue of matched pairs and applied this to quantum groups [15].
The theory of matched pairs was also used as a tool for set theoretic solutions of the Yang–Baxter equation in
[10].

Groupoids were introduced by Brandt [1] in 1926 as algebraic structures also known as virtual groups. A
group-like approach to the groupoid is a category C with objects set C0 and morphisms set C1 in which each
morphism is invertible. These structures are useful in a variety of mathematics from geometry to homotopy
theory, algebra, and topology. For more information on groupoids see [2–5, 11]. Double groupoids were
introduced by Ehresmann in [9]. A double groupoid can be seen as a set of boxes with horizontal and vertical
compositions together with interchange law. For more information see [7, 8, 12].

In his brief note [6], Brown introduced a geometric approach to double groupoids. The existence of a
triple groupoid by matched triples of groups, mentioned by Brown [6], is a useful way to approach geometric
considerations. Later, Majard [13] generalized this concept for n-tuple groups. In this work, following Brown,
we investigate this situation for triple groupoids, diagrammatically.

2. Matched pairs of group(oid)s

In this section, we recall some basic information about matched pairs of groups and groupoids.

Definition 2.1 A matched pair of groups means a triple (G1, G2, σ) where G1 and G2 are groups and the map

σ : G1 ×G2 → G2 ×G1

(g1, g2) 7→ (g1 ⇀ g2, g1 ↼ g2)

∗Correspondence: koray.yilmaz@dpu.edu.tr
2010 AMS Mathematics Subject Classification: 18G50, 18G55

This work is licensed under a Creative Commons Attribution 4.0 International License.
1492

https://orcid.org/0000-0002-8641-0603
https://orcid.org/0000-0002-4823-8267


YILMAZ and ULUALAN/Turk J Math

satisfies the following conditions:

g2 ⇀ (h2 ⇀ g1) = g2h2 ⇀ g1

g2h2 ↼ = (g2 ↼ (h2 ⇀ g1)) (h2 ↼ g1)

(g2 ↼ g1) ↼ h2 = g2 ↼ g1h2

g2 ⇀ g1h1 = (g2 ⇀ g1) ((g2 ↼ g1) ⇀ h1)

for g1, h1 ∈ G1 and g2, h2 ∈ G2 .

G1×G2 forms a group with the product, denoted by G1 1 G2 . Conversely, if G1 and G2 are subgroups
of a group G such that the product map G1 ×G2 → G is bijective, then (G1, G2) forms a matched pair with
structure σ (g1, g2) = (g1 ⇀ g2, g1 ↼ g2) defined by g1g2 = (g1 ⇀ g2) (g1 ↼ g2) .

The structure map σ of a matched pair (G1, G2) is bijective. The triple
(
G1, G2, σ

−1
)
forms a matched

pair called the opposite of (G1, G2) . The group G2 1 G1 is isomorphic to G1 1 G2 by (g2, g1) 7−→ (1, g2) (g1, 1) .

Let g2, g
′
2 ∈ G2 and g1, g

′
1 ∈ G1. We denote the relation

(g′1, g
′
2) = σ (g2, g1)

by the diagram

g2

==
==

==
==

==
==

==
=

g1

��
��
��
��
��
��
��
��

or

g′1 g′2

g′1

@@
@@

@@
@

@@
@@

@@
@@

g1

~~
~~
~~
~~
~~
~~
~~
~~

g1 g2

Since the structure map is nondegenerate in the sense of [13] and [14], upon determining one element
(g1, g2) , the rest of the elements are determined by the diagram above.

A groupoid is a small category in which all arrows are invertible. It consists of a set of arrows G1 , a set
of objects G0 (called the base), source and target maps s, t : G → P , composition ◦ : G1 × G1 → G1 , and
identities id : G0 → G1 .

Alternatively, a groupoid may be defined as a set G with a partially defined associative product and
partial units, whose elements are all invertible.

Definition 2.2 Let
( G

s //
t // G0, ◦)

e

^^

be a groupoid. For a map ℘ : ε → G0 a left action of G on ℘ is a map

� : G× ε → ε

satisfying the following rules:
1. ℘ (α�e) = s (α)
2. α� (β � e) = (αβ)� e
3. id (℘ (e))� e = e

1493



YILMAZ and ULUALAN/Turk J Math

for all α, β ∈ G and e ∈ ℘ . A right action of G on ℏ : ε → G0 is a map

� : ε×G → ε

satisfying the rules
1. ℏ (e� α) = t (α)
2. (e� α)� β = e� (αβ)
3. e� id (ℏ (e)) = e

for all α, β ∈ G and e ∈ ℘ .

Definition 2.3 A matched pair of groupoids consists of two groupoids (G1, G2) with the same base G0 together
with the following data:

Let s1, t1 : G1 ⇒ P and s2, t2 : G2 ⇒ G0 be the source and target maps of G1 and G2 , respectively.
Then we have a left action,

� : G2 ×G1 → G1

of G2 on s1 : G1 → G0 and a right action,

� : G2 ×G1 → G2

of G1 on t2 : G2 → G0. All the data given above satisfy the following:
i. s1 (β ▷ γ) = s2 (γ ◁ β) ,

ii. β � (σα) = (β � σ) [(β � σ)� α] ,

iii. (β1β2)� α = [β1 � (β2 � α)] (β2 � α) ,

for all α, γ ∈ G1 , β, β1, β2 ∈ G2 , for which the operations are defined.

Lemma 2.4 For all α, γ ∈ G1 , β, β1, β2 ∈ G2 for which the operations are defined, we have
i. t1 (β � γ) = s2 (β � γ) ,

ii. (β � σ)
−1

= (β � σ)� σ−1 ,

iii.(β2 � α)
−1

=
[
β−1
2 � (β2 � α)

]
.

Proof i. For A1, A2, A3 ∈ G0 and β : A1 → A2 ∈ G2, γ : A2 → A3 ∈ G1 consider the following diagram:

A1

β

��

β�γ // X

β�γ

��
A2 γ

// A3

where
s1 (β � γ) = s2 (β) = A1,
t2 (β � γ) = t1 (γ) = A3.

The possibility of X ∈ G0 gives us
t1 (β � γ) = s2 (β � γ) .
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ii. Let A1, A2, A3, A4 ∈ G0 , and β : A1 → A2 ∈ G2, σ : A2 → A3, α : A3 → A4 ∈ G1 . Considering the
following diagram,

A1
β�σ //

β

��

∗

β�σ

��

(β�σ)�α // ∗

(β�σ)�α

��
A2 σ

// A3 α
// A4

we get
β � (σα) = (β � σ)� α
β � (σα) = (β � σ) [(β � σ)� α]

and taking σ = α−1 in the last equality we have

(β � σ)
−1

= (β � σ)� σ−1.

iii. For A1, A2, A3, A4 ∈ G0 , and β1 : A1 → A2, β2 : A2 → A3 ∈ G2, g : A3 → A4 ∈ G1 . Considering the
following diagram,

A
β1�(β2�α) //

β1

��

∗

β1�(β2�α)

��
B

β2�g //

β2

��

∗

β2�α

��
C

α
// D

we get
(β1β2)� α = β1 � (β2 � α)
(β1β2)� α = [β1 � (β2 � α)] (β2 � α)

and taking β−1
1 = β2 in the last equality we note that

(β2 � α)
−1

=
[
β−1
2 � (β2 � α)

]
.

2

3. Matched pairs and matched triple of groups and a geometric approach to 3-groupoids

In this section, we investigate matched pairs and matched triples as in Brown [6] to understand the geometry
of triple groupoids. For more information on matched pairs see [14].
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Let G1, G2 be subgroups of G such that G1 ∩G2 = {eG} . For x ∈ G1 and y ∈ G2 we will consider the
group operation xy as a composite of arrows such that t(x) = s(y) = ∗ . Then we have

∗

x

��

xy // ∗

yx

��
∗

y
// ∗

where the horizontal and vertical arrows via actions are denoted by εh(y, x) =
x y and

εv(y, x) = yx , respectively.

Example 3.1 Let V be any groupoid with base P . There is a matched pair (V, P ) with actions

t(f)� f = f and t(f)� f = b(f).

Similarly, for any groupoid H with base P , there is a matched pair (P,H) with actions

x� r(x) = l(x) and x� r(x) = x.

Example 3.2 Let M , N , and P be the matched triple of subgroups of a group G . Take a ∈ M, b ∈ N and
c ∈ P such that t (a) = s (b) and t (b) = s (c) . Then the cubical model is of the following form:

∗
a
bc

(bc)=(ab)
ab

c

// ∗

abc=
(
a
bc

)cb

��

∗

a

��

abc=
ab

(
ab

c
) ??������� ab // ∗

ab
c

??�������

ba

��

∗

∗
b

// ∗
c

??�������

∗
a
bc

(bc) //

a
bc

��

∗

abc

��

∗

a

��

abc

??

∗
bc

// ∗

∗
b

//
bc

??

∗
c

??

An n -fold groupoid is an internal groupoid in (n− 1) -fold groupoids. That is, a 0 -fold groupoid is a set, a
1 -fold groupoid is a groupoid, a 2 -fold groupoid is a double groupoid, and so on, where the structure of a
double groupoid consists of a set G and two groupoid structures in which the compositions satisfy the usual
interchange law; that is, for x1, x2, y1, y2 ∈ G we have

(x1 ◦i y1) ◦j (x2 ◦i y2) = (x1 ◦j x2) ◦i (y1 ◦j y2) . (*)

For n = 3 a triple groupoid is a set G with three groupoid structures satisfying the interchange law in
pairs when defined: for example, ◦i with ◦j , ◦j with ◦k and ◦i with ◦k satisfy (∗) .

From now on our interest will be in triple groupoids, or the triple categories in which each underlying set
category is a groupoid. By a triple category we mean a 3-fold category that is an internal category in double
categories. Now we give a description of a 3-groupoid by using the matched triples of groups diagrammatically.
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We will examine the matched triple of subgroups M , N , and P of a group G in which each pair is a matched
pair. With such data, we can consider a triple groupoid as

∗ H //

��

∗

V

��

∗

a

��

P

??������� // ∗

??�������

��

∗ // ∗

∗
b

//

??

∗
c

??�������

◦3

·

>>|||||||| //

��

◦1

◦2

where V = εv (a, bc) , H = εh [εv (b, c) , εv (a, εh (c, b))] = εv [εh (b, a) , εh (c, εv (a, b))] , and P = εh (c, ab) .
The triple groupoid should have the algebraic analogue of the horizontal, vertical, and parallel composi-

tions of cubes and also should permit cancellations.

Proposition 3.3 Horizontal composition of matched triples of groups defines the inverse elements εh(b, a)
−1

and εh [εv (b, c), εv (a, εh (b, c)))]
−1 .

Proof For i = 1 , we obtain

∗ H //

��

∗

��

H′
// ∗

V ′

��

∗

??�������

a

��

// ∗

??�������

��

// ∗

??�������

��

∗ // ∗ // ∗

∗
b

//

??

∗
c

??

b′
// ∗

c′

??�������

εv(bb
′, a) = εv (b

′, εv(b
′, a), )

εh(bb
′, a) = εh(b, a).εh(b

′, εv(b, a)).

In the last equality, taking b′ = b−1 , the left side becomes εh(eG, a) = eG , so we can find the inverse of εh(b, a)
as

εh(b, a)
−1 = εh (b

′, εv(b, a)) = εh
(
b−1, εv(b, a)

)
for a ∈ M , b, b′ ∈ N , and c ∈ P . For the back side of the cubes, the actions can be given by the following
diagram:
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∗ //

εv(b,εh(c,b))

��

∗

��

// ∗

��
∗

εv(b,c)
// ∗

εv(b
′,c′)

// ∗

We obtain the following result:

εv [εv (b, c) εv (b
′, c′) , εv (a, εh (c, b)) , ] = V ′

= εv (εv (b
′, c′) , V )

= εv [εv (b
′, c′) , εv (a

′, εh (c
′, b′))]

= εv [εv (b
′, c′) , εv (a, bc)]

and we obtain

εh [εv (b, c) εv (b
′, c′) , εv (a, εh (c, b))] = H.H ′

= εh [εv (b, c), εv (a, εh (b, c)))] .εh [εv (b
′, c′), εv (a

′, εh (b
′, c′)))] .

If we take εv (b
′, c′) = εv (b, c)

−1 , we get

εh [εv (b, c), εv (a, εh (b, c)))]
−1

= εh [εv (b
′, c′), εv (a

′, εh (b
′, c′)))]

= εh
[
εv

(
b, c)−1, εv (a, bc)

)]
.

2

Proposition 3.4 Vertical composition of matched triples of groups defines the inverse elements εv (a, b)
−1 and

εv (a, bc)
−1 .

Proof For the operation ◦2 , we have the following diagram:

∗ H′
//

��

∗

V ′

��

∗

??�������

a′

��

// ∗

??�������

��

∗ H //

��

∗

V

��

∗

??

a

��

b′ // ∗

��

c′
??�������

∗
ϵv(b,c)

// ∗

∗
b

//

??

∗

c

??�������
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For the actions on the front side of the cubes, we have

εh (b, a
′a) = εh (b

′, a′) = εh (εh (b, a) , a
′) ,

εv (a
′a, b) = εv (a

′, b′) εv (a, b) ,

and if we take a′ = a−1 , we get

εv
(
a−1, b′

)
= εv (a, b)

−1
.

For the actions on the back side of the cubes, we have the following diagram:

∗ H′
//

��

∗

V ′

��
∗ H //

��

∗

V

��
∗

ϵv(b,c)
// ∗

where V = εv (a, bc) , V ′ = εv (a
′, b′c′) , H = εh [εv (b, c) , εv (a, εh (c, b))] = εv [εh (b, a) , εh (c, εv (a, b))] , and

H ′ = εh [εv (b
′, c′) , εv (a

′, εh (c
′, b′))] = εv [εh (b

′, a′) , εh (c
′, εv (a

′, b′))] , and then we get

εh [εv (b, c), εv (a
′, εh (c

′, b′))) .εv (a, εh (c, b))] = εh [εv (b
′, c′), εv (a

′, εh (c
′, b′)))]

= εh [εh (εv (b, c) , εv (a, εh (c, b))), εv (a
′, εh (c

′, b′)))]

and

εv [εv (a
′, εh (c

′, b′)).εv (a, εh (c, b))) , εv (b, c)] = V ′.V

= εv (a
′, b′c′) εv (a, bc)

= εv [εv (a
′, εh (c

′, b′)) , εv (b, c)] .εv (a, bc) .

If we take εv (a, εh (c, b))
−1

= εv (a
′, εh (c

′, b′)) , we get

V −1 = εv (a, bc)
−1

= εv

[
εv (a, εh (c, b))

−1
,H

]
.

2

Proposition 3.5 Parallel composition of matched triples of groups defines the inverse elements εh (c, b)
−1 and

εh (c, ab)
−1 .
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Proof For the operation ◦3 , consider the following diagram:

∗ //

��

∗

��

∗

??�������

��

// ∗

??�������

��

∗ //

��

??�������
∗ //

��

??�������
∗

∗ //

??

∗
c′

??�������

∗
b

//

??

∗
c

??�������

εv (b, cc
′) = εv [εv (b, c) , c

′] = εv (b
′, c′) ,

εh (cc
′, b) = εh (c, b) εh (c

′, b′) ,

and taking c′ = c−1 we get

εh (c, b)
−1

= εh
(
c−1, b′

)
= εh

(
c−1, εv (b, c)

)
.

For the other side, using the following diagram,

∗ // ∗

∗

??������� // ∗
εh(c

′,εv(a
′,b′)

??�������

∗

??�������
εh(b,a)

// ∗
εh(c,εv(a,b)

??�������

we get

εv [εh (b, a), εh (c, εv (a, b))) .εh (c
′, εv (a, b))] = εv [εh (b

′, a′), εh (c
′, εv (a

′, b′)))]

= εv [H, εh (c
′, εv (a

′, b′))] ,

and

εh [εh (c, εv (a, b)).εh (c
′, εv (a

′, b′))) , εh (b, a)] = P.P ′

= εh (c, ab) εh (c
′, a′b′) .

Taking εh (c
′, εv (a

′, b′))
−1

= εh(c, εv (a, b)) , we get

εh (c, ab)
−1

= εh [εh (c, εv (a, b)) ,H]
−1

.

2
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We also obtain that

c−1b−1a−1 = V −1H−1P−1

= εv (a, bc)
−1

.εh [εv (b, c) , εv (a, εh (c, b))]
−1

εh (c, ab)
−1

.

Replacing by

a−1 7→ a

b−1 7→ b

c−1 7→ c

and writing ȧ = a−1, ḃ = b−1 , and ċ = c−1 , we deduce that

cba = εv

(
ȧ, ḃċ

)−1

.εh

[
εv

(
ḃ, ċ

)
, εv

(
ȧ, εh

(
ċ, ḃ

))]−1

.εh

(
ċ, ȧḃ

)−1

= εv

[
εv

(
ȧ, εh

(
ċ, ḃ

))−1

, Ḣ

]
.εh

[
εv

(
ḃ, ċ

)−1

, εv

(
ȧ, ḃċ

)]
.εh

[
εh

(
ċ, εv

(
ȧ, ḃ

))−1

, Ḣ

]
.

In an analogous way, we have

c−1b−1a−1 = V −1εh (c, εv (a, b))
−1

εh(b, a)
−1,

where

cba = εv

(
ȧ, ḃċ

)−1

.εh

[
ċ, εv

(
ȧ, ḃ

)]−1

.εh

(
ḃ, ȧ

)−1

= εv

[
εv

(
ȧ, εh

(
ċ, ḃ

))−1

, Ḣ

]
.εv

[
Ṗ−1, εh

(
ḃ, ȧ

)]
.εh

[
ḃ−1, εv

(
ȧ, ḃ

)]
and

c−1b−1a−1 = εv (b, c)
−1

εv (a, εh (c, b))
−1

P−1,

and we get

cba = εv

(
ḃ, ċ

)−1

.εv

[
ȧ, εh

(
ċ, ḃ

)]
.εh

(
ċ, ȧḃ

)−1

= εh

[
ċ−1, εv

(
ḃ, ċ

)]
.εv

[
ȧ−1, εh

(
ċ, ḃ

)]
.εh

[
εh

(
ċ, εv

(
ȧ, ḃ

))
ḃ−1, Ḣ−1

]
.

These calculations of triple groupoids can be expressed as the sets (M ×N) × P and M × (N × P ) ,
which can be given by the eight groupoid actions (M ⋉N)× P, (M ⋊N)× P, M × (N ⋉ P ) , M × (N ⋊ P ) ,

(M ×N)⋊P, (M ×N)⋉P , M ⋉ (N × P ) , and M ⋊ (N × P ) . We give the operation of some of them as an
example.

(a, b, c) ◦1 (εv (a, b) , b′, c′) = (a, bb′, c) ∈ (M ⋊N)× P

(a′, εh (b, a) , c
′) ◦2 (a, b, c) = (aa′, b, c) ∈ (M ⋉N)× P

(a, b, c) ◦3 (a′, εv (b, c) , c′) = (a′, b, cc′) ∈ M × (N ⋊ P )

Remaining group operation structures can be given by a similiar way.
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Conclusion 3.6 Given two triple groupoids with a common edge with the properties above, one can construct
a new triple groupoid via matched triple actions of groups.

∗ //

��

∗

��

∗ //

��

??�������
∗

??�������

��

∗ //

��

∗

��

// ∗

��

∗

??

��

// ∗

??

��

// ∗

??�������

��

∗ // ∗ // ∗

∗ //

??

∗

??

// ∗

??�������

We give the following result from [6].

Conclusion 3.7 The groupoid composition

(a, b, c) (a′, b′, c′) = (a.δi [δi (a
′, c) , b] , δt [δi (a

′, c) , b] .δi [b
′, δt (a

′, c)]) , δi (b
′, δt (a

′, c)) .c′

gives a group structure where

δi (a, b) = εv

(
a, εh

(
ȧ, ḃ

))
,

δt (b, a) = εh

(
b, εh

(
ḃ, ȧ

))
.
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