

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2019) 43: 1492 – 1503 © TÜBİTAK doi:10.3906/mat-1809-84

Research Article

# Construction of higher groupoids via matched pairs actions

Koray YILMAZ<sup>®</sup>, Erdal ULUALAN<sup>\*</sup>

Dumlupinar University, Faculty of Science and Art, Department of Mathematics, Kütahya, Turkey

| Received: .201 • Accepted/Published Online: .201 | • | <b>Final Version:</b> 29.05.2019 |
|--------------------------------------------------|---|----------------------------------|
|--------------------------------------------------|---|----------------------------------|

**Abstract:** In this work, we construct a relationship between matched pairs and triples of groupoids. Given two 3-groupoids with a common edge, we construct a triple groupoid by using the matched pairs actions.

Key words: Triple groupoid, matched pairs, matched triple

#### 1. Introduction

Matched pairs of groups were introduced by Takeuchi [17] as a group version of Singer's work [16] for Hopf algebras. Majid introduced the Lie algebra analogue of matched pairs and applied this to quantum groups [15]. The theory of matched pairs was also used as a tool for set theoretic solutions of the Yang–Baxter equation in [10].

Groupoids were introduced by Brandt [1] in 1926 as algebraic structures also known as virtual groups. A group-like approach to the groupoid is a category C with objects set  $C_0$  and morphisms set  $C_1$  in which each morphism is invertible. These structures are useful in a variety of mathematics from geometry to homotopy theory, algebra, and topology. For more information on groupoids see [2–5, 11]. Double groupoids were introduced by Ehresmann in [9]. A double groupoid can be seen as a set of boxes with horizontal and vertical compositions together with interchange law. For more information see [7, 8, 12].

In his brief note [6], Brown introduced a geometric approach to double groupoids. The existence of a triple groupoid by matched triples of groups, mentioned by Brown [6], is a useful way to approach geometric considerations. Later, Majard [13] generalized this concept for n-tuple groups. In this work, following Brown, we investigate this situation for triple groupoids, diagrammatically.

#### 2. Matched pairs of group(oid)s

In this section, we recall some basic information about matched pairs of groups and groupoids.

**Definition 2.1** A matched pair of groups means a triple  $(G_1, G_2, \sigma)$  where  $G_1$  and  $G_2$  are groups and the map

$$\begin{array}{rcl} \sigma & : & G_1 \times G_2 \to G_2 \times G_1 \\ (g_1,g_2) & \mapsto & (g_1 \rightharpoonup g_2,g_1 \leftharpoonup g_2) \end{array}$$

<sup>\*</sup>Correspondence: koray.yilmaz@dpu.edu.tr

<sup>2010</sup> AMS Mathematics Subject Classification: 18G50, 18G55

satisfies the following conditions:

$$g_{2} \rightarrow (h_{2} \rightarrow g_{1}) = g_{2}h_{2} \rightarrow g_{1}$$

$$g_{2}h_{2} \leftarrow = (g_{2} \leftarrow (h_{2} \rightarrow g_{1}))(h_{2} \leftarrow g_{1})$$

$$(g_{2} \leftarrow g_{1}) \leftarrow h_{2} = g_{2} \leftarrow g_{1}h_{2}$$

$$g_{2} \rightarrow g_{1}h_{1} = (g_{2} \rightarrow g_{1})((g_{2} \leftarrow g_{1}) \rightarrow h_{1})$$

for  $g_1, h_1 \in G_1$  and  $g_2, h_2 \in G_2$ .

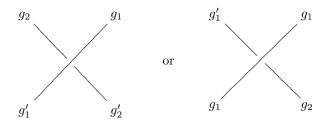
 $G_1 \times G_2$  forms a group with the product, denoted by  $G_1 \bowtie G_2$ . Conversely, if  $G_1$  and  $G_2$  are subgroups of a group G such that the product map  $G_1 \times G_2 \to G$  is bijective, then  $(G_1, G_2)$  forms a matched pair with structure  $\sigma(g_1, g_2) = (g_1 \rightharpoonup g_2, g_1 \leftarrow g_2)$  defined by  $g_1g_2 = (g_1 \rightharpoonup g_2)(g_1 \leftarrow g_2)$ .

The structure map  $\sigma$  of a matched pair  $(G_1, G_2)$  is bijective. The triple  $(G_1, G_2, \sigma^{-1})$  forms a matched pair called the opposite of  $(G_1, G_2)$ . The group  $G_2 \bowtie G_1$  is isomorphic to  $G_1 \bowtie G_2$  by  $(g_2, g_1) \longmapsto (1, g_2) (g_1, 1)$ .

Let  $g_2, g_2' \in G_2$  and  $g_1, g_1' \in G_1$ . We denote the relation

$$(g_1', g_2') = \sigma(g_2, g_1)$$

by the diagram



Since the structure map is nondegenerate in the sense of [13] and [14], upon determining one element  $(g_1, g_2)$ , the rest of the elements are determined by the diagram above.

A groupoid is a small category in which all arrows are invertible. It consists of a set of arrows  $G_1$ , a set of objects  $G_0$  (called the base), source and target maps  $s, t : G \to P$ , composition  $\circ : G_1 \times G_1 \to G_1$ , and identities  $id : G_0 \to G_1$ .

Alternatively, a groupoid may be defined as a set G with a partially defined associative product and partial units, whose elements are all invertible.

Definition 2.2 Let

$$(\begin{array}{c}G \xrightarrow{s \longrightarrow} G_0, \circ) \\ & \swarrow \\ e \end{array})$$

be a groupoid. For a map  $\wp : \varepsilon \to G_0$  a left action of G on  $\wp$  is a map

$$\rhd: G \times \varepsilon \to \varepsilon$$

satisfying the following rules:

1. 
$$\wp(\alpha \triangleright_e) = s(\alpha)$$
  
2.  $\alpha \triangleright (\beta \triangleright e) = (\alpha \beta) \triangleright e$   
3.  $id(\wp(e)) \triangleright e = e$ 

for all  $\alpha, \beta \in G$  and  $e \in \wp$ . A right action of G on  $\hbar : \varepsilon \to G_0$  is a map

$$\lhd:\varepsilon\times G\to\varepsilon$$

satisfying the rules  $% \left( f_{i} \right) = \left( f_{i} \right) \left($ 

1. 
$$\hbar (e \lhd \alpha) = t (\alpha)$$
  
2.  $(e \lhd \alpha) \lhd \beta = e \lhd (\alpha\beta)$   
3.  $e \lhd id (\hbar (e)) = e$ 

for all  $\alpha, \beta \in G$  and  $e \in \wp$ .

**Definition 2.3** A matched pair of groupoids consists of two groupoids  $(G_1, G_2)$  with the same base  $G_0$  together with the following data:

Let  $s_1, t_1 : G_1 \Rightarrow P$  and  $s_2, t_2 : G_2 \Rightarrow G_0$  be the source and target maps of  $G_1$  and  $G_2$ , respectively. Then we have a left action,

$$\rhd: G_2 \times G_1 \to G_1$$

of  $G_2$  on  $s_1: G_1 \to G_0$  and a right action,

$$\lhd: G_2 \times G_1 \to G_2$$

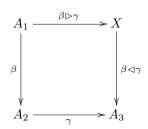
of  $G_1$  on  $t_2: G_2 \to G_0$ . All the data given above satisfy the following:

$$\begin{split} i. & s_1 \left(\beta \rhd \gamma\right) = \ s_2 \left(\gamma \lhd \beta\right), \\ ii. & \beta \rhd \left(\sigma\alpha\right) = \left(\beta \rhd \sigma\right) \left[\left(\beta \lhd \sigma\right) \lhd \alpha\right], \\ iii. & \left(\beta_1\beta_2\right) \lhd \alpha = \left[\beta_1 \lhd \left(\beta_2 \rhd \alpha\right)\right] \left(\beta_2 \lhd \alpha\right), \\ for \ all \ \alpha, \gamma \in G_1, \ \beta, \beta_1, \beta_2 \in G_2, \ for \ which \ the \ operations \ are \ defined. \end{split}$$

**Lemma 2.4** For all  $\alpha, \gamma \in G_1$ ,  $\beta, \beta_1, \beta_2 \in G_2$  for which the operations are defined, we have

$$\begin{split} i. \ t_1 \left(\beta \rhd \gamma\right) &= s_2 \left(\beta \lhd \gamma\right), \\ ii. \ \left(\beta \rhd \sigma\right)^{-1} &= \left(\beta \lhd \sigma\right) \rhd \sigma^{-1}, \\ iii. \left(\beta_2 \lhd \alpha\right)^{-1} &= \left[\beta_2^{-1} \lhd \left(\beta_2 \rhd \alpha\right)\right]. \end{split}$$

**Proof** *i*. For  $A_1, A_2, A_3 \in G_0$  and  $\beta : A_1 \to A_2 \in G_2, \gamma : A_2 \to A_3 \in G_1$  consider the following diagram:



where

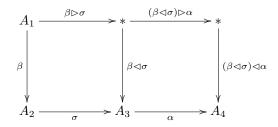
$$s_1 \left(\beta \rhd \gamma\right) = s_2 \left(\beta\right) = A_1, \\ t_2 \left(\beta \lhd \gamma\right) = t_1 \left(\gamma\right) = A_3.$$

The possibility of  $X \in G_0$  gives us

$$t_1\left(\beta \rhd \gamma\right) = s_2\left(\beta \lhd \gamma\right).$$

1494

*ii.* Let  $A_1, A_2, A_3, A_4 \in G_0$ , and  $\beta : A_1 \to A_2 \in G_2, \sigma : A_2 \to A_3, \alpha : A_3 \to A_4 \in G_1$ . Considering the following diagram,



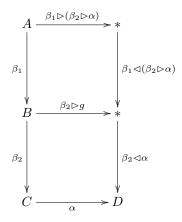
we get

$$\begin{array}{lll} \beta \lhd (\sigma \alpha) & = & (\beta \lhd \sigma) \lhd \alpha \\ \beta \rhd (\sigma \alpha) & = & (\beta \rhd \sigma) \left[ (\beta \lhd \sigma) \lhd \alpha \right] \end{array}$$

and taking  $\sigma = \alpha^{-1}$  in the last equality we have

$$(\beta \triangleright \sigma)^{-1} = (\beta \lhd \sigma) \triangleright \sigma^{-1}$$

*iii.* For  $A_1, A_2, A_3, A_4 \in G_0$ , and  $\beta_1 : A_1 \to A_2, \beta_2 : A_2 \to A_3 \in G_2, g : A_3 \to A_4 \in G_1$ . Considering the following diagram,



we get

$$\begin{array}{rcl} (\beta_1\beta_2) \rhd \alpha & = & \beta_1 \rhd (\beta_2 \rhd \alpha) \\ (\beta_1\beta_2) \lhd \alpha & = & \left[\beta_1 \lhd (\beta_2 \rhd \alpha)\right] (\beta_2 \lhd \alpha) \end{array}$$

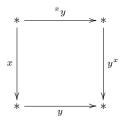
and taking  $\beta_1^{-1} = \beta_2$  in the last equality we note that

$$(\beta_2 \triangleleft \alpha)^{-1} = \left[\beta_2^{-1} \triangleleft (\beta_2 \rhd \alpha)\right]$$

## 3. Matched pairs and matched triple of groups and a geometric approach to 3-groupoids

In this section, we investigate matched pairs and matched triples as in Brown [6] to understand the geometry of triple groupoids. For more information on matched pairs see [14].

Let  $G_1, G_2$  be subgroups of G such that  $G_1 \cap G_2 = \{e_G\}$ . For  $x \in G_1$  and  $y \in G_2$  we will consider the group operation xy as a composite of arrows such that t(x) = s(y) = \*. Then we have



where the horizontal and vertical arrows via actions are denoted by  $\varepsilon_h(y, x) =^x y$  and  $\varepsilon_v(y, x) = y^x$ , respectively.

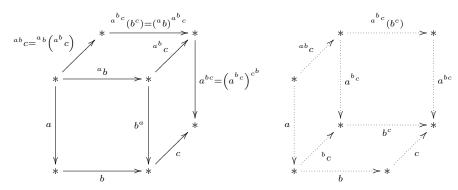
**Example 3.1** Let V be any groupoid with base P. There is a matched pair (V, P) with actions

$$t(f) \triangleleft f = f \text{ and } t(f) \triangleright f = b(f)$$

Similarly, for any groupoid H with base P, there is a matched pair (P, H) with actions

$$x \triangleleft r(x) = l(x) \text{ and } x \triangleright r(x) = x$$

**Example 3.2** Let M, N, and P be the matched triple of subgroups of a group G. Take  $a \in M, b \in N$  and  $c \in P$  such that t(a) = s(b) and t(b) = s(c). Then the cubical model is of the following form:



An *n*-fold groupoid is an internal groupoid in (n-1)-fold groupoids. That is, a 0-fold groupoid is a set, a 1-fold groupoid is a groupoid, a 2-fold groupoid is a double groupoid, and so on, where the structure of a double groupoid consists of a set G and two groupoid structures in which the compositions satisfy the usual interchange law; that is, for  $x_1, x_2, y_1, y_2 \in G$  we have

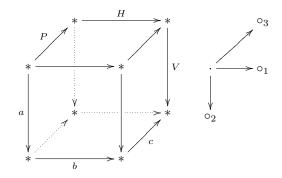
$$(x_1 \circ_i y_1) \circ_j (x_2 \circ_i y_2) = (x_1 \circ_j x_2) \circ_i (y_1 \circ_j y_2).$$
<sup>(\*)</sup>

For n = 3 a triple groupoid is a set G with three groupoid structures satisfying the interchange law in pairs when defined: for example,  $\circ_i$  with  $\circ_j$ ,  $\circ_j$  with  $\circ_k$  and  $\circ_i$  with  $\circ_k$  satisfy (\*).

From now on our interest will be in triple groupoids, or the triple categories in which each underlying set category is a groupoid. By a triple category we mean a 3-fold category that is an internal category in double categories. Now we give a description of a 3-groupoid by using the matched triples of groups diagrammatically.

#### YILMAZ and ULUALAN/Turk J Math

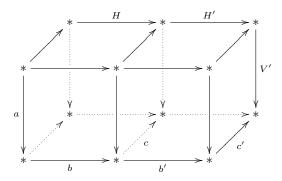
We will examine the matched triple of subgroups M, N, and P of a group G in which each pair is a matched pair. With such data, we can consider a triple groupoid as



where  $V = \varepsilon_v(a, bc)$ ,  $H = \varepsilon_h[\varepsilon_v(b, c), \varepsilon_v(a, \varepsilon_h(c, b))] = \varepsilon_v[\varepsilon_h(b, a), \varepsilon_h(c, \varepsilon_v(a, b))]$ , and  $P = \varepsilon_h(c, ab)$ . The triple groupoid should have the algebraic analogue of the horizontal, vertical, and parallel compositions of cubes and also should permit cancellations.

**Proposition 3.3** Horizontal composition of matched triples of groups defines the inverse elements  $\varepsilon_h(b,a)^{-1}$ and  $\varepsilon_h [\varepsilon_v (b,c), \varepsilon_v (a, \varepsilon_h (b,c)))]^{-1}$ .

**Proof** For i = 1, we obtain



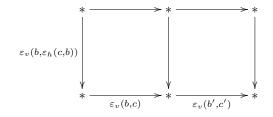
$$\varepsilon_{v}(bb',a) = \varepsilon_{v}(b',\varepsilon_{v}(b',a),)$$
  

$$\varepsilon_{h}(bb',a) = \varepsilon_{h}(b,a).\varepsilon_{h}(b',\varepsilon_{v}(b,a)).$$

In the last equality, taking  $b' = b^{-1}$ , the left side becomes  $\varepsilon_h(e_G, a) = e_G$ , so we can find the inverse of  $\varepsilon_h(b, a)$  as

$$\varepsilon_h(b,a)^{-1} = \varepsilon_h(b',\varepsilon_v(b,a)) = \varepsilon_h(b^{-1},\varepsilon_v(b,a))$$

for  $a \in M$ ,  $b, b' \in N$ , and  $c \in P$ . For the back side of the cubes, the actions can be given by the following diagram:



We obtain the following result:

$$\varepsilon_{v} \left[ \varepsilon_{v} \left( b, c \right) \varepsilon_{v} \left( b', c' \right), \varepsilon_{v} \left( a, \varepsilon_{h} \left( c, b \right) \right), \right] = V'$$

$$= \varepsilon_{v} \left( \varepsilon_{v} \left( b', c' \right), V \right)$$

$$= \varepsilon_{v} \left[ \varepsilon_{v} \left( b', c' \right), \varepsilon_{v} \left( a', \varepsilon_{h} \left( c', b' \right) \right) \right]$$

$$= \varepsilon_{v} \left[ \varepsilon_{v} \left( b', c' \right), \varepsilon_{v} \left( a, bc \right) \right]$$

and we obtain

$$\varepsilon_{h} \left[ \varepsilon_{v} \left( b, c \right) \varepsilon_{v} \left( b', c' \right), \varepsilon_{v} \left( a, \varepsilon_{h} \left( c, b \right) \right) \right] = H.H'$$

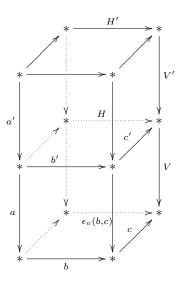
$$= \varepsilon_{h} \left[ \varepsilon_{v} \left( b, c \right), \varepsilon_{v} \left( a, \varepsilon_{h} \left( b, c \right) \right) \right] .\varepsilon_{h} \left[ \varepsilon_{v} \left( b', c' \right), \varepsilon_{v} \left( a', \varepsilon_{h} \left( b', c' \right) \right) \right] .$$

If we take  $\varepsilon_{v}(b',c') = \varepsilon_{v}(b,c)^{-1}$ , we get

$$\varepsilon_{h} \left[ \varepsilon_{v} \left( b, c \right), \varepsilon_{v} \left( a, \varepsilon_{h} \left( b, c \right) \right) \right]^{-1} = \varepsilon_{h} \left[ \varepsilon_{v} \left( b', c' \right), \varepsilon_{v} \left( a', \varepsilon_{h} \left( b', c' \right) \right) \right] \right]$$
$$= \varepsilon_{h} \left[ \varepsilon_{v} \left( b, c \right)^{-1}, \varepsilon_{v} \left( a, bc \right) \right] .$$

**Proposition 3.4** Vertical composition of matched triples of groups defines the inverse elements  $\varepsilon_v(a, b)^{-1}$  and  $\varepsilon_v(a, bc)^{-1}$ .

**Proof** For the operation  $\circ_2$ , we have the following diagram:



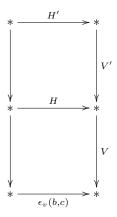
For the actions on the front side of the cubes, we have

$$\varepsilon_{h} (b, a'a) = \varepsilon_{h} (b', a') = \varepsilon_{h} (\varepsilon_{h} (b, a), a'),$$
$$\varepsilon_{v} (a'a, b) = \varepsilon_{v} (a', b') \varepsilon_{v} (a, b),$$

and if we take  $a' = a^{-1}$ , we get

$$\varepsilon_v\left(a^{-1},b'\right) = \varepsilon_v\left(a,b\right)^{-1}.$$

For the actions on the back side of the cubes, we have the following diagram:



where  $V = \varepsilon_v(a, bc)$ ,  $V' = \varepsilon_v(a', b'c')$ ,  $H = \varepsilon_h[\varepsilon_v(b, c), \varepsilon_v(a, \varepsilon_h(c, b))] = \varepsilon_v[\varepsilon_h(b, a), \varepsilon_h(c, \varepsilon_v(a, b))]$ , and  $H' = \varepsilon_h[\varepsilon_v(b', c'), \varepsilon_v(a', \varepsilon_h(c', b'))] = \varepsilon_v[\varepsilon_h(b', a'), \varepsilon_h(c', \varepsilon_v(a', b'))]$ , and then we get

$$\varepsilon_{h} \left[ \varepsilon_{v} \left( b, c \right), \varepsilon_{v} \left( a', \varepsilon_{h} \left( c', b' \right) \right) \right] \cdot \varepsilon_{v} \left( a, \varepsilon_{h} \left( c, b \right) \right) = \varepsilon_{h} \left[ \varepsilon_{v} \left( b', c' \right), \varepsilon_{v} \left( a', \varepsilon_{h} \left( c', b' \right) \right) \right]$$

$$= \varepsilon_{h} \left[ \varepsilon_{h} \left( \varepsilon_{v} \left( b, c \right), \varepsilon_{v} \left( a, \varepsilon_{h} \left( c, b \right) \right) \right), \varepsilon_{v} \left( a', \varepsilon_{h} \left( c', b' \right) \right) \right]$$

and

$$\varepsilon_{v} \left[ \varepsilon_{v} \left( a', \varepsilon_{h} \left( c', b' \right) \right) . \varepsilon_{v} \left( a, \varepsilon_{h} \left( c, b \right) \right) \right), \varepsilon_{v} \left( b, c \right) \right] = V' . V$$

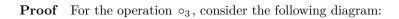
$$= \varepsilon_{v} \left( a', b'c' \right) \varepsilon_{v} \left( a, bc \right)$$

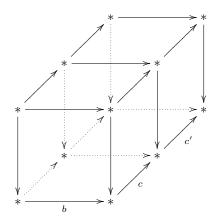
$$= \varepsilon_{v} \left[ \varepsilon_{v} \left( a', \varepsilon_{h} \left( c', b' \right) \right), \varepsilon_{v} \left( b, c \right) \right] . \varepsilon_{v} \left( a, bc \right).$$

If we take  $\varepsilon_v (a, \varepsilon_h (c, b))^{-1} = \varepsilon_v (a', \varepsilon_h (c', b'))$ , we get

$$V^{-1} = \varepsilon_v (a, bc)^{-1} = \varepsilon_v \left[ \varepsilon_v (a, \varepsilon_h (c, b))^{-1}, H \right].$$

**Proposition 3.5** Parallel composition of matched triples of groups defines the inverse elements  $\varepsilon_h(c, b)^{-1}$  and  $\varepsilon_h(c, ab)^{-1}$ .



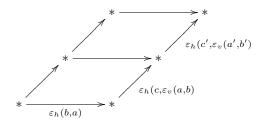


$$\varepsilon_{v} (b, cc') = \varepsilon_{v} [\varepsilon_{v} (b, c), c'] = \varepsilon_{v} (b', c'),$$
$$\varepsilon_{h} (cc', b) = \varepsilon_{h} (c, b) \varepsilon_{h} (c', b'),$$

and taking  $c' = c^{-1}$  we get

$$\varepsilon_h(c,b)^{-1} = \varepsilon_h(c^{-1},b') = \varepsilon_h(c^{-1},\varepsilon_v(b,c)).$$

For the other side, using the following diagram,



we get

$$\varepsilon_{v} \left[ \varepsilon_{h} \left( b, a \right), \varepsilon_{h} \left( c, \varepsilon_{v} \left( a, b \right) \right) \right] \cdot \varepsilon_{h} \left( c', \varepsilon_{v} \left( a, b \right) \right) = \varepsilon_{v} \left[ \varepsilon_{h} \left( b', a' \right), \varepsilon_{h} \left( c', \varepsilon_{v} \left( a', b' \right) \right) \right] = \varepsilon_{v} \left[ H, \varepsilon_{h} \left( c', \varepsilon_{v} \left( a', b' \right) \right) \right],$$

and

$$\varepsilon_{h} \left[ \varepsilon_{h} \left( c, \varepsilon_{v} \left( a, b \right) \right) \varepsilon_{h} \left( c', \varepsilon_{v} \left( a', b' \right) \right) \right), \varepsilon_{h} \left( b, a \right) \right] = P.P'$$
$$= \varepsilon_{h} \left( c, ab \right) \varepsilon_{h} \left( c', a'b' \right)$$

Taking  $\varepsilon_{h}\left(c',\varepsilon_{v}\left(a',b'\right)\right)^{-1}=\varepsilon_{h}(c,\varepsilon_{v}\left(a,b\right))$ , we get

$$\varepsilon_h (c, ab)^{-1} = \varepsilon_h [\varepsilon_h (c, \varepsilon_v (a, b)), H]^{-1}$$

We also obtain that

$$c^{-1}b^{-1}a^{-1} = V^{-1}H^{-1}P^{-1}$$
  
=  $\varepsilon_v (a, bc)^{-1} .\varepsilon_h [\varepsilon_v (b, c), \varepsilon_v (a, \varepsilon_h (c, b))]^{-1} \varepsilon_h (c, ab)^{-1}.$ 

Replacing by

and writing  $\dot{a} = a^{-1}$ ,  $\dot{b} = b^{-1}$ , and  $\dot{c} = c^{-1}$ , we deduce that

$$cba = \varepsilon_{v} \left(\dot{a}, \dot{b}\dot{c}\right)^{-1} \cdot \varepsilon_{h} \left[\varepsilon_{v} \left(\dot{b}, \dot{c}\right), \varepsilon_{v} \left(\dot{a}, \varepsilon_{h} \left(\dot{c}, \dot{b}\right)\right)\right]^{-1} \cdot \varepsilon_{h} \left(\dot{c}, \dot{a}\dot{b}\right)^{-1}$$
$$= \varepsilon_{v} \left[\varepsilon_{v} \left(\dot{a}, \varepsilon_{h} \left(\dot{c}, \dot{b}\right)\right)^{-1}, \dot{H}\right] \cdot \varepsilon_{h} \left[\varepsilon_{v} \left(\dot{b}, \dot{c}\right)^{-1}, \varepsilon_{v} \left(\dot{a}, \dot{b}\dot{c}\right)\right] \cdot \varepsilon_{h} \left[\varepsilon_{h} \left(\dot{c}, \varepsilon_{v} \left(\dot{a}, \dot{b}\right)\right)^{-1}, \dot{H}\right]$$

In an analogous way, we have

$$c^{-1}b^{-1}a^{-1} = V^{-1}\varepsilon_h (c, \varepsilon_v (a, b))^{-1}\varepsilon_h (b, a)^{-1},$$

where

$$cba = \varepsilon_v \left( \dot{a}, \dot{b}\dot{c} \right)^{-1} \cdot \varepsilon_h \left[ \dot{c}, \varepsilon_v \left( \dot{a}, \dot{b} \right) \right]^{-1} \cdot \varepsilon_h \left( \dot{b}, \dot{a} \right)^{-1}$$
$$= \varepsilon_v \left[ \varepsilon_v \left( \dot{a}, \varepsilon_h \left( \dot{c}, \dot{b} \right) \right)^{-1}, \dot{H} \right] \cdot \varepsilon_v \left[ \dot{P}^{-1}, \varepsilon_h \left( \dot{b}, \dot{a} \right) \right] \cdot \varepsilon_h \left[ \dot{b}^{-1}, \varepsilon_v \left( \dot{a}, \dot{b} \right) \right]$$

and

$$c^{-1}b^{-1}a^{-1} = \varepsilon_v (b,c)^{-1} \varepsilon_v (a, \varepsilon_h (c,b))^{-1} P^{-1},$$

and we get

$$cba = \varepsilon_v \left( \dot{b}, \dot{c} \right)^{-1} \varepsilon_v \left[ \dot{a}, \varepsilon_h \left( \dot{c}, \dot{b} \right) \right] \varepsilon_h \left( \dot{c}, \dot{a} \dot{b} \right)^{-1}$$
$$= \varepsilon_h \left[ \dot{c}^{-1}, \varepsilon_v \left( \dot{b}, \dot{c} \right) \right] \varepsilon_v \left[ \dot{a}^{-1}, \varepsilon_h \left( \dot{c}, \dot{b} \right) \right] \varepsilon_h \left[ \varepsilon_h \left( \dot{c}, \varepsilon_v \left( \dot{a}, \dot{b} \right) \right) \dot{b}^{-1}, \dot{H}^{-1} \right].$$

These calculations of triple groupoids can be expressed as the sets  $(M \times N) \times P$  and  $M \times (N \times P)$ , which can be given by the eight groupoid actions  $(M \ltimes N) \times P$ ,  $(M \rtimes N) \times P$ ,  $M \times (N \ltimes P)$ ,  $M \times (N \rtimes P)$ ,  $(M \times N) \rtimes P$ ,  $(M \times N) \ltimes P$ ,  $M \ltimes (N \times P)$ , and  $M \rtimes (N \times P)$ . We give the operation of some of them as an example.

$$(a, b, c) \circ_1 (\varepsilon_v (a, b), b', c') = (a, bb', c) \in (M \rtimes N) \times P$$
$$(a', \varepsilon_h (b, a), c') \circ_2 (a, b, c) = (aa', b, c) \in (M \ltimes N) \times P$$
$$(a, b, c) \circ_3 (a', \varepsilon_v (b, c), c') = (a', b, cc') \in M \times (N \rtimes P)$$

Remaining group operation structures can be given by a similiar way.

#### YILMAZ and ULUALAN/Turk J Math

**Conclusion 3.6** Given two triple groupoids with a common edge with the properties above, one can construct a new triple groupoid via matched triple actions of groups.



We give the following result from [6].

Conclusion 3.7 The groupoid composition

$$(a, b, c) (a', b', c') = (a \cdot \delta_i [\delta_i (a', c), b], \delta_t [\delta_i (a', c), b] \cdot \delta_i [b', \delta_t (a', c)]), \delta_i (b', \delta_t (a', c)) \cdot c'$$

gives a group structure where

$$\delta_{i}(a,b) = \varepsilon_{v}\left(a,\varepsilon_{h}\left(\dot{a},\dot{b}\right)\right),$$
  
$$\delta_{t}(b,a) = \varepsilon_{h}\left(b,\varepsilon_{h}\left(\dot{b},\dot{a}\right)\right).$$

#### References

- Brandt H. Ubereine verallgemeinerung des gruppenbegriffes. Mathematische Annalen 1926; 96: 360-366 (in German).
- [2] Brown R. Groupoids and Van Kampen's theorem. Proceedings of the London Mathematical Society 1967; 3: 385-400.
- [3] Brown R. Fibration of groupoids. Journal of Algebra 1970; 15: 103-132.
- [4] Brown R. Groupoids as coefficients. Proceedings of the London Mathematical Society 1972; 3 (25): 413-426.
- [5] Brown R. Topology and Groupoids. Charleston, SC, USA: BookSurge Publishing, 2006.
- [6] Brown R. Double groupoids, matched pairs and then matched triples. https://arxiv.org/abs/1104.1644, 2011.
- [7] Brown R, Janelidze G. Galois theory and a new homotopy double groupoid of a map of spaces. Applied Categorical Structures 2004; 12: 63-80.
- [8] Brown R, Spencer C. Double groupoids and crossed modules. Cahiers de Topologie et Géométrie Différentielle Catégoriques 1976; 17: 343-364.
- [9] Ehresmann C. Catégories doubles et catégories structurées. Comptes Rendus Mathematique Academie des Sciences Paris 1963; 2569: 1198-1201 (in French).

### YILMAZ and ULUALAN/Turk J Math

- [10] Gateva-Ivanova T, Majid S. Matched pairs approach to set theoretic solutions of the Yang–Baxter equation. Journal of Algebra 2008; 319: 1462–1529.
- [11] Higgins PJ. Notes on Categories and Groupoids. London, UK: Van Nostrand Reinhold, 1971.
- [12] Loday JL. Spaces with finitely many nontrivial homotopy groups. Journal of Pure and Applied Algebra 1982; 24: 179-202.
- [13] Majard D. N-tuple groupoids and optimally coupled factorizations. Theory and Application of Categories 2013; 28: 304-331.
- [14] Majid S. Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations. Pacific Journal of Mathematics 1990; 140: 311-332.
- [15] Majid S. Foundations of Quantum Group Theory. Cambridge, UK: Cambridge University Press, 1995.
- [16] Singer WM. Extension theory for connected Hopf algebras. Journal of Algebra 1972; 21: 1-16.
- [17] Takeuchi M. Matched pairs of groups and bismash products of Hopf algebras. Communications in Algebra 1981; 9: 841-882.