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Abstract: In this paper, we show that the following higher-order system of nonlinear difference equations,

xn =
xn−kyn−k−l

yn−l (an + bnxn−kyn−k−l)
, yn =

yn−kxn−k−l

xn−l (αn + βnyn−kxn−k−l)
, n ∈ N0,

where k, l ∈ N , (an)n∈N0
, (bn)n∈N0

, (αn)n∈N0
, (βn)n∈N0

and the initial values x−i, y−i , i = 1, k + l , are real numbers,
can be solved and some results in the literature can be extended further. Also, by using these obtained formulas,
we investigate the asymptotic behavior of well-defined solutions of the above difference equations system for the case
k = 2, l = k .

Key words: System of nonlinear difference equations, solution of system of difference equations in closed form,
asymptotic behavior

1. Introduction and preliminaries

The study of nonlinear difference equations and systems of difference equations has attracted the attention of
many authors in recent years (see, e.g., [1–49]). To find the difference equation or system of difference equations
that can be solved in closed form is only one of the challenges. Almost all solvable difference equations
or their systems have various generalizations of solvable difference equations and systems. That is, when a
solvable equation is found, generalizations such as solvability with parameters, solvability with increasing order,
solvability with periodic coefficients, and solvability as two-dimensional or three-dimensional systems can be
studied. For example, the following difference equations,

xn+1 =
xn−1xn−2

xn (±1± xn−1xn−2)
, n ∈ N0, (1.1)

were studied by El-Metwally and Elsayed in [10]. Then, in [35], Eq. (1.1) was generalized to the following
difference equation:

xn+1 =
xnxn−k

xn−k+1 (an + bnxnxn−k)
, n ∈ N0, (1.2)
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where k ∈ N . Also, in [32], Eq. (1.2) was extended to the following two-dimensional system of difference
equation:

xn+1 =
xnyn−k

yn−k+1 (an + bnxnyn−k)
, yn+1 =

ynxn−k

xn−k+1 (cn + dnxnyn−k)
, n ∈ N0, (1.3)

where k ∈ N . Further, system (1.3) is a natural generalization of the difference equation systems given in
[12, 15]. Moreover, in [34], the authors studied the next equation:

xn =
xn−2xn−k−2

xn−k (an + bnxn−2xn−k+2)
, n ∈ N0, (1.4)

where k ∈ N , which is a natural generalization of the equations given in [10, 11, 14, 20, 21]. On the other hand,
in [1], Eq. (1.1) was extended to the next differences systems:

xn+1 =
xn−1yn−2

yn (−1± xn−1yn−2)
, yn+1 =

yn−1xn−2

xn (±1± yn−1xn−2)
, n ∈ N0. (1.5)

Some of their solution forms were proved by induction. However, the obtained formulas have not been confirmed
by some theoretical explanations.

A natural question is to study both the two-dimensional form of equation (1.4) and more general systems
of (1.3) and (1.5) solvable in closed form. Here we study such a system. That is, we deal with the following
system of difference equations:

xn =
xn−kyn−k−l

yn−l (an + bnxn−kyn−k−l)
, yn =

yn−kxn−k−l

xn−l (αn + βnyn−kxn−k−l)
, n ∈ N0, (1.6)

where k, l ∈ N , (an)n∈N0
, (bn)n∈N0

, (αn)n∈N0
, (βn)n∈N0

and the initial values x−i, y−i , i = 1, k + l , are real
numbers. We solve system (1.6) in closed form and determine the asymptotic behavior of solutions for the case
k = 2, l = k . Note that system (1.6) is a natural extension of both Eqs. (1.1), (1.2), and (1.4) and systems
(1.3) and (1.5).

This paper is organized as follows. In the following section, we obtain the formulas of the solutions of
system (1.6) in closed form and give the forbidden set of the initial values of system (1.6). In Section 3, first
we write the formulas of the solutions of system (1.6) when the coefficients of system (1.6) are constant and
k = 2 , l = k . Furthermore, in this case, we investigate the asymptotic behavior of the solutions of system (1.6)
in detail according to the case of the coefficients a and α .

2. The solutions of the system (1.6)

Let (xn, yn)n≥−k−l be a solution of system (1.6). If at least one of the initial values x−i, y−i , i = 1, k + l , is
equal to zero, then the solution of system (1.6) is not defined. For example, if x−k−l = 0 , then y0 = 0 and so
xl is not defined. Similarly, if y−k−l = 0 , then x0 = 0 and so yl is not defined. For i = 1, k + l − 1 , the other
cases are similar. On the other hand, if xn0

= 0 (n0 ∈ N0 ), xn ̸= 0 , for −k − l ≤ n ≤ n0 − 1 , and xm and ym

are defined for −k − l ≤ m ≤ n0 − 1 , then according to the first equation in (1.6) we get that yn0−k−l = 0 . If
n0 − k − l ≤ −1 , then y−i0 = 0 , for i0 = 1, k + l . If n0 > k + l − 1 , then according to the second equation in
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(1.6) we have yn0−2k−l = 0 . If n0 − 2k− l ≤ −1 , then y−i0 = 0 for i0 = 1, k + l . Repeating this procedure, we
have y−i0 = 0 for i0 = 1, k + l . Similarly, if yn1 = 0 (n1 ∈ N0 ), yn ̸= 0 , for −k− l ≤ n ≤ n1 − 1 , and xm and
ym are defined for −k − l ≤ m ≤ n1 − 1 , one can easily show that x−i1 = 0 for i1 = 1, k + l . Thus, for every
well-defined solution of system (1.6), we have

xnyn ̸= 0, n ≥ −k − l, (2.1)

if and only if x−iy−i ̸= 0 , for i = 1, k + l . Therefore, by employing the substitution

un =
1

xnyn−l
, vn =

1

ynxn−l
, n ≥ −k, (2.2)

we transform system (1.6) into the following nonhomogeneous linear k-order difference equations:

un = anun−k + bn, vn = αnvn−k + βn, n ∈ N0. (2.3)

If we apply the decomposition of indexes n → km+ i , for some m ≥ −1 and i = 0, k − 1 , to (2.3), then they
become

ukm+i = akm+iuk(m−1)+i + bkm+i, vkm+i = αkm+ivk(m−1)+i + βkm+i, m ∈ N0, (2.4)

which are first-order k -equations. The solutions of equations in (2.4) are

ukm+i = ui−k

m∏
j=0

akj+i +

m∑
l=0

bkl+i

m∏
j=l+1

akj+i, vkm+i = vi−k

m∏
j=0

αkj+i +

m∑
l=0

βkl+i

m∏
j=l+1

αkj+i, m ≥ −1, (2.5)

i ∈ {0, 1, . . . , k − 1} . If an = a , bn = b , αn = α , and βn = β , for every ∈ N0 , then we have

ukm+i =
am+1 (ui−k (1− a)− b) + b

1− a
, vkm+i =

αm+1 (vi−k (1− α)− β) + β

1− α
, m ≥ −1, (2.6)

if a ̸= 1 and α ̸= 1 , and

ukm+i = ui−k + b (m+ 1) , vkm+i = vi−k + β (m+ 1) , m ≥ −1, (2.7)

if a = 1 and α = 1 . From (2.2) it follows that

xn =
1

unyn−l
=

vn−l

un
xn−2l, yn =

1

vnxn−l
=

un−l

vn
yn−2l, (2.8)

for n ≥ l − k , and consequently

x2lm+i = xi−2l

m∏
j=0

v(2j−1)l+i

u2lj+i
, y2lm+i = yi−2l

m∏
j=0

u(2j−1)l+i

v2lj+i
, (2.9)

for m ∈ N0 and i ∈ {l−k, l−k+1, . . . , 3l−k−1} . By the help of the well-known quotient remainder theorem,
there exist k ∈ N and s ∈ N0 such that n = ks+ j1 and j1 ∈ {0, 1, . . . , k− 1} . From this and system (2.9), we
can write
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x2klm+ks+j1 = xks+j1−2kl

m∏
j=0

k∏
n=1

v2klj+ks+j1−l(2n−1)

u2klj+ks+j1−2l(n−1)
,

y2klm+ks+j1 = yks+j1−2kl

m∏
j=0

k∏
n=1

u2klj+ks+j1−l(2n−1)

v2klj+ks+j1−2l(n−1)
(2.10)

for ks+ j1 ∈ {2kl − k − l, 2kl − k − l + 1, . . . , 4kl − k − l − 1} , if k is odd, and

xklm+ks+j1 = xks+j1−kl

m∏
j=0

k
2∏

n=1

vklj+ks+j1−l(2n−1)

uklj+ks+j1−2l(n−1)
,

yklm+ks+j1 = yks+j1−kl

m∏
j=0

k
2∏

n=1

uklj+ks+j1−l(2n−1)

vklj+ks+j1−2l(n−1)
(2.11)

for ks+ j1 ∈ {kl−k− l, kl−k− l+1, . . . , 2kl−k− l− 1} , if k is even. Consequently, the solution in the closed
form of system (1.6) follows from (2.5) and (2.10) or (2.11).
Now we give the solution form of system (1.6) when all the coefficients in system (1.6) are constant. To do this,
we suppose that an = a, bn = b, αn = α, βn = β for every n ∈ N0 . Then system (1.6) becomes

xn =
xn−kyn−k−l

yn−l (a+ bxn−kyn−k−l)
, yn =

yn−kxn−k−l

xn−l (α+ βyn−kxn−k−l)
, n ∈ N0. (2.12)

Then we may assume that gcd(k, l) = 1 . Indeed, if |gcd(k, l)| = f > 1 , denoting the greatest common divisor
of natural numbers k and l , then k = fk1 and l = fl1 for some k1, l1 ∈ N such that gcd(k1, l1) = 1 . Since
every n ∈ N0 has the form n = mf + i , for some m ∈ N0 and i ∈ {0, 1, . . . , f − 1} , from (2.12) we get

xmf+i =
xf(m−k1)+iyf(m−k1−l1)+i

yf(m−l1)+i

(
a+ bxf(m−k1)+iyf(m−k1−l1)+i

) , ymf+i =
yf(m−k1)+ixf(m−k1−l1)+i

xf(m−l1)+i

(
α+ βyf(m−k1)+ixf(m−k1−l1)+i

) .
(2.13)

The change of variables

x(i)
m = xmf+i, y(i)m = ymf+i, m ∈ N0, i ∈ {0, 1, . . . , f − 1}

in (2.13) yields
(
x
(i)
m

)
m≥−(k1+l1)

,
(
y
(i)
m

)
m≥−(k1+l1)

, i ∈ {0, 1, . . . , f − 1} , which are r independent solutions

of the system

x(i)
m =

x
(i)
m−k1

y
(i)
m−k1−l1

y
(i)
m−l1

(
a+ bx

(i)
m−k1

y
(i)
m−k1−l1

) , y(i)m =
y
(i)
m−k1

x
(i)
m−k1−l1

x
(i)
m−l1

(
α+ βy

(i)
m−k1

x
(i)
m−k1−l1

) . (2.14)

Note that one can get system (2.13) by taking k1 and l1 , respectively, instead of k and l in system (2.12).
From now on, we assume that the greatest common divisor of k and l is equal to 1; that is, gcd(k, l) = 1 .
By substituting the formulas (2.6)–(2.7) into (2.10)–(2.11), we obtain the formulas for well-defined solutions of
system (2.12) when gcd(k, l) = 1 .

1536



KARA and YAZLIK/Turk J Math

Theorem 2.1 Assume that an ̸= 0, bn ̸= 0, αn ̸= 0, βn ̸= 0, n ∈ N0 . Then the forbidden set of the initial
values for system (1.6) is given by the set

F =
∪

m∈N0

k−1∪
i=0

{
(x−k−l, . . . , x−1, y−k−l, . . . , y−1) ∈ R2(k+l) : xi−kyi−k−l =

1

cm
, yi−kxi−k−l =

1

dm
,where

cm := −
m∑
j=0

bkj+i

akj+i

j−1∏
l=0

1

akl+i
̸= 0, dm := −

m∑
j=0

βkj+i

αkj+i

j−1∏
l=0

1

αkl+i
̸= 0
}∪

k+l∪
j=1

{
(x−k−l, . . . , x−1, y−k−l, . . . , y−1) ∈ R2(k+l) : x−j = 0, y−j = 0

}
. (2.15)

Proof At the beginning of Section 2, we have acquired that the set

k+l∪
j=1

{
(x−k−l, . . . , x−1, y−k−l, . . . , y−1) ∈ R2(k+l) : x−j = 0, y−j = 0

}
belongs to the forbidden set of the initial values for system (1.6). Now we assume that xn ̸= 0 and yn ̸= 0 .
Note that system (1.6) is undefined when the conditions an + bnxn−kyn−k−l = 0 or αn + βnyn−kxn−k−l = 0 ,
that is, xn−kyn−k−l = −an

bn
or yn−kxn−k−l = −αn

βn
, for some n ∈ N0 , are satisfied (here we consider that

bn ̸= 0 and βn ̸= 0 for every n ∈ N0 ). From this and the substitution un = 1
xnyn−l

, vn = 1
ynxn−l

, we get

uk(m−1)+i = − bkm+i

akm+i
, vk(m−1)+i = −βkm+i

αkm+i
(2.16)

for some m ∈ N0 and i ∈ {0, 1, . . . , k − 1} . Hence, we can determine the forbidden set of the initial values for
system (1.6) by using the substitution un = 1

xnyn−l
, vn = 1

ynxn−l
. Now we consider the functions

fkm+i (t) := akm+it+ bkm+i, gkm+i (t) := αkm+it+ βkm+i, m ∈ N0, i ∈ {0, 1, . . . , k − 1}, (2.17)

which correspond to the equations of (2.3). From (2.16) and (2.17), we can write

ukm+i = fkm+i ◦ fk(m−1)+i ◦ · · · ◦ fi (ui−k) , (2.18)

vkm+i = gkm+i ◦ gk(m−1)+i ◦ · · · ◦ gi (vi−k) , (2.19)

where m ∈ N0 , and i ∈ {0, 1, . . . , k − 1} . By using (2.16) and implicit forms of (2.18)–(2.19), and considering

f−1
km+i (0) = − bkm+i

akm+i
, g−1

km+i (0) = − βkm+i

αkm+i
, for m ∈ N0 and i ∈ {0, 1, . . . , k − 1} , we have

ui−k = f−1
i ◦ · · · ◦ f−1

km+i (0) , vi−k = g−1
i ◦ · · · ◦ g−1

km+i (0) , (2.20)

where f−1
km+i (t) =

t−bkm+i

akm+i
, g−1

km+i (t) =
t−βkm+i

αkm+i
, m ∈ N0, i ∈ {0, 1, . . . , k − 1} . From (2.20), we obtain

ui−k = −
m∑
j=0

bkj+i

akj+i

j−1∏
l=0

1

akl+i
, vi−k = −

m∑
j=0

βkj+i

αkj+i

j−1∏
l=0

1

αkl+i

for some m ∈ N0 and i ∈ {0, 1, . . . , k − 1} . This means that if one of the conditions in (2.20) holds, then the
mth iteration or (m+ 1)th iteration in system (1.6) can not be calculated. 2
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3. The study of condition k = 2, l = k

In this section we give the asymptotic behavior of the solutions of system (2.12) when k = 2, l = k . In this
case, the system becomes

xn =
xn−2yn−k−2

yn−k (a+ bxn−2yn−k−2)
, yn =

yn−2xn−k−2

xn−k (α+ βyn−2xn−k−2)
, n ∈ N0. (3.1)

In (2.11), if we employ the formulas given in (2.6) and (2.7) for the case k = 2 , l = k , then the solution of
system (3.1) is given by

x2(2t+1)m+2s+j1 = x2s+j1−2(2t+1)

m∏
p=0

(1− a)
(
β + αp(2t+1)+s−t+j1 (v−1−j1(1− α)− β)

)
(1− α)

(
b+ ap(2t+1)+s+1 (uj1−2(1− a)− b)

) , (3.2)

y2(2t+1)m+2s+j1 = y2s+j1−2(2t+1)

m∏
p=0

(1− α)
(
b+ ap(2t+1)+s−t+j1 (u−1−j1(1− a)− b)

)
(1− a)

(
β + αp(2t+1)+s+1 (vj1−2(1− α)− β)

) , (3.3)

if a ̸= 1 ̸= α ,

x2(2t+1)m+2s+j1 = x2s+j1−2(2t+1)

m∏
p=0

(1− a) (v−1−j1 + β(p (2t+ 1) + s− t+ j1))

b+ ap(2t+1)+s+1 (uj1−2(1− a)− b)
, (3.4)

y2(2t+1)m+2s+j1 = y2s+j1−2(2t+1)

m∏
p=0

b+ ap(2t+1)+s−t+j1 (u−1−j1(1− a)− b)

(1− a) (vj1−2 + β(p (2t+ 1) + s+ 1))
, (3.5)

if a ̸= 1 , α = 1 ,

x2(2t+1)m+2s+j1 = x2s+j1−2(2t+1)

m∏
p=0

β + αp(2t+1)+s−t+j1 (v−1−j1(1− α)− β)

(1− α) (uj1−2 + b(p (2t+ 1) + s+ 1))
, (3.6)

y2(2t+1)m+2s+j1 = y2s+j1−2(2t+1)

m∏
p=0

(1− α) (u−1−j1 + b(p (2t+ 1) + s− t+ j1))

β + αp(2t+1)+s+1 (vj1−2(1− α)− β)
, (3.7)

if a = 1 , α ̸= 1 , and

x2(2t+1)m+2s+j1 = x2s+j1−2(2t+1)

m∏
p=0

v−1−j1 + β (p (2t+ 1) + s− t+ j1)

uj1−2 + b (p (2t+ 1) + s+ 1)
, (3.8)

y2(2t+1)m+2s+j1 = y2s+j1−2(2t+1)

m∏
p=0

u−1−j1 + b (p (2t+ 1) + s− t+ j1)

vj1−2 + β (p (2t+ 1) + s+ 1)
, (3.9)

if a = 1 = α , where m, t ∈ N0, j1 ∈ {0, 1} and 2s+ j1 ∈ {k − 2, k − 1, ..., 3k − 3} .
First, to present the 2k - and 4k -periodic solutions of system (3.1), we will give the following lemma.

Lemma 3.1 Consider system (3.1). Then the next statements are true.
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(a) If a ̸= 1 ̸= α, b ̸= 0 ̸= β , and (1− a)β = b(1− α) then system (3.1) has 2k -periodic solutions.

(b) If a ̸= 1 ̸= α, b ̸= 0 ̸= β , and (1− a)β = −b(1− α) then system (3.1) has 4k -periodic solutions.

Proof Let

zn = xn−2yn−k−2 and wn = yn−2xn−k−2, n ∈ N0.

Then from (3.1) we have

zn+2 =
zn

a+ bzn
and wn+2 =

wn

α+ βwn
, n ∈ N0. (3.10)

If b ̸= 0 ̸= β , then system (3.10) has a unique equilibrium solution (z, w) , which is different from (0, 0) ; that
is,

zn = z =
1− a

b
̸= 0, wn = w =

1− α

β
̸= 0, n ∈ N0.

If z = 0 or w = 0 , then system (3.1) does not have a well-defined solution. From (3.10), we get that

xn−2 =
1− a

byn−k−2
=

(1− a)β

b(1− α)
xn−2k−2, and yn−2 =

1− α

βyn−k−2
=

(1− α)b

β(1− a)
yn−2k−2, n ≥ k, (3.11)

from which, along with the assumptions in (a)–(b), the results can be easily seen. 2

Now we investigate the asymptotic behavior of well-defined solutions of system (3.1) in detail according to the
case of coefficients a and α .

3.1. Case a ̸= 1 ̸= α

Here we describe the asymptotic behavior of the solution of system (3.1) for the case a ̸= 1 ̸= α , by employing
the next notation:

Kj1 :=
v−1−j1(1− a)− β

at+1−j1(uj1−2(1− a)− b)
, Lj1 :=

u−1−j1(1− a)− b

at+1−j1(vj1−2(1− a)− β)
,

K̂j1 :=
(1− a)

(
(−1)s−t+j1(v−1−j1(1 + a)− β)

)
at+1−j1(1 + a)(uj1−2(1− a)− b)

, L̂j1 :=
(1 + a)(u−1−j1(1− a)− b)

at+1−j1(1− a) ((−1)s+1(vj1−2(1 + a)− β))
,

where k ∈ N, m, t ∈ N0, t =
[
k
2

]
, j1 ∈ {0, 1} .

Theorem 3.2 Suppose that a ̸= 1 ̸= α , b ̸= 0 ̸= β and that (xn, yn)n≥−k−2 is a well-defined solution of system
(3.1). Then the next statements are true.

(a) If |α| > max {|a|, 1} and vj1−2 ̸= β/(1−α) ̸= v−1−j1 , for some j1 ∈ {0, 1} , then |xn| → ∞ , yn → 0 , as
n → ∞ .

(b) If |a| > max {|α|, 1} and uj1−2 ̸= b/(1− a) ̸= u−1−j1 , for some j1 ∈ {0, 1} , then xn → 0 , |yn| → ∞ , as
n → ∞ .
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(c) If max {|a|, |α|} < 1 or uj1−2 = b/(1 − a) = u−1−j1 and vj1−2 = β/(1 − α) = v−1−j1 , and |(1 − a)β| <
|(1− α)b| , for some j1 ∈ {0, 1} , then xn → 0 and |yn| → ∞ , as n → ∞ .

(d) If max {|a|, |α|} < 1 or uj1−2 = b/(1 − a) = u−1−j1 and vj1−2 = β/(1 − α) = v−1−j1 , and |(1 − a)β| >
|(1− α)b| , for some j1 ∈ {0, 1} , then |xn| → ∞ and yn → 0 , as n → ∞ .

(e) If max {|a|, |α|} < 1 and (1 − a)β = (1 − α)b , then (xn, yn)n≥−k−2 converges to a not necessarily prime
2k -periodic solution of system (3.1).

(f) If uj1−2 = b/(1−a) = u−1−j1 , vj1−2 = β/(1−α) = v−1−j1 , and (1−a)β = (1−α)b , for some j1 ∈ {0, 1} ,
then (xn, yn)n≥−k−2 is a not necessarily prime 2k -periodic solution of system (3.1).

(g) If max {|a|, |α|} < 1 and (1− a)β = −(1− α)b , then (xn, yn)n≥−k−2 converges to a not necessarily prime
4k -periodic solution of system (3.1).

(h) If uj1−2 = b/(1 − a) = u−1−j1 , vj1−2 = β/(1 − α) = v−1−j1 , and (1 − a)β = −(1 − α)b , for some
j1 ∈ {0, 1} , then (xn, yn)n≥−k−2 is a not necessarily prime 4k -periodic solution of system (3.1).

(i) If a = α , |a| > 1 and |Kj1 | < 1 , for some j1 ∈ {0, 1} , then xn → 0 , as n → ∞ .

(j) If a = α , |a| > 1 and |Lj1 | < 1 , for some j1 ∈ {0, 1} , then yn → 0 , as n → ∞ .

(k) If a = α , |a| > 1 and |Kj1 | > 1 , for some j1 ∈ {0, 1} , then |xn| → ∞ , as n → ∞ .

(l) If a = α , |a| > 1 and |Lj1 | > 1 , for some j1 ∈ {0, 1} , then |yn| → ∞ , as n → ∞ .

(m) If a = α , |a| > 1 and Kj1 = 1 , for some j1 ∈ {0, 1} , then the sequence x2(2t+1)m+2s+j1 , for
2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , is convergent.

(n) If a = α , |a| > 1 and Lj1 = 1 , for some j1 ∈ {0, 1} , then the sequence y2(2t+1)m+2s+j1 , for 2s + j1 ∈
{k − 2, k − 1, . . . , 3k − 3} , is convergent.

(o) If a = α , |a| > 1 and Kj1 = −1 , for some j1 ∈ {0, 1} , then the sequences x4(2t+1)m+2s+j1 , x4(2t+1)m+2(2t+1)+2s+j1 ,
for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , are convergent.

(p) If a = α , |a| > 1 and Lj1 = −1 , for some j1 ∈ {0, 1} , then the sequences y4(2t+1)m+2s+j1 , y4(2t+1)m+2(2t+1)+2s+j1 ,
for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , are convergent.

(q) If a = −α , |a| > 1 , m is even, and |K̂j1 | < 1 , for some j1 ∈ {0, 1} , 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} ,
then x4(2t+1)m+2s+j1 → 0 , as m → ∞ .

(r) If a = −α , |a| > 1 , m is even, and |L̂j1 | < 1 , for some j1 ∈ {0, 1} , 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} ,
then y4(2t+1)m+2s+j1 → 0 , as m → ∞ .

(s) If a = −α , |a| > 1 , m is even, and |K̂j1 | > 1 , for some j1 ∈ {0, 1} , 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} ,
then |x4(2t+1)m+2s+j1 | → ∞ , as m → ∞ .
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(t) If a = −α , |a| > 1 , m is even, and |L̂j1 | > 1 , for some j1 ∈ {0, 1} , 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} ,
then |y4(2t+1)m+2s+j1 | → ∞ , as m → ∞ .

(u) If a = −α , |a| > 1 , m is even, and K̂j1 = 1 , for some j1 ∈ {0, 1} , 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} ,
then the sequence x4(2t+1)m+2s+j1 is convergent.

(v) If a = −α , |a| > 1 , m is even, and L̂j1 = 1 , for some j1 ∈ {0, 1} , 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} ,
then the sequence y4(2t+1)m+2s+j1 is convergent.

(w) If a = −α , |a| > 1 , m is even, and K̂j1 = −1 , for some j1 ∈ {0, 1} , 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3} ,
then the sequences x8(2t+1)m+2s+j1 and x8(2t+1)m+4(2t+1)+2s+j1 are convergent.

(x) If a = −α , |a| > 1 , m is even, and L̂j1 = −1 , for some j1 ∈ {0, 1} , 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} ,
then the sequences y8(2t+1)m+2s+j1 and y8(2t+1)m+4(2t+1)+2s+j1 are convergent.

Proof Let

pt,2s+j1
m =

(1− a)
(
(v−1−j1(1− α)− β)αm(2t+1)+s−t+j1 + β

)
(1− α)

(
(uj1−2(1− a)− b)am(2t+1)+s+1 + b

) , (3.12)

for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , and

rt,2s+j1
m =

(1− α)
(
(u−1−j1(1− a)− b)am(2t+1)+s−t+j1 + b

)
(1− a)

(
(vj1−2(1− α)− β)αm(2t+1)+s+1 + β

) , (3.13)

for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} .
(a): Note that in this case

lim
m→∞

|pt,2s+j1
m | = ∞, lim

m→∞
rt,2s+j1
m = 0,

for each 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which, along with formulas (3.2) and (3.3), the
result can be seen easily.
(b): Note that in this case

lim
m→∞

pt,2s+j1
m = 0, lim

m→∞
|rt,2s+j1

m | = ∞,

for each 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which, along with formulas (3.2) and (3.3), the
result can be obtained easily.
(c)–(d): In this case we get

lim
m→∞

|pt,2s+j1
m | =

∣∣∣∣ (1− a)β

(1− α)b

∣∣∣∣ , lim
m→∞

|rt,2s+j1
m | =

∣∣∣∣ (1− α)b

(1− a)β

∣∣∣∣ ,
for each 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3}, j1 ∈ {0, 1} , from which, along with the assumptions in (c) and (d),
the statements easily follow.
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(e): Employing the Taylor expansion for (1+x)−1 on the interval (−ϵ, ϵ) , where ϵ > 0 , we have, for sufficiently
large m and each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , j1 ∈ {0, 1} ,

pt,2s+j1
m =

(1− a)
(
β + αm(2t+1)+s−t+j1(v−1−j1(1− α)− β)

)
(1− α)

(
b+ am(2t+1)+s+1(uj1−2(1− a)− b)

)

=

(1− a)β

(
1 + αm(2t+1)+s−t+j1 (v−1−j1 (1−α)−β)

β

)
(1− α)b

(
1 + am(2t+1)+s+1 (uj1−2(1−a)−b)

b

)
= 1 + αm(2t+1)+s−t+j1

(v−1−j1(1− α)− β)

β
− am(2t+1)+s+1 (uj1−2(1− a)− b)

b

+ O
(
a2m(2t+1)

)
, (3.14)

and

rt,2s+j1
m =

(1− α)
(
b+ am(2t+1)+s−t+j1(u−1−j1(1− a)− b)

)
(1− a)

(
β + αm(2t+1)+s+1(vj1−2(1− α)− β)

)

=

(1− α)b

(
1 + am(2t+1)+s−t+j1 (u−1−j1

(1−a)−b)
b

)
(1− a)β

(
1 + αm(2t+1)+s+1 (vj1−2(1−α)−β)

β

)
= 1 + am(2t+1)+s−t+j1

(u−1−j1(1− a)− b)

b
− αm(2t+1)+s+1 (vj1−2(1− α)− β)

β

+ O
(
α2m(2t+1)

)
. (3.15)

Employing (3.14)–(3.15) in (3.2)–(3.3) and the assumption max {|a|, |α|} < 1 , the convergence of the sequences
x2(2t+1)m+2s+j1 and y2(2t+1)m+2s+j1 for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , can be seen easily and
consequently (xn, yn)n≥−k−2 converges to a not necessarily prime 2k -periodic solution of system (3.1).
(f): From (3.2) and (3.3), we get

pt,2s+j1
m =

(1− a)β

(1− α)b
= 1, rt,2s+j1

m =
(1− α)b

(1− a)β
= 1,

for every m ∈ N0 , if 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3}, j1 ∈ {0, 1} . That is, x2(2t+1)m+2s+j1 = x2s+j1−2(2t+1)

and y2(2t+1)m+2s+j1 = y2s+j1−2(2t+1) , for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the
result can be obtained easily.
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(g): From (3.12) and (3.13), in this case, we have

pt,2s+j1
m =

(1− a)
(
β + αm(2t+1)+s−t+j1(v−1−j1(1− α)− β)

)
(1− α)

(
b+ am(2t+1)+s+1(uj1−2(1− a)− b)

)

=

(1− a)β

(
1 + αm(2t+1)+s−t+j1 (v−1−j1 (1−α)−β)

β

)
(1− α)b

(
1 + am(2t+1)+s+1 (uj1−2(1−a)−b)

b

)
= −

(
1 + αm(2t+1)+s−t+j1

(v−1−j1(1− α)− β)

β
− am(2t+1)+s+1 (uj1−2(1− a)− b)

b

+ O
(
a2m(2t+1)

))
, (3.16)

for sufficiently large m if 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , and

rt,2s+j1
m =

(1− α)
(
b+ am(2t+1)+s−t+j1(u−1−j1(1− a)− b)

)
(1− a)

(
β + αm(2t+1)+s+1(vj1−2(1− α)− β)

)

=

(1− α)b

(
1 + am(2t+1)+s−t+j1 (u−1−j1 (1−a)−b)

b

)
(1− a)β

(
1 + αm(2t+1)+s+1 (vj1−2(1−α)−β)

β

)
= −

(
1 + am(2t+1)+s−t+j1

(u−1−j1(1− a)− b)

b
− αm(2t+1)+s+1 (vj1−2(1− α)− β)

β

+ O
(
α2m(2t+1)

))
, (3.17)

for sufficiently large m if 2s+j1 ∈ {k−2, k−1, . . . , 3k−3}, j1 ∈ {0, 1} . Employing (3.16)–(3.17) in (3.2)–(3.3),
Taylor expansion for (1+x)−1 on the interval (−ϵ, ϵ) , where ϵ > 0 and the assumption max {|a|, |α|} < 1 , the
convergence of the sequences x4(2t+1)m+2s+j1 , y4(2t+1)m+2s+j1 for 2s+ j1 ∈ {k−2, k−1, . . . , 5k−3}, j1 ∈ {0, 1}
easily follows, from which it follows that (xn, yn)n≥−k−2 converges to a not necessarily prime 4k -periodic
solution of system (3.1).
(h): From (3.12) and (3.13), in this case, we get

pt,2s+j1
m =

(1− a)β

(1− α)b
= −1, rt,2s+j1

m =
(1− α)b

(1− a)β
= −1,

for every m ∈ N0 , if 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} . That is, x2(2t+1)m+2s+j1 =

(−1)m+1x2s+j1−2(2t+1) and y2(2t+1)m+2s+j1 = (−1)m+1y2s+j1−2(2t+1) for each 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k−
3}, j1 ∈ {0, 1} , from which the result can be obtained easily.
(i)-(l): From (3.12) and (3.13), in this case, we get

lim
m→∞

pt,2s+j1
m = lim

m→∞

(v−1−j1(1− a)− β) + β
am(2t+1)+s−t+j1

(uj1−2(1− a)− b)at+1−j1 + b
am(2t+1)+s−t+j1

= Kj1 , (3.18)
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for 2s+ j1 ∈ {k − 3, k − 2, . . . , 3k − 4}, j1 ∈ {0, 1} ,

lim
m→∞

rt,2s+j1
m = lim

m→∞

(u−1−j1(1− a)− b) + b
am(2t+1)+s−t+j1

(vj1−2(1− a)− β)at+1−j1 + β
am(2t+1)+s−t+j1

= Lj1 , (3.19)

for 2s+ j1 ∈ {k−3, k−2, . . . , 3k−4}, j1 ∈ {0, 1} . Employing (3.18)–(3.19) in (3.2)–(3.3) and the assumptions
in (i)–(l), the results easily follow.
(m): From (3.12) and (3.13), we have

pt,2s+j1
m =

(v−1−j1(1− a)− β)am(2t+1)+s−t+j1 + β

(uj1−2(1− a)− b)am(2t+1)+s+1 + b

=

(v−1−j1(1− a)− β)am(2t+1)+s−t+j1

(
1 + β

am(2t+1)+s−t+j1(v−1−j1
(1−a)−β)

)
(uj1−2(1− a)− b)am(2t+1)+s+1

(
1 + b

am(2t+1)+s+1(uj1−2(1−a)−b)

)
= 1 +

β

am(2t+1)+s−t+j1 (v−1−j1(1− a)− β)
− b

am(2t+1)+s+1 (uj1−2(1− a)− b)

+ O
(

1

a2m(2t+1)

)
, (3.20)

for sufficiently large m if 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the convergence of the
sequence x2(2t+1)m+2s+j1 , for j1 ∈ {0, 1} , can be seen easily.
(n): From (3.12) and (3.13), we get

rt,2s+j1
m =

(u−1−j1(1− a)− b)am(2t+1)+s−t+j1 + b

(vj1−2(1− a)− β)am(2t+1)+s+1 + β

=

(u−1−j1(1− a)− b)am(2t+1)+s−t+j1

(
1 + b

am(2t+1)+s−t+j1(u−1−j1 (1−a)−b)

)
(vj1−2(1− a)− β)am(2t+1)+s+1

(
1 + β

am(2t+1)+s+1(vj1−2(1−a)−β)

)
= 1 +

b

am(2t+1)+s−t+j1 (u−1−j1(1− a)− b)
− β

am(2t+1)+s+1 (vj1−2(1− a)− β)

+ O
(

1

a2m(2t+1)

)
, (3.21)

for sufficiently large m if 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the convergence of the
sequence y2(2t+1)m+2s+j1 , for j1 ∈ {0, 1} , can be obtained easily.
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(o): From (3.12), in this case, we have

pt,2s+j1
m =

(v−1−j1(1− a)− β)am(2t+1)+s−t+j1 + β

(uj1−2(1− a)− b)am(2t+1)+s+1 + b

=

(v−1−j1(1− a)− β)am(2t+1)+s−t+j1

(
1 + β

am(2t+1)+s−t+j1(v−1−j1 (1−a)−β)

)
(uj1−2(1− a)− b)am(2t+1)+s+1

(
1 + b

am(2t+1)+s+1(uj1−2(1−a)−b)

)
= −

(
1 +

β

am(2t+1)+s−t+j1 (v−1−j1(1− a)− β)
− b

am(2t+1)+s+1 (uj1−2(1− a)− b)

+ O
(

1

a2m(2t+1)

))
, (3.22)

for sufficiently large m if 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the convergence of the
sequences x4(2t+1)m+2s+j1 , x4(2t+1)m+2(2t+1)+2s+j1 for j1 ∈ {0, 1} easily follows.
(p): From (3.13), in this case, we obtain

rt,2s+j1
m =

(u−1−j1(1− a)− b)am(2t+1)+s−t+j1 + b

(vj1−2(1− a)− β)am(2t+1)+s+1 + β

=

(u−1−j1(1− a)− b)am(2t+1)+s−t+j1

(
1 + b

am(2t+1)+s−t+j1(u−1−j1 (1−a)−b)

)
(vj1−2(1− a)− β)am(2t+1)+s+1

(
1 + β

am(2t+1)+s+1(vj1−2(1−a)−β)

)
= −

(
1 +

b

am(2t+1)+s−t+j1 (u−1−j1(1− a)− b)
− β

am(2t+1)+s+1 (vj1−2(1− a)− β)

+ O
(

1

a2m(2t+1)

))
, (3.23)

for sufficiently large m if 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} . Using (3.23) in (3.3) and the Taylor
expansion for (1+x)−1 on the interval (−ϵ, ϵ) , where ϵ > 0 , the convergence of the sequences y4(2t+1)m+2s+j1 ,
y4(2t+1)m+2(2t+1)+2s+j1 for j1 ∈ {0, 1} easily follows.
(q)–(t): To obtain these four results it is enough to note that the limits of the general terms (3.12)–(3.13) in

(3.2)–(3.3) are equal to K̂j1 and L̂j1 , respectively, and then employing the assumptions in (t)–(q), the results
can be seen easily.
(u): From (3.12), in this case, we get

pt,2s+j1
2m =

1 + β

(−a)2m(2t+1)+s−t+j1(v−1−j1
(1+a)−β)

1 + b

am(2t+1)+s+1(uj1−2(1−a)−b)

= 1 +
β

(−a)2m(2t+1)+s−t+j1 (v−1−j1(1 + a)− β)
− b

a2m(2t+1)+s+1 (uj1−2(1− a)− b)

+ O
(

1

a4m(2t+1)

)
, (3.24)
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for sufficiently large m if 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the convergence of the
sequence x4(2t+1)m+2s+j1 for j1 ∈ {0, 1} easily follows.
(v): From (3.13), in this case, we have

rt,2s+j1
2m =

1 + b

a2m(2t+1)+s−t+j1(u−1−j1
(1−a)−b)

1 + β

(−a)2m(2t+1)+s+1(vj1−2(1+a)−β)

= 1 +
b

a2m(2t+1)+s−t+j1 (u−1−j1(1− a)− b)
− β

(−a)2m(2t+1)+s+1 (vj1−2(1 + a)− β)

+ O
(

1

a4m(2t+1)

)
, (3.25)

for sufficiently large m if 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the convergence of the
sequence y4(2t+1)m+2s+j1 for j1 ∈ {0, 1} can be seen easily.
(w): From (3.12), in this case, we get

pt,2s+j1
2m =

(1− a)(v−1−j1(1 + a)− β)(−a)2m(2t+1)+s−t+j1 + β

(1 + a)(uj1−2(1− a)− b)a2m(2t+1)+s+1 + b

=

(1− a)(v−1−j1(1 + a)− β)(−a)2m(2t+1)+s−t+j1

(
1 + β

(−a)2m(2t+1)+s−t+j1(v−1−j1 (1+a)−β)

)
(1 + a)(uj1−2(1− a)− b)a2m(2t+1)+s+1

(
1 + b

a2m(2t+1)+s+1(uj1−2(1−a)−b)

)
= −

(
1 +

β

(−a)2m(2t+1)+s−t+j1 (v−1−j1(1 + a)− β)
− b

a2m(2t+1)+s+1 (uj1−2(1− a)− b)

+ O
(

1

a4m(2t+1)

))
, (3.26)

for sufficiently large m if 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} . Using (3.26) in (3.2) and the Taylor
expansion for (1+x)−1 on the interval (−ϵ, ϵ) , where ϵ > 0 , the convergence of the sequences x8(2t+1)m+2s+j1 ,
x8(2t+1)m+4(2t+1)+2s+j1 , for j1 ∈ {0, 1} , can be seen easily.
(x): From (3.13), in this case, we have

rt,2s+j1
2m =

(1 + a)(u−1−j1(1− a)− b)a2m(2t+1)+s−t+j1 + b

(1− a)(vj1−2(1 + a)− β)(−a)2m(2t+1)+s+1 + β

=

(1 + a)(u−1−j1(1− a)− b)a2m(2t+1)+s−t+j1

(
1 + b

a2m(2t+1)+s−t+j1(u−1−j1 (1−a)−b)

)
(1− a)(vj1−2(1 + a)− β)(−a)2m(2t+1)+s+1

(
1 + β

(−a)2m(2t+1)+s+1(vj1−2(1+a)−β)

)
= −

(
1 +

b

a2m(2t+1)+s−t+j1 (u−1−j1(1− a)− b)
− β

(−a)2m(2t+1)+s+1 (vj1−2(1 + a)− β)

+ O
(

1

a4m(2t+1)

))
, (3.27)
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for sufficiently large m if 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the convergence of the
sequences y8(2t+1)m+2s+j1 , y8(2t+1)m+4(2t+1)+2s+j1 , for j1 ∈ {0, 1} , can be obtained easily.

2

Theorem 3.3 Assume that a ̸= 1 ̸= α , b ̸= 0 ̸= β , a = −α , |a| > 1 , m, t, w, h ∈ N0, t =
[
k
2

]
, j1 ∈ {0, 1} , m

is odd, and (xn, yn)n≥−k−2 is a well-defined solution of system (3.1). Then the next statements are true.

(a) If | (1−a)(v−1−j1
(1+a)−β)

(1+a)at+1−j1(uj1−2(1−a)−b)
| < 1 for some j1 ∈ {0, 1} , then x4(2t+1)m+4t+2+4w+j1 → 0 ,

x4(2t+1)m+4t+4w+4+j1 → 0 as m → ∞ .

(b) If | (1−a)(v−1−j1
(1+a)−β)

(1+a)at+1−j1(uj1−2(1−a)−b)
| > 1 for some j1 ∈ {0, 1} , then |x4(2t+1)m+4t+2+4w+j1 | → ∞ ,

|x4(2t+1)m+4t+4w+4+j1 | → ∞ as m → ∞ .

(c) If (1−a)(v−1−j1
(1+a)−β)

(1+a)at+1−j1(uj1−2(1−a)−b)
= 1 for some j1 ∈ {0, 1} , then the sequences are x4(2t+1)m+4t+2+4w+j1 ,

x4(2t+1)m+4t+4w+4+j1 are convergent.

(d) If (1−a)(v−1−j1 (1+a)−β)
(1+a)at+1−j1(uj1−2(1−a)−b)

= −1 for some j1 ∈ {0, 1} , then the sequences x8(2t+1)m+4t+2+4w+j1 ,

x8(2t+1)m+12t+6+4w+j1 , x8(2t+1)m+4t+4w+4+j1 , and x8(2t+1)m+12t+4w+8+j1 are convergent.

(e) If | (1+a)(u−1−j1
(1−a)−b)

(1−a)at+1−j1(vj1−2(1+a)−β)
| < 1 for some j1 ∈ {0, 1} , then y4(2t+1)m+4t+2+4w+j1 → 0 as m → ∞ .

(f) If | (1+a)(u−1−j1
(1−a)−b)

(1−a)at+1−j1(vj1−2(1+a)−β)
| > 1 for some j1 ∈ {0, 1} , then |y4(2t+1)m+4t+2+4w+j1 | → ∞ as m → ∞ .

(g) If (1+a)(u−1−j1
(1−a)−b)

(1−a)at+1−j1(vj1−2(1+a)−β)
= 1 for some j1 ∈ {0, 1} , then the sequence y4(2t+1)m+4t+2+4w+j1 is conver-

gent.

(h) If (1+a)(u−1−j1 (1−a)−b)
(1−a)at+1−j1(vj1−2(1+a)−β)

= −1 for some j1 ∈ {0, 1} , then the sequences y8(2t+1)m+4t+2+4w+j1 and

y8(2t+1)m+12t+6+4w+j1 are convergent.

(i) If | (a−1)(v−1−j1
(1+a)−β)

(1+a)at+1−j1(uj1−2(1−a)−b)
| < 1 for some j1 ∈ {0, 1} , then x4(2t+1)m+4t+2+4w+j1 → 0 ,

x4(2t+1)m+4t+4w+4+j1 → 0 as m → ∞ .

(j) If | (a−1)(v−1−j1
(1+a)−β)

(1+a)at+1−j1(uj1−2(1−a)−b)
| > 1 for some j1 ∈ {0, 1} , then |x4(2t+1)m+4t+2+4w+j1 | → ∞ ,

|x4(2t+1)m+4t+4w+4+j1 | → ∞ as m → ∞ .

(k) If (a−1)(v−1−j1
(1+a)−β)

(1+a)at+1−j1(uj1−2(1−a)−b)
= 1 for some j1 ∈ {0, 1} , then the sequences x4(2t+1)m+4t+2+4w+j1 ,

x4(2t+1)m+4t+4w+4+j1 are convergent.
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(l) If (a−1)(v−1−j1 (1+a)−β)
(1+a)at+1−j1(uj1−2(1−a)−b)

= −1 for some j1 ∈ {0, 1} , then the sequences x8(2t+1)m+4t+2+4w+j1 ,

x8(2t+1)m+12t+6+4w+j1 , x8(2t+1)m+4t+4w+4+j1 , x8(2t+1)m+12t+4w+8+j1 are convergent.

(m) If | (1+a)(u−1−j1
(1−a)−b)

(a−1)at+1−j1(vj1−2(1+a)−β)
| < 1 for some j1 ∈ {0, 1} , then y4(2t+1)m+4t+4w+4+j1 → 0 as m → ∞ .

(n) If | (1+a)(u−1−j1
(1−a)−b)

(a−1)at+1−j1(vj1−2(1+a)−β)
| > 1 for some j1 ∈ {0, 1} , then |y4(2t+1)m+4t+4w+4+j1 | → ∞ as m → ∞ .

(o) If (1+a)(u−1−j1 (1−a)−b)
(a−1)at+1−j1(vj1−2(1+a)−β)

= 1 for some j1 ∈ {0, 1} , then the sequence y4(2t+1)m+4t+4w+4+j1 is conver-

gent.

(p) If (1+a)(u−1−j1
(1−a)−b)

(a−1)at+1−j1(vj1−2(1+a)−β)
= −1 for some j1 ∈ {0, 1} , then the sequences y8(2t+1)m+4t+4w+4+j1 and

y8(2t+1)m+12t+4w+8+j1 are convergent.

Proof Let a = −α , |a| > 1 , and m be odd. From (3.12)–(3.13) we get

p̂s,s−t+j1
2m+1 =

(1− a)
(
(v−1−j1(1 + a)− β)(−1)(2m+1)(2t+1)+s−t+j1 + β

a(2m+1)(2t+1)+s−t+j1

)
(1 + a)at+1−j1

(
(uj1−2(1− a)− b) + b

a(2m+1)(2t+1)+s+1

) , (3.28)

r̂s,s−t+j1
2m+1 =

(1 + a)
(
(u−1−j1(1− a)− b) + b

a(2m+1)(2t+1)+s−t+j1

)
(1− a)at+1−j1

(
(vj1−2(1 + a)− β)(−1)(2m+1)(2t+1)+s+1 + β

a(2m+1)(2t+1)+s+1

) . (3.29)

Here, there are four cases to be considered.

• s is even and s− t+ j1 is odd: In this case we have

p̂2w,2h+1
2m+1 =

(1− a)
(
(v−1−j1(1 + a)− β)(−1)(2m+1)(2t+1)+2h+1 + β

a(2m+1)(2t+1)+2h+1

)
(1 + a)at+1−j1

(
(uj1−2(1− a)− b) + b

a(2m+1)(2t+1)+2w+1

) , (3.30)

r̂2w,2h+1
2m+1 =

(1 + a)
(
(u−1−j1(1− a)− b) + b

a(2m+1)(2t+1)+2h+1

)
(1− a)at+1−j1

(
(vj1−2(1 + a)− β)(−1)(2m+1)(2t+1)+2w+1 + β

a(2m+1)(2t+1)+2w+1

) , (3.31)

where s = 2w and s− t+ j1 = 2h+ 1 , for w, h ∈ N0 . From (3.30)–(3.31), we have

lim
m→∞

p̂2w,2h+1
2m+1 =

(1− a) (v−1−j1(1 + a)− β)

(1 + a)at+1−j1 (uj1−2(1− a)− b)
, (3.32)

lim
m→∞

r̂2w,2h+1
2m+1 =

(1 + a) (u−1−j1(1− a)− b)

(1− a)at+1−j1 (vj1−2(1 + a)− β)
. (3.33)
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• s and s− t+ j1 are both even: In this case we get

p̂2w,2h
2m+1 =

(1− a)
(
(v−1−j1(1 + a)− β)(−1)(2m+1)(2t+1)+2h + β

a(2m+1)(2t+1)+2h

)
(1 + a)at+1−j1

(
(uj1−2(1− a)− b) + b

a(2m+1)(2t+1)+2w+1

) , (3.34)

r̂2w,2h
2m+1 =

(1 + a)
(
(u−1−j1(1− a)− b) + b

a(2m+1)(2t+1)+2h

)
(1− a)at+1−j1

(
(vj1−2(1 + a)− β)(−1)(2m+1)(2t+1)+2w+1 + β

a(2m+1)(2t+1)+2w+1

) , (3.35)

where s = 2w and s− t+ j1 = 2h , for w, h ∈ N0 . From (3.34)–(3.35), we obtain

lim
m→∞

p̂2w,2h
2m+1 =

(a− 1) (v−1−j1(1 + a)− β)

(1 + a)at+1−j1 (uj1−2(1− a)− b)
, (3.36)

lim
m→∞

r̂2w,2h
2m+1 =

(1 + a) (u−1−j1(1− a)− b)

(1− a)at+1−j1 (vj1−2(1 + a)− β)
, (3.37)

• s and s− t+ j1 are both odd: In this case we have

p̂2w+1,2h+1
2m+1 =

(1− a)
(
(v−1−j1(1 + a)− β)(−1)(2m+1)(2t+1)+2h+1 + β

a(2m+1)(2t+1)+2h+1

)
(1 + a)at+1−j1

(
(uj1−2(1− a)− b) + b

a(2m+1)(2t+1)+2w+2

) , (3.38)

r̂2w+1,2h+1
2m+1 =

(1 + a)
(
(u−1−j1(1− a)− b) + b

a(2m+1)(2t+1)+2h+1

)
(1− a)at+1−j1

(
(vj1−2(1 + a)− β)(−1)(2m+1)(2t+1)+2w+2 + β

a(2m+1)(2t+1)+2w+2

) , (3.39)

where s = 2w + 1 and s− t+ j1 = 2h+ 1 , for w, h ∈ N0 . From (3.38)–(3.39), we get

lim
m→∞

p̂2w+1,2h+1
2m+1 =

(1− a) (v−1−j1(1 + a)− β)

(1 + a)at+1−j1 (uj1−2(1− a)− b)
, (3.40)

lim
m→∞

r̂2w+1,2h+1
2m+1 =

(1 + a) (u−1−j1(1− a)− b)

(a− 1)at+1−j1 (vj1−2(1 + a)− β)
, (3.41)

• s is odd and s− t+ j1 is even: In this case we get

p̂2w+1,2h
2m+1 =

(1− a)
(
(v−1−j1(1 + a)− β)(−1)(2m+1)(2t+1)+2h + β

a(2m+1)(2t+1)+2h

)
(1 + a)at+1−j1

(
(uj1−2(1− a)− b) + b

a(2m+1)(2t+1)+2w+2

) , (3.42)

r̂2w+1,2h
2m+1 =

(1 + a)
(
(u−1−j1(1− a)− b) + b

a(2m+1)(2t+1)+2h

)
(1− a)at+1−j1

(
(vj1−2(1 + a)− β)(−1)(2m+1)(2t+1)+2w+2 + β

a(2m+1)(2t+1)+2w+2

) , (3.43)
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where s = 2w + 1 and s− t+ j1 = 2h , for w, h ∈ N0 . From (3.42)–(3.43), we have

lim
m→∞

p̂2w+1,2h
2m+1 =

(a− 1) (v−1−j1(1 + a)− β)

(1 + a)at+1−j1 (uj1−2(1− a)− b)
, (3.44)

lim
m→∞

r̂2w+1,2h
2m+1 =

(1 + a) (u−1−j1(1− a)− b)

(a− 1)at+1−j1 (vj1−2(1 + a)− β)
. (3.45)

From (3.32), (3.33), (3.36), (3.37), (3.40), (3.41), (3.44), and (3.45), the results can be seen easily. 2

3.2. Case a ̸= 1, α = 1

Here we introduce the asymptotic behavior of the solution of system (3.1) for the case a ̸= 1 and α = 1 .

Theorem 3.4 Suppose that k ∈ N, a ̸= 1, α = 1 , b ̸= 0 ̸= β , and (xn, yn)n≥−k−2 is a well-defined solution of
system (3.1). Then the next statements are true.

(a) If |a| > 1 and uj1−2 ≠ b/(1 − a) ̸= u−1−j1 , for some j1 ∈ {0, 1} , then x2(2t+1)m+2s+j1 → 0 and
|y2(2t+1)m+2s+j1 | → ∞ , as m → ∞ .

(b) If |a| < 1 or a = −1 and uj1−2 = b/(1 − a) = u−1−j1 , for some j1 ∈ {0, 1} , then y2(2t+1)m+2s+j1 → 0

and |x2(2t+1)m+2s+j1 | → ∞ , as m → ∞ .

Proof Let

p̂t,2s+j1
m =

(1− a) (v−1−j1 + β (m (2t+ 1) + s− t+ j1))

b+ am(2t+1)+s+1 (uj1−2 (1− a)− b)

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} ,

r̂t,2s+j1
m =

b+ am(2t+1)+s−t+j1 (u−1−j1 (1− a)− b)

(1− a) (vj1−2 + β (m (2t+ 1) + s+ 1))

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} .
(a) Note that in this case

lim
m→∞

p̂t,2s+j1
m = 0, lim

m→∞
|r̂t,2s+j1

m | = ∞,

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the result can be obtained easily.
(b) In this case

lim
m→∞

|p̂t,2s+j1
m | = ∞, lim

m→∞
r̂t,2s+j1
m = 0,

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the result can be seen easily.
2
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3.3. Case a = 1, α ̸= 1

Here we study the asymptotic behavior of the solution of system (3.1) for the case a = 1 and α ̸= 1 .

Theorem 3.5 Suppose that k ∈ N, a = 1, α ̸= 1 , b ̸= 0 ̸= β , and (xn, yn)n≥−k−2 is a well-defined solution of
system (3.1). Then the next statements hold.

(a) If |α| > 1 and vj1−2 ̸= β/(1 − α) ̸= u−1−j1 , for some j1 ∈ {0, 1} , then y2(2t+1)m+2s+j1 → 0 and
|x2(2t+1)m+2s+j1 | → ∞ , as m → ∞ .

(b) If |α| < 1 or α = −1 and vj1−2 = β/(1 − α) = v−1−j1 , for some j1 ∈ {0, 1} , then x2(2t+1)m+2s+j1 → 0

and |y2(2t+1)m+2s+j1 | → ∞ , as m → ∞ .

Proof Let

p̃t,2s+j1
m =

β + αm(2t+1)+s−t+j1 (v−1−j1 (1− α)− β)

(1− α) (uj1−2 + b (m (2t+ 1) + s+ 1))

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} ,

r̃t,2s+j1
m =

(1− α) (u−1−j1 + b (m (2t+ 1) + s− t+ j1))

β + αm(2t+1)+s+1 (vj1−2 (1− α)− β)

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} .
(a): Note that in this case

lim
m→∞

|p̃t,2s+j1
m | = ∞, lim

m→∞
r̃t,2s+j1
m = 0,

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the result can be seen easily.
(b): In this case

lim
m→∞

p̃t,2s+j1
m = 0, lim

m→∞
|r̃t,2s+j1

m | = ∞,

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , from which the result can be seen easily.
2

3.4. Case a = 1, α = 1

Here we describe the asymptotic behavior of solution to system (3.1) for the case a = 1 and α = 1 .

Theorem 3.6 Suppose that k ∈ N, a = 1 = α , b ̸= 0 ̸= β , and (xn, yn)n≥−k−2 is a well-defined solution of
system (3.1). Then the next statements hold.

(a) If |β| < |b| , then xn → 0 and |yn| → ∞ , as n → ∞ .

(b) If |β| > |b| , then yn → 0 and |xn| → ∞ , as n → ∞ .

(c) If β = b , (t− j1 + 1) ̸= 0 , and 1
t−j1+1 (v−1−j1 − uj1−2) = b , then the sequence x2(2t+1)m+2s+j1 , for

2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , is convergent.
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(d) If β = b and 1
b (v−1−j1 − uj1−2) > t− j1 + 1 , then |xn| → ∞ , as n → ∞ .

(e) If β = b and 1
b (v−1−j1 − uj1−2) < t− j1 + 1 , then xn → 0 , as n → ∞ .

(f) If β = b , (t− j1 + 1) ̸= 0 and 1
t−j1+1 (u−1−j1 − vj1−2) = b , then the sequence y2(2t+1)m+2s+j1 , for

2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , is convergent.

(g) If β = b and 1
b (u−1−j1 − vj1−2) > t− j1 + 1 , then |yn| → ∞ , as n → ∞ .

(h) If β = b and 1
b (u−1−j1 − vj1−2) < t− j1 + 1 , then yn → 0 , as n → ∞ .

(i) If b = −β , (t− j1 + 1) ̸= 0 and b = − 1
t−j1+1 (v−1−j1 + uj1−2) , then the sequences x4(2t+1)m+2s+j1 ,

x4(2t+1)m+4t+2+2s+j1 , for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , are convergent.

(j) If b = −β and 1
b (v−1−j1 + uj1−2) + t− j1 + 1 < 0 , then |xn| → ∞ , as n → ∞ .

(k) If b = −β and 1
b (v−1−j1 + uj1−2) + t− j1 + 1 > 0 , then xn → 0 , as n → ∞ .

(l) If b = −β , (t− j1 + 1) ̸= 0 and b = 1
t−j1+1 (u−1−j1 + vj1−2) , then the sequences y4(2t+1)m+2s+j1 ,

y4(2t+1)m+4t+2+2s+j1 , for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , are convergent.

(m) If b = −β and 1
b (u−1−j1 + vj1−2) > t− j1 + 1, then |yn| → ∞ , as n → ∞ .

(n) If b = −β and 1
b (u−1−j1 + vj1−2) < t− j1 + 1 , then yn → 0 , as n → ∞ .

Proof (a)–(b): From Eq. (3.8) and Eq. (3.9) we get

x2(2t+1)m+2s+j1 = x2s+j1−2(2t+1)

m∏
p=0

v−1−j1 + β (p(2t+ 1) + s− t+ j1)

uj1−2 + b (p(2t+ 1) + s+ 1)

= x2s+j1−2(2t+1)

m∏
p=0

β

(
1 +

s−t+j1+
v−1−j1

β

p(2t+1)

)
b

(
1 +

s+1+
uj1−2

b

p(2t+1)

) , (3.46)

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} ,

y2(2t+1)m+2s+j1 = y2s+j1−2(2t+1)

m∏
p=0

u−1−j1 + b (p(2t+ 1) + s− t+ j1)

vj1−2 + β (p(2t+ 1) + s+ 1)

= y2s+j1−2(2t+1)

m∏
p=0

b

(
1 +

s−t+j1+
u−1−j1

b

p(2t+1)

)
β

(
1 +

s+1+
vj1−2

β

p(2t+1)

) , (3.47)

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} . From (3.46) and (3.47) the results can be seen easily.
(c)–(h): If b = β , from (3.46) and (3.47) and by employing the Taylor expansion for (1 + x)

−1 on the interval
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(−ϵ, ϵ) , where ϵ > 0 , we get, for sufficiently large m ,

x2(2t+1)m+2s+j1 = x2s+j1−2(2t+1)

m∏
p=0

(
1 +

s−t+j1+
v−1−j1

b

p(2t+1)

)
(
1 +

s+1+
uj1−2

b

p(2t+1)

)

= x2s+j1−2(2t+1)C1(m0)

m∏
p=m0+1

(
1 +

v−1−j1
−uj1−2

b − t+ j1 − 1

p(2t+ 1)
+O

(
1

p2

))

= x2s+j1−2(2t+1)C1(m0)exp

(
m∑

p=m0+1

(
v−1−j1

−uj1−2

b − t+ j1 − 1

p(2t+ 1)
+O

(
1

p2

)))
,(3.48)

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} ,

y2(2t+1)m+2s+j1 = y2s+j1−2(2t+1)

m∏
p=0

(
1 +

s−t+j1+
u−1−j1

b

p(2t+1)

)
(
1 +

s+1+
vj1−2

b

p(2t+1)

)

= y2s+j1−2(2t+1)C2(m0)

m∏
p=m0+1

(
1 +

u−1−j1
−vj1−2

b − t+ j1 − 1

p(2t+ 1)
+O

(
1

p2

))

= y2s+j1−2(2t+1)C2(m0)exp

(
m∑

p=m0+1

(
u−1−j1−vj1−2

b − t+ j1 − 1

p(2t+ 1)
+O

(
1

p2

)))
,(3.49)

for each 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , where C1(m0) =
∏m0

p=0

(
1+

s−t+j1+
v−1−j1

b
p(2t+1)

)
(
1+

s+1+
uj1−2

b
p(2t+1)

) and

C2(m0) =
∏m0

p=0

(
1+

s−t+j1+
u−1−j1

b
p(2t+1)

)
(
1+

s+1+
vj1−2

b
p(2t+1)

) . From (3.48) and (3.49), the fact that
∑m

p=m0+1
1
p → +∞ , as m → ∞ ,

and the convergence of the series
∑+∞

p=m0+1 O
(

1
p2

)
, the statements can be seen easily.

(i)-(n): If −β = b , from (3.46) and (3.47) by using the Taylor expansion for (1 + x)
−1 on the interval (−ϵ, ϵ) ,

where ϵ > 0 , we get, for sufficiently large m ,

x2(2t+1)m+2s+j1 = x2s+j1−2(2t+1)(−1)m+1
m∏

p=0

(
1 +

s−t+j1−
v−1−j1

b

p(2t+1)

)
(
1 +

s+1+
uj1−2

b

p(2t+1)

)

= x2s+j1−2(2t+1)(−1)m+1C1(m1)

m∏
p=m1+1

(
1−

v−1−j1
+uj1−2

b + t− j1 + 1

p(2t+ 1)
+O

(
1

p2

))

= x2s+j1−2(2t+1)(−1)m+1C1(m1)exp

(
−

m∑
p=m1+1

(
v−1−j1

+uj1−2

b + t− j1 + 1

p(2t+ 1)
+O

(
1

p2

)))
,(3.50)
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for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} ,

y2(2t+1)m+2s+j1 = y2s+j1−2(2t+1)(−1)m+1
m∏

p=0

(
1 +

s−t+j1+
u−1−j1

b

p(2t+1)

)
(
1 +

s+1−
vj1−2

b

p(2t+1)

)

= y2s+j1−2(2t+1)(−1)m+1C2(m1)

m∏
p=m1+1

(
1 +

u−1−j1
+vj1−2

b − t+ j1 − 1

p(2t+ 1)
+O

(
1

p2

))

= y2s+j1−2(2t+1)(−1)m+1C2(m1)exp

(
m∑

p=m1+1

(
u−1−j1+vj1−2

b − t+ j1 − 1

p(2t+ 1)
+O

(
1

p2

)))
,(3.51)

for each 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} , where C1(m1) =
∏m1

p=0

(
1+

s−t+j1−
v−1−j1

b
p(2t+1)

)
(
1+

s+1+
uj1−2

b
p(2t+1)

) and

C2(m1) =
∏m1

p=0

(
1+

s−t+j1+
u−1−j1

b
p(2t+1)

)
(
1+

s+1−
vj1−2

b
p(2t+1)

) . From (3.50) and (3.51), the fact that
∑m

p=m1+1
1
p → +∞ , as m → ∞ ,

and the convergence of the series
∑+∞

p=m1+1 O
(

1
p2

)
, the statements in (i)–(n) can be obtained easily. 2

3.5. Case a = −1, |α| < 1

Here we introduce the asymptotic behavior of well-defined solutions of system (3.1) for the case a = −1 and
|α| < 1 , by using the next two notations:

K̃j1 :=
2β

(1− α) (b+ (−1)s+1 (2uj1−2 − b))
, L̃j1 :=

(1− α)
(
b+ (−1)s−t+j1 (2u−1−j1 − b)

)
2β

,

where m, t ∈ N0, j1 ∈ {0, 1} .

Theorem 3.7 Suppose that a = −1, |α| < 1 , b ̸= 0 ̸= β , m is even, and (xn, yn)n≥−k−2 is a well-defined
solution of system (3.1). Then the next statements are true.

(a) If |K̃j1 | < 1 for some j1 ∈ {0, 1}, 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then x4(2t+1)m+2s+j1 → 0 as
m → ∞ .

(b) If |K̃j1 | > 1 for some j1 ∈ {0, 1}, 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then |x4(2t+1)m+2s+j1 | → ∞ as
m → ∞ .

(c) If K̃j1 = 1 for some j1 ∈ {0, 1}, 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then the sequence x4(2t+1)m+2s+j1 is
convergent.

(d) If K̃j1 = −1 for some j1 ∈ {0, 1}, 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3} , then the sequences x8(2t+1)m+2s+j1 ,
x8(2t+1)m+8t+4+2s+j1 are convergent.
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(e) If |L̃j1 | < 1 for some j1 ∈ {0, 1}, 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then y4(2t+1)m+2s+j1 → 0 as
m → ∞ .

(f) If |L̃j1 | > 1 for some j1 ∈ {0, 1}, 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then |y4(2t+1)m+2s+j1 | → ∞ as
m → ∞ .

(g) If L̃j1 = 1 for some j1 ∈ {0, 1}, 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then the sequence y4(2t+1)m+2s+j1 is
convergent.

(h) If L̃j1 = −1 for some j1 ∈ {0, 1}, 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3} , then the sequences y8(2t+1)m+2s+j1 ,
y8(2t+1)m+8t+4+2s+j1 are convergent.

Proof (a),(b) and (e),(f): By using (3.12) and (3.13) for the case a = −1 and |α| < 1 ,

lim
m→∞

2
(
β + α2m(2t+1)+s−t+j1(v−1−j1(1− α)− β)

)
(1− α)

(
b+ (−1)2m(2t+1)+s+1(2uj1−2 − b)

) = K̃j1 , (3.52)

for each 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3}, j1 ∈ {0, 1} ,

lim
m→∞

(1− α)
(
b+ (−1)2m(2t+1)+s−t+j1(2u−1−j1 − b)

)
2
(
β + α2m(2t+1)+s+1(vj1−2(1− α)− β)

) = L̃j1 , (3.53)

for each 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3}, j1 ∈ {0, 1} , from which, along with formulas (3.52) and (3.53), the
results in (a), (b), (e), and (f) can be seen easily.
(c): From (3.12), we get that

2
(
β + α2m(2t+1)+s−t+j1(v−1−j1(1− α)− β)

)
(1− α)

(
b+ (−1)2m(2t+1)+s+1(2uj1−2 − b)

) = 1 +
α2m(2t+1)+s−t+j1(v−1−j1(1− α)− β)

β
,

which holds for 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} and j1 ∈ {0, 1} . By using Taylor expansion for ln(1 + x)

on the interval (−ϵ, ϵ) , where ϵ > 0 , in the above equation, the statement easily follows.
(d): The result can be easily obtained from the relation

2
(
β + α2m(2t+1)+s−t+j1(v−1−j1(1− α)− β)

)
(1− α)

(
b+ (−1)2m(2t+1)+s+1(2uj1−2 − b)

) = −
(
1 +

α2m(2t+1)+s−t+j1(v−1−j1(1− α)− β)

β

)
,

which holds for 2s+ j1 ∈ {k−2, k−1, . . . , 3k−3}, j1 ∈ {0, 1} and Taylor expansion for ln(1+x) on the interval
(−ϵ, ϵ) , where ϵ > 0 .
(g): By using (3.13) for the case a = −1 and |α| < 1 , we can write

(1− α)
(
b+ (−1)2m(2t+1)+s−t+j1(2u−1−j1 − b)

)
2
(
β + α2m(2t+1)+s+1(vj1−2(1− α)− β)

) = 1− α2m(2t+1)+s+1(vj1−2(1− α)− β)(1 +O(1))

β
,

which holds for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} and j1 ∈ {0, 1} . By using Taylor expansion for (1 + x)−1

on the interval (−ϵ, ϵ) , where ϵ > 0 , in the above equation, the result can be seen easily.
(h): In this case by using (3.13) for the case a = −1 and |α| < 1 , we have

(1− α)
(
b+ (−1)2m(2t+1)+s−t+j1(2u−1−j1 − b)

)
2
(
β + α2m(2t+1)+s+1(vj1−2(1− α)− β)

) = −
(
1− α2m(2t+1)+s+1(vj1−2(1− α)− β)(1 +O(1))

β

)
,
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which holds for 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} and j1 ∈ {0, 1} , from which, along with Taylor expansion
for (1 + x)−1 on the interval (−ϵ, ϵ) , where ϵ > 0 , the statement follows. 2

Theorem 3.8 Suppose that a = −1, |α| < 1 , b ̸= 0 ̸= β , m, t, w, h ∈ N0, j1 ∈ {0, 1} m is odd, and
(xn, yn)n≥−k−2 is a well-defined solution of system (3.1). Then the next statements are true.

(a) If | β
(1−α)uj1−2

| < 1 for some j1 ∈ {0, 1} , then x4(2t+1)m+4t+2+4w+j1 → 0 as m → ∞ .

(b) If | β
(1−α)uj1−2

| > 1 for some j1 ∈ {0, 1} , then |x4(2t+1)m+4t+2+4w+j1 | → ∞ as m → ∞ .

(c) If β
(1−α)uj1−2

= 1 for some j1 ∈ {0, 1} , then the sequence x4(2t+1)m+4t+2+4w+j1 is convergent.

(d) If β
(1−α)uj1−2

= −1 for some j1 ∈ {0, 1} , then the sequences x8(2t+1)m+4t+2+4w+j1 , x8(2t+1)m+12t+6+4w+j1

are convergent.

(e) If | (1−α)u−1−j1

β | < 1 for some j1 ∈ {0, 1} , then y4(2t+1)m+4t+2+4w+j1 → 0 , y4(2t+1)m+4t+4w+4+j1 → 0 as
m → ∞ .

(f) If | (1−α)u−1−j1

β | > 1 for some j1 ∈ {0, 1} , then |y4(2t+1)m+4t+2+4w+j1 | → ∞ , |y4(2t+1)m+4t+4w+4+j1 | → ∞
as m → ∞ .

(g) If (1−α)u−1−j1

β = 1 for some j1 ∈ {0, 1} , then the sequences y4(2t+1)m+4t+2+4w+j1 , y4(2t+1)m+4t+4w+4+j1

are convergent.

(h) If (1−α)u−1−j1

β = −1 for some j1 ∈ {0, 1} , then the sequences y8(2t+1)m+4t+2+4w+j1 , y8(2t+1)m+12t+6+4w+j1 ,
y8(2t+1)m+4t+4w+4+j1 , y8(2t+1)m+12t+4w+8+j1 are convergent.

(i) If | β

(1−α)(b−uj1−2)
| < 1 for some j1 ∈ {0, 1} , then x4(2t+1)m+4t+4w+4+j1 → 0 as m → ∞ .

(j) If | β

(1−α)(b−uj1−2)
| > 1 for some j1 ∈ {0, 1} , then |x4(2t+1)m+4t+4w+4+j1 | → ∞ as m → ∞ .

(k) If β

(1−α)(b−uj1−2)
= 1 for some j1 ∈ {0, 1} , then the sequence x4(2t+1)m+4t+4w+4+j1 is convergent.

(l) If β

(1−α)(b−uj1−2)
= −1 for some j1 ∈ {0, 1} , then the sequences x8(2t+1)m+4t+4w+4+j1 , x8(2t+1)m+12t+4w+8+j1

are convergent.

(m) If | (1−α)(b−u−1−j1)
β | < 1 for some j1 ∈ {0, 1} , then y4(2t+1)m+4t+2+4w+j1 → 0 , y4(2t+1)m+4t+4w+4+j1 → 0

as m → ∞ .

(n) If | (1−α)(b−u−1−j1)
β | > 1 for some j1 ∈ {0, 1} , then |y4(2t+1)m+4t+2+4w+j1 | → ∞ ,

|y4(2t+1)m+4t+4w+4+j1 | → ∞ as m → ∞ .

(o) If (1−α)(b−u−1−j1)
β = 1 for some j1 ∈ {0, 1} , then the sequences y4(2t+1)m+4t+2+4w+j1 , y4(2t+1)m+4t+4w+4+j1

are convergent.
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(p) If (1−α)(b−u−1−j1)
β = −1 for some j1 ∈ {0, 1} , then the sequences y8(2t+1)m+4t+2+4w+j1 , y8(2t+1)m+12t+6+4w+j1 ,

y8(2t+1)m+4t+4w+4+j1 , y8(2t+1)m+12t+4w+8+j1 are convergent.

Proof Let a = −1, |α| < 1 , and m be odd. From (3.12)-(3.13) we have

ps,s−t+j1
2m+1 =

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+s−t+j1 + β

)
(1− α)

(
(2uj1−2 − b)(−1)(2m+1)(2t+1)+s+1 + b

) , (3.54)

rs,s−t+j1
2m+1 =

(1− α)
(
(2u−1−j1 − b)(−1)(2m+1)(2t+1)+s−t+j1 + b

)
2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+s+1 + β

) . (3.55)

Here there are four cases to be considered.

• s is even and s− t+ j1 is odd: In this case we have

p2w,2h+1
2m+1 =

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+2h+1 + β

)
(1− α)

(
(2uj1−2 − b)(−1)(2m+1)(2t+1)+2w+1 + b

) , (3.56)

r2w,2h+1
2m+1 =

(1− α)
(
(2u−1−j1 − b)(−1)(2m+1)(2t+1)+2h+1 + b

)
2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+2w+1 + β

) , (3.57)

where s = 2w and s− t+ j1 = 2h+ 1 , for w, h ∈ N0. Taking the limit of both sides in equations (3.56)
and (3.57), we get

lim
m→∞

p2w,2h+1
2m+1 = lim

m→∞

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+2h+1 + β

)
(1− α)2uj1−2

=
β

(1− α)uj1−2
, (3.58)

lim
m→∞

r2w,2h+1
2m+1 = lim

m→∞

(1− α)2u−1−j1

2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+2w+1 + β

) =
(1− α)u−1−j1

β
. (3.59)

• s and s− t+ j1 are both even: In this case we get

p2w,2h
2m+1 =

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+2h + β

)
(1− α)

(
(2uj1−2 − b)(−1)(2m+1)(2t+1)+2w+1 + b

) , (3.60)

r2w,2h
2m+1 =

(1− α)
(
(2u−1−j1 − b)(−1)(2m+1)(2t+1)+2h + b

)
2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+2w+1 + β

) , (3.61)

where s = 2w and s− t+ j1 = 2h , for w, h ∈ N0. Taking the limit of both sides in equations (3.60) and
(3.61), we have

lim
m→∞

p2w,2h
2m+1 = lim

m→∞

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+2h + β

)
(1− α)2uj1−2

=
β

(1− α)uj1−2
, (3.62)

lim
m→∞

r2w,2h
2m+1 = lim

m→∞

(1− α) (2b− 2u−1−j1)

2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+2w+1 + β

) =
(1− α) (b− u−1−j1)

β
. (3.63)
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• s and s− t+ j1 are both odd: In this case we have

p2w+1,2h+1
2m+1 =

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+2h+1 + β

)
(1− α)

(
(2uj1−2 − b)(−1)(2m+1)(2t+1)+2w+2 + b

) , (3.64)

r2w+1,2h+1
2m+1 =

(1− α)
(
(2u−1−j1 − b)(−1)(2m+1)(2t+1)+2h+1 + b

)
2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+2w+2 + β

) , (3.65)

where s = 2w + 1 and s − t + j1 = 2h + 1 , for w, h ∈ N0. Taking the limit of both sides in equations
(3.64) and (3.65), we obtain

lim
m→∞

p2w+1,2h+1
2m+1 = lim

m→∞

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+2h+1 + β

)
(1− α) (2b− 2uj1−2)

=
β

(1− α) (b− uj1−2)
, (3.66)

lim
m→∞

r2w+1,2h+1
2m+1 = lim

m→∞

(1− α)2u−1−j1

2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+2w+2 + β

) =
(1− α)u−1−j1

β
. (3.67)

• s is odd and s− t+ j1 is even: In this case we get

p2w+1,2h
2m+1 =

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+2h + β

)
(1− α)

(
(2uj1−2 − b)(−1)(2m+1)(2t+1)+2w+2 + b

) , (3.68)

r2w+1,2h
2m+1 =

(1− α)
(
(2u−1−j1 − b)(−1)(2m+1)(2t+1)+2h + b

)
2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+2w+2 + β

) , (3.69)

where s = 2w+1 and s− t+ j1 = 2h , for w, h ∈ N0. Similarly, taking the limit of both sides in equations
(3.68) and (3.69), we have

lim
m→∞

p2w+1,2h
2m+1 = lim

m→∞

2
(
(v−1−j1(1− α)− β)α(2m+1)(2t+1)+2h + β

)
(1− α) (2b− 2uj1−2)

=
β

(1− α) (b− uj1−2)
, (3.70)

lim
m→∞

r2w+1,2h
2m+1 = lim

m→∞

(1− α) (2b− 2u−1−j1)

2
(
(vj1−2(1− α)− β)α(2m+1)(2t+1)+2w+2 + β

) =
(1− α) (b− u−1−j1)

β
. (3.71)

From (3.58), (3.59), (3.62), (3.63), (3.66), (3.67), (3.70), and (3.71), the results of the theorem can be seen
easily.

2

3.6. Case |a| < 1, α = −1

Here, by employing the next two notations,

Mj1 :=
(1− a)

(
β + (−1)s−t+j1 (2v−1−j1 − β)

)
2b

, Pj1 :=
2b

(1− a) (β + (−1)s+1 (2vj1−2 − β))
,

where m, t ∈ N0, j1 ∈ {0, 1} , for nonnegative even integer number m we can first give the following theorem,
which can be proven like Theorem 3.7.
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Theorem 3.9 Suppose that α = −1, |a| < 1 , b ̸= 0 ̸= β , m is even, and (xn, yn)n≥−k−2 is a well-defined
solution of system (3.1). Then the next statements hold.

(a) If |Mj1 | < 1 for some j1 ∈ {0, 1}, 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then x4(2t+1)m+2s+j1 → 0 as
m → ∞ .

(b) If |Mj1 | > 1 for some j1 ∈ {0, 1}, 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then |x4(2t+1)m+2s+j1 | → ∞ as
m → ∞ .

(c) If Mj1 = 1 for some j1 ∈ {0, 1}, 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3} , then the sequence x4(2t+1)m+2s+j1 is
convergent.

(d) If Mj1 = −1 for some j1 ∈ {0, 1}, 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3} , then the sequences x8(2t+1)m+2s+j1 ,
x8(2t+1)m+8t+4+2s+j1 are convergent.

(e) If |Pj1 | < 1 for some j1 ∈ {0, 1}, 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then y4(2t+1)m+2s+j1 → 0 as
m → ∞ .

(f) If |Pj1 | > 1 for some j1 ∈ {0, 1}, 2s + j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then |y4(2t+1)m+2s+j1 | → ∞ as
m → ∞ .

(g) If Pj1 = 1 for some j1 ∈ {0, 1}, 2s+ j1 ∈ {k − 2, k − 1, . . . , 3k − 3} , then the sequence y4(2t+1)m+2s+j1 is
convergent.

(h) If Pj1 = −1 for some j1 ∈ {0, 1}, 2s+ j1 ∈ {k− 2, k− 1, . . . , 3k− 3} , then the sequences y8(2t+1)m+2s+j1 ,
y8(2t+1)m+8t+4+2s+j1 are convergent.

Similarly, for nonnegative odd integer number m we can give the next theorem, which can be proven like
Theorem 3.8.

Theorem 3.10 Suppose that α = −1, |a| < 1 , b ̸= 0 ̸= β , m, t, w ∈ N0, j1 ∈ {0, 1} , m is odd, and
(xn, yn)n≥−k−2 is a well-defined solution of system (3.1). Then the next statements hold.

(a) If | b
(1−a)vj1−2

| < 1 for some j1 ∈ {0, 1} , then y4(2t+1)m+4t+2+4w+j1 → 0 as m → ∞ .

(b) If | b
(1−a)vj1−2

| > 1 for some j1 ∈ {0, 1} , then |y4(2t+1)m+4t+2+4w+j1 | → ∞ as m → ∞ .

(c) If b
(1−a)vj1−2

= 1 for some j1 ∈ {0, 1} , then the sequence y4(2t+1)m+4t+2+4w+j1 is convergent.

(d) If b
(1−a)vj1−2

= −1 for some j1 ∈ {0, 1} , then the sequences y8(2t+1)m+4t+2+4w+j1 , y8(2t+1)m+12t+6+4w+j1

are convergent.

(e) If | (1−a)v−1−j1

b | < 1 for some j1 ∈ {0, 1} , then x4(2t+1)m+4t+2+4w+j1 → 0 , x4(2t+1)m+4t+4w+4+j1 → 0 as
m → ∞ .

(f) If | (1−a)v−1−j1

b | > 1 for some j1 ∈ {0, 1} , then |x4(2t+1)m+4t+2+4w+j1 | → ∞ , |x4(2t+1)m+4t+4w+4+j1 | → ∞
as m → ∞ .

(g) If (1−a)v−1−j1

b = 1 for some j1 ∈ {0, 1} , then the sequences x4(2t+1)m+4t+2+4w+j1 , x4(2t+1)m+4t+4w+4+j1

are convergent.
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(h) If (1−a)v−1−j1

b = −1 for some j1 ∈ {0, 1} , then the sequences x8(2t+1)m+4t+2+4w+j1 , x8(2t+1)m+12t+6+4w+j1 ,
x8(2t+1)m+4t+4w+4+j1 , x8(2t+1)m+12t+4w+8+j1 are convergent.

(i) If | b

(1−a)(β−vj1−2)
| < 1 for some j1 ∈ {0, 1} , then y4(2t+1)m+4t+4w+4+j1 → 0 as m → ∞ .

(j) If | b

(1−a)(β−vj1−2)
| > 1 for some j1 ∈ {0, 1} , then |y4(2t+1)m+4t+4w+4+j1 | → ∞ as m → ∞ .

(k) If b

(1−a)(β−vj1−2)
= 1 for some j1 ∈ {0, 1} , then the sequence y4(2t+1)m+4t+4w+4+j1 is convergent.

(l) If b

(1−a)(β−vj1−2)
= −1 for some j1 ∈ {0, 1} , then the sequences y8(2t+1)m+4t+4w+4+j1 , y8(2t+1)m+12t+4w+8+j1

are convergent.

(m) If | (1−a)(β−v−1−j1)
b | < 1 for some j1 ∈ {0, 1} , then x4(2t+1)m+4t+2+4w+j1 → 0 , x4(2t+1)m+4t+4w+4+j1 → 0

as m → ∞ .

(n) If | (1−a)(β−v−1−j1)
b | > 1 for some j1 ∈ {0, 1} , then |x4(2t+1)m+4t+2+4w+j1 | → ∞ ,

|x4(2t+1)m+4t+4w+4+j1 | → ∞ as m → ∞ .

(o) If (1−a)(β−v−1−j1)
b = 1 for some j1 ∈ {0, 1} , then the sequences x4(2t+1)m+4t+2+4w+j1 , x4(2t+1)m+4t+4w+4+j1

are convergent.

(p) If (1−a)(β−v−1−j1)
b = −1 for some j1 ∈ {0, 1} , then the sequences x8(2t+1)m+4t+2+4w+j1 , x8(2t+1)m+12t+6+4w+j1 ,

x8(2t+1)m+4t+4w+4+j1 , x8(2t+1)m+12t+4w+8+j1 are convergent.

Theorem 3.11 Suppose that a = −1 = α , b ̸= 0 ̸= β , k is odd, and (xn, yn)n≥−k−2 is a well-defined solution
of system (3.1). Then the next statements hold.

(a) If |x−2y−k−2

y−1x−k−1

1
bx−2y−k−2−1 | < 1 , then x4n → 0 , |y4n+3| → ∞ as n → ∞ .

(b) If |x−2y−k−2

y−1x−k−1

1
bx−2y−k−2−1 | > 1 , then |x4n| → ∞ , y4n+3 → 0 as n → ∞ .

(c) If x−2y−k−2

y−1x−k−1

1
bx−2y−k−2−1 = 1 , then x4n and y4n+3 are 2k -periodic.

(d) If x−2y−k−2

y−1x−k−1

1
bx−2y−k−2−1 = −1 , then x4n and y4n+3 are 4k -periodic.

(e) If |x−2y−k−2

y−1x−k−1
(βy−1x−k−1 − 1) | < 1 , then x4n+2 → 0 , |y4n+1| → ∞ as n → ∞ .

(f) If |x−2y−k−2

y−1x−k−1
(βy−1x−k−1 − 1) | > 1 , then |x4n+2| → ∞ , y4n+1 → 0 as n → ∞ .

(g) If x−2y−k−2

y−1x−k−1
(βy−1x−k−1 − 1) = 1 , then x4n+2 and y4n+1 are 2k -periodic.

(h) If x−2y−k−2

y−1x−k−1
(βy−1x−k−1 − 1) = −1 , then x4n+2 and y4n+1 are 4k -periodic.

(i) If |x−1y−k−1

y−2x−k−2

1
bx−1y−k−1−1 | < 1 , then x4n+1 → 0 , |y4n+2| → ∞ as n → ∞ .
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(j) If |x−1y−k−1

y−2x−k−2

1
bx−1y−k−1−1 | > 1 , then |x4n+1| → ∞ , y4n+2 → 0 as n → ∞ .

(k) If x−1y−k−1

y−2x−k−2

1
bx−1y−k−1−1 = 1 , then x4n+1 and y4n+2 are 2k -periodic.

(l) If x−1y−k−1

y−2x−k−2

1
bx−1y−k−1−1 = −1 , then x4n+1 and y4n+2 are 4k -periodic.

(m) If |x−1y−k−1

y−2x−k−2
(βy−2x−k−2 − 1) | < 1 , then x4n+3 → 0 , |y4n| → ∞ as n → ∞ .

(n) If |x−1y−k−1

y−2x−k−2
(βy−2x−k−2 − 1) | > 1 , then |x4n+3| → ∞ , y4n → 0 as n → ∞ .

(o) If x−1y−k−1

y−2x−k−2
(βy−2x−k−2 − 1) = 1 , then x4n+3 and y4n are 2k -periodic.

(p) If x−1y−k−1

y−2x−k−2
(βy−2x−k−2 − 1) = −1 , then x4n+3 and y4n are 4k -periodic.

Proof From (2.3), in this case, we have

un = −un−2 + b = un−4, vn = −vn−2 + β = vn−4, n ∈ N0, n ≥ 2, (3.72)

which means that the sequences un and vn are four-periodic, and consequently the sequences xnyn−k and
ynxn−k are four-periodic. Hence, we have

x4ny4n−k = x0y−k,

x4n+1y4n−k+1 = x1y−k+1,

x4n+2y4n−k+2 = x−2y−k−2,

x4n+3y4n−k+3 = x−1y−k−1, (3.73)

and

y4nx4n−k = y0x−k,

y4n+1x4n−k+1 = y1x−k+1,

y4n+2x4n−k+2 = y−2x−k−2,

y4n+3x4n−k+3 = y−1x−k−1. (3.74)

If k = 2t+ 1 , for some t ∈ N0 , then from (3.1), (3.73), and (3.74) we have

x4ny4n−(2t+1) = x0y−(2t+1),

x4n+1y4n−2t = x1y−2t,

x4n+2y4n−(2t−1) = x−2y−(2t+3),

x4n+3y4n−(2t−2) = x−1y−(2t+2), (3.75)

and

y4nx4n−(2t+1) = y0x−(2t+1),

y4n+1x4n−2t = y1x−2t,

y4n+2x4n−(2t−1) = y−2x−(2t+3),

y4n+3x4n−(2t−2) = y−1x−(2t+2). (3.76)
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Hence,

x4ny4n−(2t+1) = x0y−(2t+1) =
x−2y−(2t+3)

bx−2y−(2t+3) − 1
,

x4n+1y4n−2t = x1y−2t =
x−1y−(2t+2)

bx−1y−(2t+2) − 1
, (3.77)

and

y4nx4n−(2t+1) = y0x−(2t+1) =
y−2x−(2t+3)

βy−2x−(2t+3) − 1
,

y4n+1x4n−2t = y1x−2t =
y−1x−(2t+2)

βy−1x−(2t+2) − 1
. (3.78)

From (3.75)–(3.78) we obtain

x4n =
x−2y−(2t+3)

bx−2y−(2t+3) − 1

1

y4n−(2t+1)
=

x−2y−(2t+3)

y−1x−(2t+2)

1

bx−2y−(2t+3) − 1
x4n−(4t+2), (3.79)

if t is even,

x4n+1 =
x−1y−(2t+2)

bx−1y−(2t+2) − 1

1

y4n−2t
=

x−1y−(2t+2)

y−2x−(2t+3)

1

bx−1y−(2t+2) − 1
x4n+1−(4t+2), (3.80)

if t is odd,

x4n+2 =
x−2y−(2t+3)

y4n−(2t−1)
=

x−2y−(2t+3)

y−1x−(2t+2)

(
βy−1x−(2t+2) − 1

)
x4n+2−(4t+2), (3.81)

if t is even,

x4n+3 =
x−1y−(2t+2)

y4n−(2t−2)
=

x−1y−(2t+2)

y−2x−(2t+3)

(
βy−2x−(2t+3) − 1

)
x4n+3−(4t+2), (3.82)

if t is odd,

y4n =
y−2x−(2t+3)

βy−2x−(2t+3) − 1

1

x4n−(2t+1)
=

y−2x−(2t+3)

x−1y−(2t+2)

1

βy−2x−(2t+3) − 1
y4n−(4t+2), (3.83)

if t is even,

y4n+1 =
y−1x−(2t+2)

βy−1x−(2t+2) − 1

1

x4n−2t
=

y−1x−(2t+2)

x−2y−(2t+3)

1

βy−1x−(2t+2) − 1
y4n+1−(4t+2), (3.84)

if t is odd,

y4n+2 =
y−2x−(2t+3)

x4n−(2t−1)
=

y−2x−(2t+3)

x−1y−(2t+2)

(
bx−1y−(2t+2) − 1

)
y4n+2−(4t+2), (3.85)

if t is even,

y4n+3 =
y−1x−(2t+2)

x4n−(2t−2)
=

y−1x−(2t+2)

x−2y−(2t+3)

(
bx−2y−(2t+3) − 1

)
y4n+3−(4t+2). (3.86)

if t is odd. From relations (3.79)–(3.86), the results in this theorem can be easily seen. 2

1562



KARA and YAZLIK/Turk J Math

Acknowledgement
This study is a part of the first author’s Ph.D. Thesis.

References

[1] Ahmed AM, Elsayed EM. The expressions of solutions and the periodicity of some rational difference equations
systems. Journal of Applied Mathematics and Informatics 2016; 34 (1-2): 35-48.

[2] Alzahrani EO, El-Dessoky MM, Elsayed EM, Kuang Y. Solutions and properties of some degenerate systems of
difference equations. Journal of Computational Analysis and Applications 2015; 18: 321-333.

[3] Andruch A, Migda SM. Further properties of the rational recursive sequence xn+1 =
axn−1

b+cxnxn−1
. Opuscula Mathe-

matica 2006; 26: 387-394.

[4] Cinar C. On the positive solutions of difference equation xn+1 =
xn−1

1+xnxn−1
. Applied Mathematics and Computation

2004; 150 (1): 21-24.

[5] Dekkar I, Touafek N, Yazlik Y. Global stability of a third-order nonlinear system of difference equations with
period-two coefficients. Revista de la Real Academia 2017; 111: 325-347.

[6] Din Q. On a system of fourth-order rational difference equations. Acta Universitatis Apulensis Mathematics
Informatics 2014; 39: 137-150.

[7] Elaydi S. An Introduction to Difference Equations. New York, NY, USA: Springer, 1996.

[8] El-Dessoky MM, Elsayed EM, Alghamdi M. Solutions and periodicity for some systems of fourth order rational
difference equations. Journal Computational Analysis and Applications 2015; 18 (1): 179-194.

[9] El-Metwally H, Elsayed EM. Qualitative study of solutions of some difference equations. Abstract and Applied
Analysis 2012; 2012: 248291.

[10] El-Metwally H, Elsayed EM. Solution and behavior of a third rational difference equation. Utilitas Mathematica
2012; 88: 27-42.

[11] El-Metwally H, Elsayed EM. Qualitative behavior of some rational difference equations. Journal Compututational
Analysis and Applications 2016; 20 (2): 226-236.

[12] Elsayed EM. Solution for systems of difference equations of rational form of order two. Computational and Applied
Mathematics 2014; 33: 751-765.

[13] Elsayed EM. Expression and behavior of the solutions of some rational recursive sequences. Mathematical Methods
in the Applied Sciences 2016; 39: 5682-5694.

[14] Elsayed EM, Alshabi KN, Alzahrani F. Qualitative study of solution of some higher order difference equations.
Journal of Computational Analysis And Applications 2019; 26 (7): 1179-1191.

[15] Elsayed EM, El-Metwally H. On the solutions of some nonlinear systems of difference equations. Advances in
Difference Equations 2013; 161 (1): 1-14.

[16] Grove EA, Ladas G. Periodicities in Nonlinear Difference Equations Advances in Discrete Mathematics and Appli-
cations. Vol. 4. London, UK: Chapman & Hall/CRC, London, 2005.

[17] Haddad N, Touafek N, Rabago, JFT. Well-defined solutions of a system of difference equations. Journal of Applied
Mathematics and Computing 2018; 56 (1-2): 439-458.

[18] Halim Y, Touafek N, Yazlık Y. Dynamic behavior of a second-order nonlinear rational difference equation. Turkish
Journal of Mathematics 2015; 39 (6): 1004-1018.

[19] Ibrahim TF. On the third order rational difference equation xn+1 =
xnxn−2

xn−1(a+bxnxn−2)
. International Journal of

Contemporary Mathematical Sciences 2009; 4: 1321-1334.

1563



KARA and YAZLIK/Turk J Math

[20] Ibrahim TF, Touafek N. On a third order rational difference equation with variable coefficients. Dynamics of
Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 2013; 20: 251-264.

[21] Khaliq A, Elsayed EM. The dynamics and solution of some difference equations. Journal of Nonlinear Science and
Applications 2016; 9: 1052-1063.

[22] Khan AQ, Din Q, Qureshi MN, Ibrahim TF. Global behavior of an anti-competitive system of fourth-order rational
difference equations. Computational Ecology and Software 2014; 4 (1): 35-46.

[23] Kulenovic MRS. Discrete Dynamical Systems and Difference Equations with Mathematica. London, UK: Chapman
& Hall/CRC Press, 2002.

[24] Kurbanli AS, Cinar C, Yalcinkaya I. On the behavior of positive solutions of the system of rational difference
equations xn+1 =

xn−1

ynxn−1+1
, yn+1 =

yn−1

xnyn−1+1
. Mathematical and Computer Modelling 2011; 53: 1261-1267.

[25] Öcalan Ö. Oscillation of nonlinear difference equations with several coefficients. Communications in Mathematical
Analysis 2008; 4 (1): 35–44.

[26] Okumus I, Soykan Y. Dynamical behavior of a system of three-dimensional nonlinear difference equations. Advances
in Difference Equations 2018; 2018 (223): 1-15.

[27] Özban AY. On the positive solutions of the system of rational difference equations xn+1 = 1
yn−k

, yn+1 =

yn
xn−myn−m−k

. Journal of Mathematical Analysis and Applications 2006; 323: 26-32.

[28] Papaschinopoulos G, Schinas CJ. On the behavior of the solutions of a system of two nonlinear difference equations.
Communications on Applied Nonlinear Analysis 1998; 5 (2): 47-59.

[29] Papaschinopoulos G, Stefanidou G. Asymptotic behavior of the solutions of a class of rational difference equations.
International Journal of Difference Equations 2010; 5 (2): 233-249.

[30] Rabago JFT, Bacani JB. On a nonlinear difference equations. Dynamics of Continuous, Discrete and Impulsive
Systems Series A: Mathematical Analysis 2017; 24: 375-394.

[31] Raouf A. Global behavior of the rational Riccati difference equation of order two: the general case. Journal of
Difference Equations and Applications 2012; 18: 947-961.

[32] Stević S. On a solvable rational system of difference equations. Applied Mathematics and Computation 2012; 219:
2896-2908.

[33] Stević S. On the system xn+1 =
ynxn−k

yn−k+1(an+bnynxn−k)
, yn+1 =

xnyn−k

xn−k+1(cn+dnxnyn−k)
. Applied Mathematics and

Computation 2013; 219: 4526-4534.

[34] Stević S, Alghamdi MA, Alotaibi A, Elsayed EM. On a class of solvable higher-order difference equations. Filomat
2017; 31 (2): 461-477.

[35] Stević S, Diblík J, Iričanin B, Šmarda Z. On some solvable difference equations and systems of difference equations.
Abstract and Applied Analysis 2012; 2012: 541761.

[36] Stević S, Diblík J, Iričanin B, Šmarda Z. Solvability of nonlinear difference equations of fourth order. Electronic
Journal of Differential Equations 2014; 2014 (264): 1-14.

[37] Stević S, Iričanin B, Šmarda Z. On a close to symmetric system of difference equations of second order. Advances
in Difference Equations 2015; 2015 (264): 1-17.

[38] Tollu DT, Yazlik Y, Taşkara N. On the solutions of two special types of Riccati difference equation via Fibonacci
numbers. Advances in Difference Equations 2013; 2013: 174.

[39] Tollu DT, Yazlik Y, Taşkara N. On fourteen solvable systems of difference equations. Applied Mathematics and
Computation 2014; 233: 310-319.

[40] Tollu DT, Yazlık Y, Taşkara N. On a solvable nonlinear difference equation of higher order. Turkish Journal of
Mathematics 2018; 42: 1765-1778.

1564



KARA and YAZLIK/Turk J Math

[41] Touafek N, Elsayed EM. On the periodicity of some systems of nonlinear difference equations. Bulletin Mathematique
de la Societe des Sciences Mathematiques de Roumanie 2012; 55 (103): 217-224.

[42] Yalcinkaya I. On the difference equation xn+1 = α+
xn−m

xk
n

. Discrete Dynamics in Nature and Society 2008; 2008:
805460.

[43] Yang X. On the system of rational difference equations xn = A +
yn−1

xn−pyn−q
, yn = A +

xn−1

xn−ryn−s
. Journal of

Mathematical Analysis and Applications 2006; 307: 305-311.

[44] Yazlik Y. On the solutions and behavior of rational difference equations. Journal of Computational Analysis and
Applications 2014; 17 (3): 584-594.

[45] Yazlik Y, Elsayed EM, Taşkara N. On the behavior of the solutions of difference equation systems. Journal of
Computational Analysis and Applications 2014; 16 (5): 932-941.

[46] Yazlik Y, Tollu DT, Taşkara N. On the behavior of solutions for some systems of difference equations. Journal of
Computational Analysis and Applications 2015; 18 (1): 166-178.

[47] Yazlik Y, Tollu DT, Taşkara N. On the solutions of a max-type difference equation system. Mathematical Methods
in the Applied Sciences 2015; 38 (17): 4388-4410.

[48] Yazlik Y, Tollu DT, Taşkara N. On the solutions of a three-dimensional system of difference equations. Kuwait
Journal of Sciences 2016; 43 (1): 95-111.

[49] Zayed EME, El-Moneam MA. On the rational recursive sequence xn+1 =
Axn+(βxn+γxn−k)

Bxn+Cxn−k
. Communications on

Applied Nonlinear Analysis 2009; 16: 91-106.

1565


	Introduction and preliminaries
	The solutions of the system (1.6)
	The study of condition k=2,  l=k
	Case a=1=
	Case a=1,  =1
	Case a=1,  =1
	Case a=1,  =1
	Case a=-1,  ||<1
	Case |a|<1,  =-1


