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Abstract: In this paper, we study δ -primary and 2-absorbing δ -primary hyperideals which are the extended classes of
prime and 2-absorbing hyperideals, respectively. Assume that R is a commutative multiplicative hyperring with nonzero
identity. We call I ∈ I ∗ (R) a δ -primary hyperideal if a, b ∈ R and a ◦ b ⊆ I imply either a ∈ I or b ∈ δ(I) and
also, I is called 2-absorbing δ -primary hyperideal if a, b, c ∈ R and a ◦ b ◦ c ⊆ I imply a ◦ b ⊆ I or b ◦ c ⊆ δ(I) or
a ◦ c ⊆ δ(I) . Moreover, we give the basic properties of these new types of hyperideals and investigate the relations
among these structures. Then a number of main results and examples are given to explain the general framework of
these structures.
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1. Introduction
In 1934, Marty defined hypergroups as a generalization of groups and so he firstly studied the theory of algebraic
hyperstructures. Hyperstructures take an important place in both pure and applied mathematics. Afterwards,
many authors have studied the theory of hyperstructures which has a pivotal role on applications to other
areas such as geometry, lattices, automata, cryptography, coding theory, artificial intelligence, and probabilities
[1–3, 8].

In this paper, we dwell on hyperrings which have an important role in the theory of algebraic hyper-
structures. Various types of hyperrings have been introduced and studied by many authors (e.g., Krasner,
Davvaz, Ameri and Norouzi) in [2, 9, 12]. Let R be a hyperring. By P ∗(R) , we mean the set of all non empty
subset of R . Let ◦ be a hyperoperation from R ×R to P ∗(R) . Krasner said that the structure (R,+, ◦) is a
hyperring if it satisfies the following properties: (i) (R,+) is a canonical hypergroup, (ii) (R, ◦) is a semigroup
and (iii) ′◦′ has the property of distributive over addition (see [9]). Then, it is known as Krasner hyperring.
In [13], Rota presented a different type of hyperring. According to him, (R,+, ◦) is a multiplicative hyperring
if it has the following properties: (i) (R,+) is an abelian group whose identity element 0R has the absorbing
property in (R,+, ◦) (i.e. {0R} = 0R ◦ x = x ◦ 0R for every x ∈ R .), (ii) (R, ◦) is a hypersemigroup, (iii)
r ◦ (r′ + s) ⊆ r ◦ r′ + r ◦ s and (r+ r′) ◦ s ⊆ r ◦ s+ r′ ◦ s , (iv) r ◦ (−r′) = (−r) ◦ r′ = −(r ◦ r′) for all r, r′, s ∈ R.

By this definition, it can be obtained that r ◦ (r′ ◦ s) =
∪

t∈(r′◦s) (r ◦ t) =
∪

k∈(r◦r′) (k ◦ s) = (r ◦ r′) ◦ s for all

elements r, r′, s of R . A multiplicative hyperring R is said to be commutative if r ◦ r′ = r′ ◦ r for all r, r′ ∈ R.

An element e ∈ R is called identity if {r} = e ◦ r = r ◦ e for all r ∈ R.
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Let R be a commutative multiplicative hyperring with nonzero identity. A hyperoperation ◦ holds
U ◦V =

∪
u∈U,v∈V (u ◦ v) and U ◦x = U ◦ {x} for every two nonempty subsets U, V of R and x ∈ R [9]. Recall

from [8] that a nonempty subset I of R is a hyperideal if it has the following: (i) I − I ⊆ I , that is, x− y ∈ I

for each x, y ∈ I and (ii) r ◦ x ⊆ I for each r ∈ R, x ∈ I. Let the subset {r1 ◦ ... ◦ rn|ri ∈ R for some n ∈ N}
of P ∗(R) be denoted by C . From [8], I is known as a C -hyperideal of R if for each A ∈ C , A∩ I ̸= ∅ implies
A ⊆ I . As well, a proper hyperideal I is known as prime (primary) if for any x, y ∈ R , x ◦ y ⊆ I implies
x ∈ I or y ∈ I (x ∈ I or yn ⊆ I for some positive integer n where yn denotes y ◦ y ◦ ... ◦ y , n times). rad(I)

denotes the radical of a hyperideal I of R , defined by rad(I) =
∩

I⊆P P where P ′ s are prime hyperideals
of R . By Proposition 3.2 in [8], we have D(I) = {r ∈ R| rn ⊆ I for some n ∈ N} ⊆ rad(I) and also we
get D(I) = rad(I) where I is a C -hyperideal in R . For some hyperideals I and J of R , (I : J) is the set
{s ∈ R|s ◦ J ⊆ I}. Let (R,+, ◦) and (S,+, ◦) be two hyperrings and f : R → S be a map. Then f is called a
homomorphism if it satisfies these properties: f(a+ b) = f(a)+ f(b) and f(a ◦ b) ⊆ f(a) ◦ f(b) for all a, b ∈ R.

In particular, f is called a good homomorphism if f(a ◦ b) = f(a) ◦ f(b) for all a, b ∈ R. Furthermore, the
kernel of a homomorphism is defined by ker(f) = f−1(< 0 >) = {r ∈ R|f(r) ∈< 0 >} and note that f(r)

may not be a zero element. Let I be a hyperideal of R . The quotient abelian group R/I = {a+ I|a ∈ R} is a
hyperring with the multiplication (a+ I) ◦ (b+ I) = {r + I|r ∈ a ◦ b}. Then R/I is called quotient hyperring.
It can be easily proved that all hyperideals of R/I is of the form J/I , where J is a hyperideal of R containing
I . The natural homomorphism π : R → R/I is defined by π(r) = r + I . Note that it is a good epimorphism.

Badawi presented the notions of 2-absorbing ideals and 2-absorbing primary ideals in commutative ring
theory and then, he extensively give the basic properties of these concepts in [6, 7]. The notions of 2-absorbing
and 2-absorbing primary hyperideals in multiplicative hyperrings have been introduced as the generalizations
of prime and primary hyperideal in [3]. The author defined a 2-absorbing (primary) hyperideal I as follows:
for all x, y, z ∈ R , x ◦ y ◦ z ⊆ I implies x ◦ y ⊆ I or y ◦ z ⊆ I or x ◦ z ⊆ I (x ◦ y ⊆ I or y ◦ z ⊆ rad(I) or
x ◦ z ⊆ rad(I)), respectively.

Let R be a multiplicative hyperring. By I(R) and I ∗ (R) , we mean all hyperideals of R and all proper
hyperideals of R , respectively. A function δ from I(R) to I(R) is said to be an expansion function of I(R) if
it satisfies the next two conditions: (i) I ⊆ δ(I), (ii) If I ⊆ J , then δ (I) ⊆ δ (J) for any hyperideals I, J of R.

In [10], Zhao introduced a new concept which is called δ -primary ideals in commutative rings. This concept is
considered to unify prime and primary ideals. The author defined I as a δ -primary ideal if whenever xy ∈ I

for each x, y ∈ R implies x ∈ I or y ∈ δ (I) . Then defining 2-absorbing δ -primary ideals in commutative rings,
Zhao brought the theory of algebraic in a new concept which unifies 2-absorbing ideals and 2-absorbing primary
ideals [11]. According to the author, a proper ideal I is defined as a 2-absorbing δ -primary provided that
xyz ∈ I for each x, y, z ∈ R implies xy ∈ I or yz ∈ δ (I) or xz ∈ δ (I) . Later, Yesilot introduced the concept
of δ -primary hyperideal on Krasner hyperrings in [5]. He called I a δ -primary hyperideal of R if xy ∈ I and
x /∈ I for some x, y ∈ R imply y ∈ δ (I) .

In this paper, first we study δ -primary hyperideal of commutative multiplicative hyperring as an expan-
sion of prime hyperideals and primary hyperideals. In Section 2, we obtain that I is δ -primary hyperideal
when δ(I) is prime. Then we determine that L ◦K ⊆ I for some I, L,K ∈ I(R) implies L ⊆ I or K ⊆ δ(I)

if and only if I is a δ -primary hyperideal of R . A hyperring homomorphism is shown to preserve the concept
of δ -primary hyperideal under the special conditions. In Section 3, we present the new notion of 2-absorbing
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δ -primary hyperideals, which is an expansion of 2-absorbing hyperideals and 2-absorbing primary hyperideals.
We give explanatory specific examples and results of this concept in a similar manner of Section 2. It is shown
that I is a δ ◦ γ -primary hyperideal of R if γ(I) is a δ -primary hyperideal for expansion functions δ and γ of
I(R) . It is defined a strongly 2-absorbing δ -primary hyperideal I of R in such a way that: if I1, I2, I3 ∈ I(R)

and I1 ◦I2 ◦I3 ⊆ I imply I1 ◦I2 ⊆ I or I2 ◦I3 ⊆ δ(I) or I1 ◦I3 ⊆ δ(I) . We obtain that I ∈ I(R) is 2-absorbing
δ -primary if and only if it is strongly 2-absorbing δ -primary. Notice that R = R1 × R2 is a multiplicative
hyperring where Ri is a multiplicative hyperring with nonzero identity for each i ∈ {1, 2} [4]. Let δi be an
expansion function of hyperideals of Ri for every i ∈ {1, 2} . We define δR by δR(I1 × I2) = δ1(I1)× δ2(I2) for
all hyperideals Ii of Ri for every i ∈ {1, 2} . It can be easily seen to be an expansion function of hyperideals
of R . Finally, we give a characterization δR -primary hyperideals and 2-absorbing δR -primary hyperideals of
R1 ×R2.

Throughout this paper, we suppose that every hyperring is commutative multiplicative with nonzero
identity.

2. On expansion of prime hyperideals

Definition 2.1 [5] A function δ : I(R) → I(R) is said to be an expansion function of I(R) if it satisfies the
following two conditions: (1) I ⊆ δ(I), (2) If I ⊆ J , then δ (I) ⊆ δ (J) for all hyperideals I, J of R.

In the following examples, we explain the definition of expansion function over multiplicative hyperrings.

Example 2.1 1. The function δ0 is an expansion function of I(R) with δ0(I) = I for every hyperideal
I ∈ I(R) .

2. The function δ1 is an expansion function of I(R) with δ1(I) = D(I) for every hyperideal I ∈ I(R) .

3. The function δ2 is an expansion function of I(R) with δ2(I) = rad(I) for every hyperideal I ∈ I(R) .

4. The function δr is an expansion function of hyperideals of R with δr(I) = R for every hyperideal
I ∈ I(R) .

5. Let δi and δj be expansion functions of hyperideals of R . δ is defined by δ(I) = δi(I) ∩ δj(I) for each
hyperideal I of R . Notice that δ is an expansion function of I(R).

6. Let δI(R) be defined by δI(R)(J)=
∩
{I ∈ I(R)|J ⊆ I} . Then, δI(R) is an expansion function of

hyperideals of R.

7. The compound function δ ◦ γ of two expansion functions δ and γ of I(R) is an expansion of I(R) with
δ ◦ γ(I) = δ(γ(I)) for each I ∈ I(R).

8. Let δ+ be defined by δ+(I) = I + J for every hyperideal I of R where J is a hyperideal of R . It can be
easily seen that δ+ is an expansion function of I(R) .

Definition 2.2 Let δ be an expansion function of I(R) . I ∈ I ∗ (R) is called a δ -primary hyperideal if
a, b ∈ R and a ◦ b ⊆ I imply either a ∈ I or b ∈ δ(I) .

We give the following examples to better explain the structure of δ -primary hyperideal.
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Example 2.2 Assume that (Z,+, ·) is the ring of integers. Let (Z,+, ◦) be a multiplicative hyperring with a
hyperoperation x ◦ y . Consider the expansion function δ+ of I(Z) with δ+(I) = I + qZ where q is a prime
integer. Then I = pZ is a δ+ -primary hyperideal of I(Z) where p is a prime integer with p ̸= q since
δ+(pZ) = (pZ) + (qZ) = Z.

Example 2.3 Consider the expansion function δr of R (See Example 2.1(4)). Then every proper hyperideal
of R is a δr -primary hyperideal.

Example 2.4 1. It is clear that a hyperideal is δ0 -primary if and only if it is a prime.

2. If a hyperideal of R is δ1 -primary, then it is primary. The converse holds if D(I) = rad(I) .

3. Let every hyperideal of R be a C -hyperideal. Then, a hyperideal of R is δ2 -primary if and only if it is a
primary.

Proposition 2.1 Let δ , γ be expansion functions of I(R) and δ(I) ⊆ γ(I) for each hyperideal I of R. Every
δ -primary hyperideal of R is a γ -primary hyperideal. Thus, we conclude that a prime hyperideal is a δ -primary
hyperideal for each expansion function δ of I(R) .

Let (R,+, .) be a ring and A ∈ P ∗(R)( |A| ≥ 2). There exists a multiplicative hyperring (RA,+, ◦) , where
RA = R and x ◦ y = {x · a · y|a ∈ A} for each x, y ∈ RA .

In Proposition 2.1, we know that a prime hyperideal is a δ -primary hyperideal for each expansion function
δ of a multiplicative hyperring. However, the next example shows that the inverse of Proposition 2.1 is not
true, in general.

Example 2.5 Let Z be the ring of integers and A be the set of all positive even integers of Z. Consider the
multiplicative hyperring ZA . Then, the set E of all even integers of Z is a δ1 -primary hyperideal of ZA , but
it is not a prime hyperideal of ZA (See [8, Example 3.5]).

In the following theorem, it is stated the relationship between primary hyperideals and δ -primary
hyperideals.

Theorem 2.1 If I is a primary hyperideal of R and rad(δ(I)) = δ(I) , then I is a δ -primary hyperideal of
R .

Proof We assume a, b ∈ R with a ◦ b ⊆ I . By our assumption, a ∈ I or b ∈ D(I) ⊆ rad(I) ⊆ rad(δ(I)) , and
so a ∈ I or b ∈ δ(I) since rad(δ(I)) = δ(I) . Hence, I is a δ -primary hyperideal of R . 2

Lemma 2.1 Let I ∈ I ∗ (R). Then I of R is a δ -primary if and only if L ◦ K ⊆ I for each L,K ∈ I(R)

implies L ⊆ I or K ⊆ δ(I) .

Proof (⇒) : Suppose that L ◦ K ⊆ I , L ̸⊆ I and K ̸⊆ δ(I) for some L,K ∈ I(R) . We have a, b ∈ R

satisfied a ∈ L− I and b ∈ K − δ(I) . Then a ◦ b ⊆ L ◦K ⊆ I , yielding a contradiction.
(⇐) : We assume a, b ∈ R with a ◦ b ⊆ I . By [8, Proposition 2.15], it is obtained that < a > ◦ < b >⊆<

a ◦ b >⊆ I . Consequently, < a >⊆ I or < b >⊆ δ(I) by our assumption. 2
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Theorem 2.2 Let I be a δ -primary hyperideal of R .

1. (I : K) = I for each hyperideal K of I(R) with K ⊈ δ(I) .

2. (I : H) is a δ -primary hyperideal of R for each subset H of R .

Proof

1. Clearly, r◦K ⊆ I for every r ∈ I . Thus, I ⊆ (I : K) . Conversely, consider (I : K)◦K . Then (I : K)◦K
=
∪

r∈(I:K),x∈K (r ◦ x) ⊆ I . We obtain (I : K) ⊆ I as I is a δ -primary hyperideal and K ̸⊆ δ(I) .

2. Let a ◦ b ⊆ (I : H) and a /∈ (I : H) for some elements a, b ∈ R. It is clear that a ◦ b ◦ H ⊆ I . Take
an element h ∈ H with a ◦ h ̸⊆ I . Thus, a ◦ b ◦ h = a ◦ h ◦ b ⊆ I and a ◦ h ̸⊆ I , that is, we get
< a ◦ h > ◦ < b >⊆ I and < a ◦ h > ̸⊆ I . Hence, we obtain < b >⊆ δ(I) ⊆ δ(I : H) . Consequently,
b ∈ δ(I : H).

2

Theorem 2.3 If I is a δ -primary C -hyperideal of R with rad(δ(I)) ⊆ δ(rad(I)) , then rad(I) is a δ -primary
C -hyperideal of R.

Proof Take a, b ∈ R with a ◦ b ⊆ rad(I) and a /∈ rad(I). Then an ◦ bn ⊆ I for some positive integer n and
ak ⊈ I for each positive integer k . By our assumption and akn ◦ bkn ⊆ I , we obtain bkn ⊆ δ(I). It means
b ∈ rad(δ(I)) ⊆ δ(rad(I)) , we are done. 2

Definition 2.3 If δ holds δ(I ∩ J) = δ(I) ∩ δ(J) for each I, J ∈ I(R) , it has the property of intersection
preserving.

We denote the property of intersection preserving with *. Notice that the expansion functions δ1 and δ2 of
hyperideals of a multiplicative hyperring are examples which hold the property of intersection preserving.

Theorem 2.4 Let δ has the property *. If Ii is a δ -primary hyperideals of R and δ(Ii) = P for all
i ∈ {1, 2, ..., n} . Then I =

∩n
i=1 Ii is so.

Proof Let x◦y ⊆ I and x /∈ I for some x, y ∈ R. Then x /∈ Ij for some j ∈ {1, 2, ..., n} . Thus, y ∈ δ(Ij) = P

and δ(I) = δ(
∩n

i=1 Ii) = δ(I1) ∩ · · ·δ(In) = P . By the assumption, we get y ∈ δ(I). 2

Definition 2.4 Let f : R → S be a good hyperring homomorphism, expansion functions δ and γ of I(R) and
I(S), respectively. Then f is called a δγ -homomorphism if δ(f−1(J)) = f−1(γ(J)) for each hyperideals J of
S.

Consider the expansion functions γ1 of I(S) and δ1 of I(R) defined in a similar manner of Example
2.1 (2). It is seen that each homomorphism from R to S is an example of δ1γ1 -homomorphism. If every
hyperideal of R is a C -hyperideal, any homomorphism from R to S is a δ2γ2 -homomorphism where the
radical operations γ2 of I(S) and δ2 of I(R) (See Example 2.1 (3)). Also, note that γ(f(I)) = f(δ(I)) where
f is a δγ -epimorphism and I ∈ I(R) with ker(f) ⊆ I .
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Theorem 2.5 Let f : R → S be δγ -homomorphism. Then:

1. Let J be a γ -primary hyperideal of S . f−1(J) is a δ -primary hyperideal of R .

2. Let f be epimorphism and I ∈ I(R) with ker(f) ⊆ I . f(I) is γ -primary if and only if I is a δ -primary
hyperideal.

Proof

1. It is well known that f−1(J) is a proper hyperideal of R. Let a ◦ b ⊆ f−1(J) for each a, b ∈ R. We
get f(a ◦ b) = f(a) ◦ f(b) ⊆ J. Since J is γ -primary, we obtain that f(a) ∈ J or f(b) ∈ γ(J) . Hence,
a ∈ f−1(J) or b ∈ f−1(γ(J)) , that is, a ∈ f−1(J) or b ∈ δ(f−1(J)).

2. Clearly, f(I) is a proper hyperideal of S. Let a ◦ b ⊆ f(I) for each a, b ∈ S. As f is an epimorphism, we
take a′, b′ ∈ R with f(a′) = a , f(b′) = b and so we obtain f(a′)◦f(b′) = f(a′ ◦ b′) ⊆ f(I) . Let k ∈ a′ ◦ b′.
There is a y ∈ a′ ◦ b′ such that f(y) = x for every x ∈ f(a′ ◦ b′). Then f(k) = x for any x ∈ f(a′ ◦ b′).
Additionally, there is a y′ ∈ I such that f(y′) = x for every x ∈ f(a′ ◦ b′) since f(a′ ◦ b′) ⊆ f(I).

Thus, f(k − y′) = f(k) − f(y′) = 0 ∈< 0 > since f(k) = f(y′) . Since f is an epimorphism, then
k − y′ ∈ f−1 < 0 >= ker(f) ⊆ I. Thus, we conclude that k ∈ I, that is, a′ ◦ b′ ⊆ I. In that case,
a′ ◦ b′ ⊆ I. Therefore, a′ ∈ I or b′ ∈ δ(I) and we obtain f(a′) ∈ f(I) or f(b′) ∈ f(δ(I)) . We obtain
a ∈ f(I) or b ∈ f(δ(I)) = γ(f(I)) by our assumption. Consequently, f(I) is γ -primary. The converse
part is quite clear from (1).

2

Let δ be an expansion function of I(R) and I ∈ I(R) . Let the function δq : R/I → R/I be defined by
δq(K/I) = δ(K)/I for all hyperideals K(⊇ I) of R . Note that δq is an expansion function of I(R/I) .

Corollary 2.1 Let I and K be hyperideals of R hold I ⊆ K. Then K is a δ -primary hyperideal if and only
if K/I is a δq -primary hyperideal of the quotient hyperring R/I.

Proof The claim is verified from Theorem 2.5. 2

Definition 2.5 We let (R,+, ◦) is a multiplicative hyperring.

1. An element r ∈ R is defined as zero divisor if there is an element 0 ̸= r′ ∈ R such that {0} = r ◦ r′.

2. An element r ∈ R is a δ -nilpotent if r ∈ δ(0).

Theorem 2.6 A hyperideal I of R is a δ -primary if and only if every zero divisor of R/I is a δq -nilpotent.

Proof (⇒) : Assume that I ∈ I(R) is δ -primary. We denote r + I with r̄. Take a zero divisor element r̄

of R/I. Then there is an element I ̸= r̄′ = r′ + I with I = (r + I) ◦ (r′ + I) . As the result of I = r ◦ r′ + I ,
we have r ◦ r′ ⊆ I . Thus, r ∈ δ(I) as r ◦ r′ ⊆ I and r′ /∈ I . Consider the expansion function δq of I(R)

and the natural homomorphism π : R → R/I . We obtain that π is a δδq -epimorphism. Thus, we have
δ(I) = δ(π−1(0R/I)) = π−1(δq(I)) . Note that r̄ = r + I ∈ δ(I)/I = π(δ(I)) = δq(0R/I). Hence, r̄ ∈ δq(0R/I).

(⇐) : Let every zero divisor of R/I be a δq -nilpotent. Let r ◦ r′ ⊆ I and r /∈ I for each r, r′ ∈ R. Then r′ + I
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is a zero divisor element in R/I as r ◦ r′ + I = (r + I) ◦ (r′ + I) = I and r + I ̸= I. By assumption, we get
r′ + I ∈ δq(0R/I) = δ(I)/I. Consequently, r′ ∈ δ(I) . 2

Theorem 2.7 Let I1, ..., In ∈ I ∗ (R) and I a δ -primary hyperideal of R with
∩n

i=1 Ii ⊆ I. Then, Ii ⊆ δ(I)

for some i ∈ {1, ..., n}. If
∩n

i=1 Ii = I and δ(δ(J)) = δ(J) for each J ∈ I(R) , then δ(Ii) = δ(I) for some
i ∈ {1, ..., n}.

Proof We suppose Ii ⊈ δ(I) for every i ∈ {1, ..., n}. Then there exist elements x1, ..., xn of R with
xi ∈ Ii − δ(I). We get x1 ◦ ... ◦ xn ⊆ Ii for every i and so x1 ◦ ... ◦ xn ⊆

∩n
i=1 Ii. Since I is δ -primary

and x1, ..., xn /∈ δ(I) , then xi ∈ I ⊆ δ(I) for each i ∈ {1, ..., n} , contradiction. Let
∩n

i=1 Ii = I . Then
δ(Ii) = δ(I) since I ⊆ Ii and δ(I) ⊆ δ(Ii). 2

3. On expansion of 2-absorbing hyperideal

Definition 3.1 Let δ be an expansion function of I(R) and I ∈ I ∗ (R) . I refers to a 2-absorbing δ -primary
hyperideal if a, b, c ∈ R and a ◦ b ◦ c ⊆ I imply a ◦ b ⊆ I or b ◦ c ⊆ δ(I) or a ◦ c ⊆ δ(I) .

We start with the following examples to explaining this structure.

Example 3.1 Consider the ring of integers (Z,+, ·) . Then we have (Z,+, ◦) is a multiplicative hyperring with
the hyperoperation x ◦ y = {x · y} . Then the hyperideal 6Z = {6k|k ∈ Z} is clearly a 2-absorbing δ2 -primary
hyperideal.

Example 3.2 Let (Z,+, ◦) be defined as in Example 2.2. Consider the expansion function δ+ of I(Z) with
δ+(I) = I + (q) where q is a prime integer. Then I = (p) is a 2-absorbing δ+ -primary hyperideal of I(Z)
where p is a prime integer with p ̸= q since δ+(p) = (p) + (q) = Z.

Example 3.3 Consider the expansion function δr of R (See Example 2.1(4)). Then every proper hyperideal
of R is a 2-absorbing δr -primary hyperideal.

Remark 3.1 1. Every δ -primary element of I(R) is a 2-absorbing δ -primary hyperideal.

2. I is a 2-absorbing δ0 -primary hyperideal if and only if I is a 2-absorbing hyperideal.

3. I is a 2-absorbing δ2 -primary hyperideal if and only if I is a 2-absorbing primary hyperideal.

The converse of Remark 3.1 (1) may not be always true as it is shown in the following example.

Example 3.4 Consider the multiplicative hyperring (Z,+, ◦) in Example 3.1. Then the hyperideal 6Z is clearly
a 2-absorbing δ2 -primary hyperideal but it is not δ2 -primary since 2 ◦ 3 ⊆ 6Z , 2, 3 /∈ 6Z , and 2, 3 /∈ δ2(6Z) .

Theorem 3.1 The following hold:

1. Let γ be expansion function of I(R) satisfied δ(I) ⊆ γ(I) for each I ∈ I(R). Then every 2-absorbing
δ -primary hyperideal of R is 2-absorbing γ -primary. Additionaly, every 2-absorbing hyperideal is a
2-absorbing δ -primary since I ⊆ δ(I) for each expansion function δ of I(R) .
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2. Let I ∈ I(R) be 2-absorbing primary and δ(I) be a radical hyperideal (i.e rad(δ(I)) = δ(I)). Then, I is
2-absorbing δ -primary.

Proof

1. The claim is clear by the assumption.

2. We suppose a, b, c ∈ R and a ◦ b ◦ c ⊆ I . It means a ◦ b ⊆ I or b ◦ c ⊆ rad(I) or a ◦ c ⊆ rad(I) by our
assumption. We have rad(I) ⊆ rad(δ(I)) since I ⊆ δ(I). Thus, we obtain a ◦ b ⊆ I or b ◦ c ⊆ rad(δ(I))

or a ◦ c ⊆ rad(δ(I)) . Consequently, a ◦ b ⊆ I or b ◦ c ⊆ δ(I) or a ◦ c ⊆ δ(I) .

2

The following example shows that the converse part of Theorem 3.1(1) may not be true, in general.

Example 3.5 Consider the hyperring ZA where A = {3, 4} . It is easily seen that the principal hyperideal
< 8 > of ZA is 2-absorbing δ2 -primary hyperideal. However, it is not a 2-absorbing hyperideal as the fact that
2 ◦ 2 ◦ 2 ⊆< 8 > but 2 ◦ 2 = {12, 16} ̸⊆< 8 > .

Theorem 3.2 Let δ(I) be a prime hyperideal of R . Then I is a 2-absorbing δ -primary of R .

Proof Take a, b, c ∈ R with a◦b◦c ⊆ I and a◦b ̸⊆ I . Let us consider two situations. Firstly, let a◦b ̸⊆ δ(I) .
Then we obtain c ∈ δ(I) by our assumption. Thus, we get a ◦ c ⊆ δ(I) and b ◦ c ⊆ δ(I) . Secondary, take
a ◦ b ⊆ δ(I) . By our assumption, we get a ∈ δ(I) or b ∈ δ(I) . Hence, a ◦ c ⊆ δ(I) or b ◦ c ⊆ δ(I) . 2

The next example is given to explain that the converse of Theorem 3.2 may not be always true.

Example 3.6 Note that the hyperring in Example 3.4. There, we show that 6Z is 2-absorbing δ2 -primary
hyperideal of (Z,+, ◦) . Consider δ2(6Z) . We have that it is not a prime since 2 ◦ 3 ⊆ δ2(6Z) but 2, 3 /∈ δ2(6Z) .

Theorem 3.3 Let I be a 2-absorbing δ -primary C -hyperideal of R with rad(δ(I)) ⊆ δ(rad(I)) . Then rad(I)

is a 2-absorbing δ -primary C -hyperideal of R.

Proof It can be proved in a similar manner to Theorem 2.3. 2

Theorem 3.4 Let I,K , and L be proper hyperideals of R with L ⊆ K ⊆ I . If I is a δ -primary hyperideal
where δ(I) = δ(L) , then K is a 2-absorbing δ -primary hyperideal.

Proof Suppose a, b, c ∈ R with a ◦ b ◦ c ⊆ K and a ◦ b ̸⊆ K . We get two cases as K ⊆ I . The first case: Let
a◦b ̸⊆ I . Then c ∈ δ(I) = δ(L) ⊆ δ(K) with our assumption. Thus, we get a◦c ⊆ δ(K) and b◦c ⊆ δ(K) . The
second case: Let a ◦ b ⊆ I . It means a ∈ I ⊆ δ(K) or b ∈ δ(I) = δ(L) ⊆ δ(K) by assumption. Consequently,
we get a ◦ c ⊆ δ(K) or b ◦ c ⊆ δ(K). In the both cases, we obtain that K is 2-absorbing δ -primary. 2

Corollary 3.1 Let a hyperideal I of R be δ -primary and K ∈ I(R) with K ⊆ I and δ(I) = δ(K) . Then K

is 2-absorbing δ -primary.

Proof The claim is verified by Theorem 3.4. 2

1511



ULUCAK/Turk J Math

Theorem 3.5 Let δ and η be two expansion functions of I(R) and I ∈ I(R) . If η(I) is a prime hyperideal,
I is a 2-absorbing δ ◦ η -primary.

Proof Take a, b, c ∈ R with a ◦ b ◦ c ⊆ I and a ◦ b ⊈ I . Thus, it means a ◦ b ⊈ η(I) or a ◦ b ⊆ η(I) . Let
a◦b ⊈ η(I) . Then c ∈ η(I) ⊆ δ(η(I)) by Definition ??. Thus, we acquire a◦c ⊆ δ◦η(I) and b◦c ⊆ δ◦η(I) . Let
a ◦ b ⊆ η(I). By our assumption, we get a ∈ η(I) or b ∈ η(I) . Then a ◦ c ⊆ η(I) ⊆ δ(η(I)) or b ◦ c ⊆ δ(η(I)).

2

Theorem 3.6 Let δ be an expansion function of I(R) and I, J δ -primary hyperideals of R with δ(I ∩ J) =

δ(I) ∩ δ(J) . Then I ∩ J is a 2-absorbing δ -primary hyperideal of R .

Proof Let a◦ b◦ c ⊆ I ∩J and a◦ b ⊈ I ∩J where a, b, c ∈ R . It is deduced from either a◦ b ⊈ I or a◦ b ⊈ J.

Thus, we consider the following cases.
Case 1: Let a ◦ b ⊆ I and a ◦ b ⊈ J. Since a ◦ b ⊈ J , there exists an element r ∈ a ◦ b such that r /∈ J .

Since r ◦ c ⊆ J and r /∈ J , then c ∈ δ(J) . Also, a ∈ I ⊆ δ(I) or b ∈ δ(I) as a ◦ b ⊆ I . Hence, we get
a ◦ c ⊆ δ(I) or b ◦ c ⊆ δ(I) . Then we obtain a ◦ c ⊆ δ(I) ∩ δ(J) = δ(I ∩ J) or b ◦ c ⊆ δ(I) ∩ δ(J) = δ(I ∩ J).

Case 2: If we assume a ◦ b ⊈ I and a ◦ b ⊆ J , in that case we get a ◦ c ⊆ δ(I) or b ◦ c ⊆ δ(I) by a similar
way to the proof of Case 1.

Case 3: Let a ◦ b ⊈ I and a ◦ b ⊈ J. We have elements r, s ∈ a ◦ b with r /∈ I and s /∈ J. Thus, we have
r ◦ c ⊆ I and s ◦ c ⊆ J . Hence, c ∈ δ(I) and c ∈ δ(J) by our assumption. Consequently, a ◦ c ⊆ δ(I) and
b ◦ c ⊆ δ(I) . 2

Theorem 3.7 Let δ have the property * and K = I ∩ J for some δ -primary hyperideals I and J of R . K

is a 2-absorbing δ -primary hyperideal.

Proof It is clear by previous Theorem. 2

Proposition 3.1 Let (R,+, ◦) be a multiplicative hyperring and I, J,K ∈ I ∗ (R) . If I ⊆ J ∪K , then I ⊆ J

or I ⊆ K.

Proof Let I ⊆ J ∪ K , I ⊈ J and I ⊈ K. There are a, b ∈ R so that a ∈ I − J and b ∈ I − K. Then
a− b ∈ I . Thus, a ∈ J or b ∈ K since I ⊆ J ∪K , yielding a contradiction.

2

Theorem 3.8 Let I ∈ I ∗ (R) . Then we have the following equivalent statements:

1. I is a 2-absorbing δ -primary hyperideal.

2. (I : a ◦ b) ⊆ (δ(I) : a)
∪
(I : b) if a ◦ b ̸⊆ δ(I) for some a, b ∈ R .

3. (I : a ◦ b) ⊆ (δ(I) : a) or (I : a ◦ b) = (I : b) if a ◦ b ̸⊆ δ(I) for some a, b ∈ R .

Proof (1) ⇒ (2) : We suppose a, b ∈ R with a ◦ b ̸⊆ δ(I) and take x ∈ (I : a ◦ b) . Then, we have a ◦ b ◦x ⊆ I.

Thus, b ◦ x ⊆ I or a ◦ x ⊆ δ(I) by our assumption. Consequently, x ∈ (I : b) or x ∈ (δ(I) : a) , that is,
x ∈ (δ(I) : a)

∪
(I : b).
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(2) ⇐ (1) : We assume a◦ b◦x ⊆ I , a◦ b ̸⊆ δ(I) and b◦x ̸⊆ I for each a, b, x ∈ R. Then we have x ∈ (I : a◦ b).
By our assumption, x ∈ (δ(I) : a)

∪
(I : b) . Since b ◦ x ̸⊆ I , then we obtain a ◦ x ⊆ δ(I).

(2) ⇔ (3) : It is clear from Proposition 3.1 and (I : b) ⊆ (I : a ◦ b). 2

Theorem 3.9 Let f : R → S be δγ -homomorphism. Then:

1. Let J ∈ I(S) be a 2-absorbing γ -primary. f−1(J) is a 2-absorbing δ -primary hyperideal of R .

2. Let f be an epimorphism and I ∈ I(R) with ker(f) ⊆ I . f(I) is a 2-absorbing γ -primary in I(S) if
and only if I is 2-absorbing δ -primary in I(R) .

Proof

1. It can be easily seen that f−1(J) is a proper hyperideal. We assume a, b, c ∈ R with a ◦ b ◦ c ⊆ f−1(J) .
Clearly, f(a ◦ b ◦ c) = f(a) ◦ f(b) ◦ f(c) ⊆ J. As J is 2-absorbing γ -primary hyperideal, we obtain
f(a) ◦ f(b) = f(a ◦ b) ⊆ J or f(b) ◦ f(c) = f(b ◦ c) ⊆ γ(J) or f(a) ◦ f(c) = f(a ◦ c) ⊆ γ(J) . In that case,
a ◦ b ⊆ f−1(J) or b ◦ c ⊆ f−1(γ(J)) or a ◦ c ⊆ f−1(J) , that is, a ◦ b ⊆ f−1(J) or b ◦ c ⊆ δ(f−1(J)) or
a ◦ c ⊆ δ(f−1(J))

2. Note that f(I) is a proper hyperideal. Suppose a, b, c ∈ S with a◦b◦c ⊆ f(I) . By our assumption, we have
a′, b′, c′ ∈ R with f(a′) = a , f(b′) = b and f(c′) = c . Thus, it has been obtained f(a′) ◦ f(b′) ◦ f(c′) =
f(a′ ◦ b′ ◦ c′) ⊆ f(I) . Let k ∈ a′ ◦ b′ ◦ c′. There is a y ∈ a′ ◦ b′ ◦ c′ such that f(y) = x for every
x ∈ f(a′ ◦b′ ◦c′). Then f(k) = x for any x ∈ f(a′ ◦b′ ◦c′). Moreover, there is a y′ ∈ I such that f(y′) = x

for every x ∈ f(a′ ◦ b′ ◦ c′) since f(a′ ◦ b′ ◦ c′) ⊆ f(I) and so we get f(k − y′) = f(k)− f(y′) = 0 ∈< 0 >

since f(k) = f(y′) . Since f is epimorphism, then k − y′ ∈ f−1 < 0 >= ker(f) ⊆ I and so k ∈ I ,
that is, a′ ◦ b′ ◦ c′ ⊆ I. Therefore, this indicates a′ ◦ b′ ⊆ I or b′ ◦ c′ ⊆ δ(I) or a′ ◦ c′ ⊆ δ(I) , that is,
f(a′ ◦ b′) = f(a′)◦f(b′) ⊆ f(I) or f(b′ ◦ c′) = f(b′)◦f(c′) ⊆ f(δ(I)) or f(a′ ◦ c′) = f(a′)◦f(c′) ⊆ f(δ(I)) .
Clearly, a ◦ b ⊆ f(I) or b ◦ c ⊆ f(δ(I)) = γ(f(I)) or a ◦ c ⊆ f(δ(I)) = γ(f(I)) . Consequently, f(I) is a
2-absorbing γ -primary. The converse part is verified from (1).

2

Corollary 3.2 Let I,K ∈ I ∗ (R) with I ⊆ K. K is 2-absorbing δ -primary if and only if K/I is a 2-absorbing
δq -primary hyperideal of the quotient hyperring R/I.

Proof The claim is verified by Theorem 3.9. 2

Definition 3.2 Given expansion function δ of I(R) , I ∈ I ∗ (R) is called a strongly 2-absorbing δ -primary
hyperideal if I1 ◦ I2 ◦ I3 ⊆ I for some hyperideals I1, I2, I3 of R implies I1 ◦ I2 ⊆ I or I2 ◦ I3 ⊆ δ(I) or
I1 ◦ I3 ⊆ δ(I) .

Lemma 3.1 Let a hyperideal I of R be a 2-absorbing δ -primary. Then for each a, b ∈ R and J ∈ I(R) ,
a ◦ b ◦ J ⊆ I and a ◦ b ̸⊆ I imply a ◦ J ⊆ δ(I) or b ◦ J ⊆ δ(I) .
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Proof We suppose a, b ∈ R and J ∈ I(R) with a◦b◦J ⊆ I and a◦b ̸⊆ I . Assume a◦J =
∪

ji∈J a◦ ji ̸⊆ δ(I)

and b ◦ J =
∪

ji∈J b ◦ ji ̸⊆ δ(I) . Then there are j1, j2 ∈ J such that a ◦ j1 ̸⊆ δ(I) and b ◦ j2 ̸⊆ δ(I) . Since
a ◦ b ◦ j1 ⊆ I , a ◦ b ̸⊆ I and a ◦ j1 ̸⊆ δ(I) , then b ◦ j1 ⊆ δ(I) . In a similar way, we get a ◦ j2 ⊆ δ(I) since
a ◦ b ◦ j2 ⊆ I , a ◦ b ̸⊆ I and b ◦ j2 ̸⊆ δ(I) . We have a ◦ b ◦ (j1 + j2) ⊆ I as a ◦ b ◦ j1 + a ◦ b ◦ j2 ⊆ I. Then
a ◦ b ◦ (j1 + j2) ⊆ I and a ◦ b ̸⊆ I imply a ◦ (j1 + j2) ⊆ δ(I) or b ◦ (j1 + j2) ⊆ δ(I). If a ◦ (j1 + j2) ⊆ δ(I) ,
then a ◦ j1 = a ◦ (j1 + j2 − j2) ⊆ a ◦ (j1 + j2) − a ◦ j2 ⊆ δ(I) since a ◦ j2 ⊆ δ(I). In a similar manner, if
b ◦ (j1 + j2) ⊆ δ(I) , then b ◦ j2 = b ◦ (j1 + j2 − j1) ⊆ b ◦ (j1 + j2) − (b ◦ j1) ⊆ δ(I) as b ◦ j1 ⊆ δ(I). Thus,
we obtain a ◦ j1 ⊆ δ(I) or b ◦ j2 ⊆ δ(I) , yielding a contradiction. Consequently, we conclude a ◦ J ⊆ δ(I) or
b ◦ J ⊆ δ(I) . 2

Theorem 3.10 A hyperideal I of R is 2-absorbing δ -primary if and only if it is a strongly 2-absorbing
δ -primary hyperideal of R .

Proof (⇐) : It is trivial by the definition.
(⇒) : We suppose I1◦I2◦I3 ⊆ I and I1◦I2 ̸⊆ I for every hyperideals I1, I2, I3 of R . We show that I2◦I3 ⊆ δ(I)

or I1 ◦ I3 ⊆ δ(I) . For this case, we assume I2 ◦ I3 ̸⊆ δ(I) and I1 ◦ I3 ̸⊆ δ(I). Then there are q1 ∈ I1, q2 ∈ I2

with q1 ◦ I3 ̸⊆ δ(I) and q2 ◦ I3 ̸⊆ δ(I). Since I1 ◦ I2 ̸⊆ I , then there are a ∈ I1, b ∈ I2 with a ◦ b ̸⊆ I . Then we
deduce a ◦ I3 ⊆ δ(I) or b ◦ I3 ⊆ δ(I) as a ◦ b ◦ I3 ⊆ I and a ◦ b ̸⊆ I by Lemma 2.1. We get the following cases:

Case 1: Assume that a ◦ I3 ⊆ δ(I) and b ◦ I3 ̸⊆ δ(I) . As q1 ◦ b ◦ I3 ⊆ I , b ◦ I3 ̸⊆ δ(I) and q1 ◦ I3 ̸⊆ δ(I) ,
then q1 ◦ b ⊆ I by Lemma 2.1. As a ◦ I3 ⊆ δ(I) and q1 ◦ I3 ̸⊆ δ(I) , it means that (a + q1) ◦ I3 ̸⊆ δ(I).

Indeed, if (a + q1) ◦ I3 ⊆ δ(I) , then we get (a + q1) ◦ x ⊆ δ(I) for every x ∈ I3 and so it is obtained
q1 ◦x = (a+q1−a)◦x ⊆ (a+q1)◦x−a◦x ⊆ δ(I), a contradiction. By Lemma 2.1, we obtain (a+q1)◦b ⊆ I as
(a+q1)◦b◦I3 ⊆ I , (a+q1)◦I3 ̸⊆ δ(I) and b◦I3 ̸⊆ δ(I) . Then a◦b = (a+q1−q1)◦b ⊆ (a+q1)◦b−(q1 ◦b) ⊆ I ,
that is, we get a ◦ b ⊆ I , yielding a contradiction.

Case 2: Let a ◦ I3 ̸⊆ δ(I) and b ◦ I3 ⊆ δ(I) . As a ◦ q2 ◦ I3 ⊆ δ(I) , a ◦ I3 ̸⊆ δ(I) and q2 ◦ I3 ̸⊆ δ(I) ,
then a ◦ q2 ⊆ I by Lemma 2.1. As b ◦ I3 ⊆ δ(I) and q2 ◦ I3 ̸⊆ δ(I) , we get (b + q2) ◦ I3 ̸⊆ δ(I).

Indeed if (b + q2) ◦ I3 ⊆ δ(I) , then we get (b + q2) ◦ x ⊆ δ(I) for every x ∈ I3 and then we conclude
q2 ◦x = (b+ q2−a)◦x ⊆ (b+ q2)◦x− b◦x ⊆ δ(I), a contradiction. By Lemma 2.1, we obtain a◦ (b+ q2) ⊆ I as
a◦(b+q2)◦I3 ⊆ I , (b+q2)◦I3 ̸⊆ δ(I) and a◦I3 ̸⊆ δ(I) . Then a◦b = (b+q2−q2)◦a ⊆ (b+q2)◦a−(q2 ◦a) ⊆ I ,
that is, we get a ◦ b ⊆ I , yielding a contradiction.

Case 3: Let a ◦ I3 ⊆ δ(I) and b ◦ I3 ⊆ δ(I) . Since b ◦ I3 ⊆ δ(I) and q2 ◦ I3 ̸⊆ δ(I) , it is obtained
(b + q2) ◦ I3 ̸⊆ δ(I). If (b + q2) ◦ I3 ⊆ δ(I) , then we get (b + q2) ◦ x ⊆ δ(I) for every x ∈ I3. Then
q2 ◦ x = (b+ q2 − b) ◦ x ⊆ (b+ q2) ◦ x− b ◦ x ⊆ δ(I), a contradiction. By Lemma 2.1, we obtain q1 ◦ (b+ q2) ⊆ I

as q1 ◦ (b + q2) ◦ I3 ⊆ I , (b + q2) ◦ I3 ̸⊆ δ(I) and q1 ◦ I3 ̸⊆ δ(I) . By Lemma 2.1, we have q1 ◦ q2 ⊆ I

since q1 ◦ q2 ◦ I3 ⊆ I , q1 ◦ I3 ̸⊆ δ(I) and q2 ◦ I3 ̸⊆ δ(I) . Also, it is obtained (a + q1) ◦ I3 ̸⊆ δ(I) as
a ◦ I3 ⊆ δ(I) and q1 ◦ I3 ̸⊆ δ(I) by a similar way to the explain in above. By Lemma 2.1, we obtain
(a + q1) ◦ q2 ⊆ I as (a + q1) ◦ q2 ◦ I3 ⊆ I , (a + q1) ◦ I3 ̸⊆ δ(I) and q2 ◦ I3 ̸⊆ δ(I) . Then it is clear that
(a + q1) ◦ (b + q2) ⊆ I since (a + q1) ◦ (b + q2) ◦ I3 ⊆ I , (a + q1) ◦ I3 ̸⊆ δ(I) and (b + q2) ◦ I3 ̸⊆ δ(I). Thus,
a ◦ b = (a + q1 − q1) ◦ (b + q2 − q2) ⊆ (a + q1) ◦ (b + q2) − (a + q1) ◦ q2 − q1 ◦ (b + q2) − q1 ◦ q2 ⊆ I since
(a+ q1) ◦ (b+ q2) ⊆ I , (a+ q1) ◦ q2 ⊆ I , q1 ◦ (b+ q2) ⊆ I and q1 ◦ q2 ⊆ I . Hence, a ◦ b ⊆ I , a contradiction.
Consequently, it must be I2 ◦ I3 ⊆ δ(I) or I1 ◦ I3 ⊆ δ(I) . 2
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4. Generalization of hyperideals of product of multiplicative hyperrings

Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative hyperrings with nonzero identity. Recall (R = R1 ×
R2,+, ◦) is a multiplicative hyperring with the operation + and the hyperoperation ◦ are defined respectively
as (x, y)+(z, t) = (x+1y, z+2 t) and (x, y)◦(z, t) = {(a, b) ∈ R|a ∈ x◦1 z, b ∈ y◦2 t} for all (x, y), (z, t) ∈ R (for
more information, see [4]). Note that each hyperideal of R is the cartesian product of hyperideals of R1 and
R2 , respectively. Suppose that δ1 and δ2 are expansion functions of hyperideals of R1 and R2 , respectively.
Let δR be a function of hyperideals of R with δR(I1 × I2) = δ1(I1) × δ2(I2) for every hyperideals Ii of Ri

for i ∈ {1, 2} . It is seen that the function δR is expansion function of hyperideals of R . In this section, it is
characterized the structure of (2-absorbing) δR -primary hyperideals of R.

Theorem 4.1 Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative hyperrings with nonzero identity and
δ1 and δ2 be expansion functions of hyperideals of R1 and R2 , respectively. Let I1 ∈ I ∗ (R1) and (R =

R1 ×R2,+, ◦) . I1 is a δ1 -primary hyperideal of R1 if and only if I1 ×R2 is a δR -primary hyperideal of R .

Proof (⇒) : We presume (x, y), (z, t) ∈ R with (x, y) ◦ (z, t) ⊆ I1 ×R2 . By the above definition, we deduce
x ◦1 z ⊆ I1 . Hence, we have x ∈ I1 or z ∈ δ1(I1) and so (x, y) ∈ I1 ×R2 or (z, t) ∈ δR(I1 ×R2) .
(⇒) : Let I1 be not a δ1 -primary hyperideal of R1 . We have x, z ∈ R1 with x◦1 z ⊆ I1 , x /∈ I1 and z /∈ δ1(I1).

Note that (x, 1R2
) ◦ (z, 1R2

) ⊆ I1 ×R2. By assumption, (x, 1R2
) ∈ I1 ×R2 or (z, 1R2

) ∈ δR(I1 ×R2). It means
x ∈ I1 or z ∈ δ1(I1) , a contradiction. Thus, I1 is δ1 -primary. 2

Theorem 4.2 Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative hyperring with nonzero identity, δ1 and
δ2 be expansion functions of hyperideals of R1 and R2 , respectively. Let I = I1 × I2 be a proper hyperideals of
R for some hyperideals I1 and I2 of R1 and R2 , respectively. Then the following are equivalent:

1. I = I1 × I2 is a δR -primary hyperideal of R .

2. I1 = R1 and I2 is a δ2 -primary hyperideal of R2 or I2 = R2 and I1 is a δ1 -primary hyperideal of R1.

Proof (1) ⇒ (2) : Let I1 = R1 (I2 = R2 ). Then I2 is a δ2 -primary hyperideal of R2 ( I1 is a δ1 -primary
hyperideal of R1 ) by Theorem 4.1.
(2) ⇒ (1) : It is obvious by Theorem 4.1. 2

As a result of Theorem 4.1 and Theorem 4.2, we have that if I1 and I2 are δ1 -primary and δ2 -primary
hyperideal of R1 and R2 , respectively, then I1 × I2 may not be a δR -primary hyperideal of R = R1 ×R2 . For
this case, we give the next example.

Example 4.1 Assume that (Z,+, ·) is the ring of integers. Then (Z,+, ◦1) and (Z,+, ◦2) are two multiplicative
hyperring with a hyperoperation x ◦1 y = {xy, 3xy} and x ◦2 y = {xy, 2xy} , respectively. Consider (R =

Z × Z,+, ◦) is a multiplicative hyperring with a hyperoperation (x, y) ◦ (z, t) = {(a, b)|a ∈ x ◦1 z, b ∈ y ◦2 t} .
Note that 3Z = {3k|k ∈ Z} is a δ0 -primary hyperideal of (Z,+, ◦1) and 2Z = {2k|k ∈ Z} is a δ0 -primary
hyperideal of (Z,+, ◦2) . But 3Z× 2Z is not a δR = δ0 × δ0 -primary hyperideal since (2, 0) ◦ (0, 3) ∈ 3Z× 2Z
but (2, 0), (0, 3) /∈ 3Z× 2Z and (2, 0), (0, 3) /∈ δR(3Z× 2Z) = 3Z× 2Z.

Theorem 4.3 Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative hyperring with nonzero identity, δ1 and
δ2 be expansion functions of hyperideals of R1 and R2 , respectively. Let I1 ∈ I ∗ (R1) and (R = R1×R2,+, ◦) .
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I1 is a 2-absorbing δ1 -primary hyperideal of R1 if and only if I1 ×R2 is a 2-absorbing δR -primary hyperideal
of R .

Proof (⇒) : Let (x, y), (z, t), (u, v) ∈ R with (x, y) ◦ (z, t) ◦ (u, v) ⊆ I1 × R2 . Then x ◦1 z ◦1 u ⊆ I1 by the
previous definition. Hence, we have x◦1 z ∈ I1 or z◦1u ∈ δ1(I1) or x◦1u ∈ δ1(I1) and so (x, y)◦(z, t) ⊆ I1×R2

or (z, t) ◦ (u, v) ⊆ δR(I1 ×R2) or (x, y) ◦ (u, v) ⊆ δR(I1 ×R2) .
(⇒) : Let I1 ∈ I ∗ (R1) be not 2-absorbing δ1 -primary. We have x, z, u ∈ R1 with x ◦1 z ◦1 u ⊆ I1 ,
x ◦1 z ⊈ I1 , z ◦1 u ⊈ δ1(I1) and x ◦1 u ⊈ δ1(I1) . Note that (x, 1R2

) ◦ (z, 1R2
) ◦ (u, v) ⊆ I1 ×R2. By assumption,

(x, 1R2
) ◦ (z, 1R2

) ⊆ I1 ×R2 or (z, 1R2
) ◦ (u, 1R2

) ⊆ δR(I1 ×R2) or (x, 1R2
) ◦ (u, 1R2

) ⊆ δR(I1 ×R2). It means
x ◦1 z ⊆ I1 or z ◦1 u ⊆ δ1(I1) or x ◦1 u ⊆ δ1(I1) , a contradiction. Therefore, I1 is 2-absorbing δ1 -primary. 2

Theorem 4.4 Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative hyperring with nonzero identity, δ1, δ2 be
expansion functions of hyperideals of R1, R2 , respectively. Let I = I1×I2 be a proper hyperideals of R = R1×R2

for some hyperideals I1, I2 of R1, R2 , respectively, with for every i ∈ {1, 2} . If Ii is a proper with δi(Ii) ̸= Ri

for each i ∈ {1, 2} , then we have the following equivalent statements:

1. I = I1 × I2 is a 2-absorbing δR -primary hyperideal of R .

2. Ii is a δi -primary hyperideal of Ri for every i ∈ {1, 2} or I1 = R1 and I2 is a δ2 -primary hyperideal of
R2 or I2 = R2 and I1 is a δ1 -primary hyperideal of R1 .

Proof (1) ⇒ (2) : When I1 = R1 (I2 = R2 ), then I2 is a 2-absorbing δ2 -primary hyperideal of R2 ( I1 is
a δ1 -primary hyperideal of R1 ) by Theorem 4.3. Let Ii ∈ I ∗ (Ri) for every i ∈ {1, 2}. Assume that I1 is
not a δ1 -primary hyperideal of R1 . Then there are x, y ∈ R1 with xy ∈ I1 , x /∈ I1 and y /∈ δ1(I1) . Then
(x, 1R2

) ◦ (1R1
, 0R2

) ◦ (y, 1R2
) ⊆ I . By our assumption, (x, 1R2

) ◦ (1R1
, 0R2

) ⊆ I or (1R1
, 0R2

) ◦ (y, 1R2
) ⊆ δR(I)

or (x, 1R2
) ◦ (y, 1R2

) ⊆ δR(I) , a contradiction. Hence, I1 is a δ1 -primary hyperideal of R1 . In a similar way,
it is seen that I2 is a δ2 -primary hyperideal of R2 .
(2) ⇒ (1) : Let I1 be a 2-absorbing δ1 -primary of R1 . Thus, I = I1 ×R2 is clearly a 2-absorbing δR -primary
by Theorem 4.3. Also, I = R1 × I2 is so where I2 is 2-absorbing δ2 -primary of R2 by Theorem 4.3. Let I1

be a δ1 -primary hyperideal of R1 and I2 be a δ2 -primary hyperideal of R2 . Then we get J = I1 × R2 and
K = R1 × I2 are 2-absorbing δR -primary hyperideals of R. Thus, J ∩K = I1 × I2 is 2-absorbing δR -primary
by Theorem 3.6 and Theorem 4.2. 2

As a result of Theorems 4.3 and 4.4, we have that if I1 and I2 are 2-absorbing δ1 -primary and 2-absorbing
δ2 -primary hyperideal of R1 and R2 , respectively, then I1×I2 may not be a 2-absorbing δR -primary hyperideal
of R = R1 ×R2 . For this case, see the next example.

Example 4.2 Assume that (Z,+, ·) is the ring of integers. Then (Z,+, ◦1) is a multiplicative hyperring with
a hyperoperation x ◦1 y = {2xy, 3xy} . Let (R = Z×Z,+, ◦) is a multiplicative hyperring with a hyperoperation
(x, y) ◦ (z, t) = {(a, b)|a ∈ x ◦1 z, b ∈ y ◦1 t} . Note that 6Z = {6k|k ∈ Z} and 12Z = {12k|k ∈ Z} are
two δ2 -primary hyperideal of (Z,+, ◦1) . However, 6Z × 12Z is not a 2-absorbing δR = δ2 × δ2 -primary
hyperideal since (2, 1) ◦ (1, 3) ◦ (3, 4) ∈ 6Z × 12Z but (2, 1) ◦ (1, 3), (2, 1) ◦ (3, 4), (1, 3) ◦ (3, 4) ⊈ 6Z × 12Z and
(2, 1) ◦ (1, 3), (2, 1) ◦ (3, 4), (1, 3) ◦ (3, 4) ⊈ δR(6Z× 12Z) .
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5. Conclusion
In this paper, our purpose is to introduce the concepts δ -primary and 2-absorbing δ -primary hyperideal over
multiplicative hyperrings. These structures are the unify prime and primary, 2-absorbing and 2-absorbing
primary hyperideals, respectively. We obtain many specific results explaining the structures. For instance, we
indicate that a hyperideal I of R is δ -primary if and only if L ◦K ⊆ I for some L,K ∈ I(R) implies L ⊆ I

or K ⊆ δ(I) . Then we also showed that a similar result is satisfied for 2-absorbing δ -primary hyperideals of
R . We characterize δ -primary hyperideals and also 2-absorbing δ -primary hyperideals of cartesian product
of multiplicaitve hyperrings. This paper makes a great contribution to classify hyperideals of multiplicative
hyperrings.

As a new research subject, we suggest the concept of n -absorbing δ -primary hyperideals of multiplicative
hyperrings.
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