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Abstract: The most recent studies in mathematics are concerned with objects, morphisms, and the relationship between
morphisms. Prominent examples can be listed as functions, vector spaces with linear transformations, and groups with
homomorphisms. Category theory proposes and constitutes new structures by examining objects, morphisms, and
compositions. Source and target of a morphism in category theory corresponds to input and output in programming
language. Thus, a connection can be obtained between category theory and functional programming languages. From
this point, this paper constructs a small category implementation in a functional programming language called Haskell.
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1. Introduction
Eilenberg and MacLane ([7]) are the pioneers who built the structures of the categories, functors, and natural
transformations which are revealed first in 1945. A broader literature review reveals an important connection
between homology and theoretical homology theory. These findings relieve mathematics from theoretical
constraint and enables branches of science to involve the above relationship.

The most significant transition in computer science is between category theory and computation. One of
the most important aspects of computation is composing the new functions or modules by using the primitive
functions, recursive structures, etc. These requirements refer to category theory inheriting a proper algebraic
model. Indeed, categorical logic is now a well-defined field about type theory and logic. For example, functional
programming, domain theory and lambda calculus are highly related with category theory in theoretical respect
[16].

Since functional programming languages are useful to solve problems and construct new structures, arrow
language that describes morphism classes becomes a requirement for analyzing systems. The ’monad’ structure
taken from category theory is an advanced example for this situation. Therefore, functional programming
languages such as Automata, ML, and Haskell are strongly bound with the concept of the category theory [3].

Almost all notions in category theory have corresponding algorithms in programming. Every program-
ming language has to be defined on a consistent foundation. In order to respond to this consistency, types must
be in programming language. A transformation between types builds new structure and this process can be
carried on as needed. It is clear from the following diagram that the notions are particularly compatible for this
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type of systems.
Category theory Programming
object type
morphism function
functor polymorphic type
natural transformation polymorphic function

Considering similarities, category theory could be applied to many programming fields. Functional
programming is the most suitable illustration for expressing structures in category theory. The link between
functional programming and category theory allows us to take into consideration data types as objects, functions
as morphisms and resultant functions as compositions. Following this method, a category structure can be
obtained by a functional program. Deriving categorical structure with functional programming approach
provides us an interdisciplinary powerful equivalence [11].

The semantics of programming languages are fundamentally the most leading notions in computer science.
This concept is based on generalizing set theory in a categorical sense. Too many properties arise in programming
languages via mathematics. However, research fields of mathematics concern with abstract notions and its
unifying environment provides to establish vigorous algorithms easily. For instance, instead of side effects of
object-oriented programming, functional programming can handle this issue through mathematical operation
called ’currying’. Furthermore, modular, dynamic, and high-level computing languages can be generated by the
properties of lazy evaluation, referential transparency and mature type system [4].

In a computer program, parameters are associated with outputs. A function has a proper way for
computation in order to reduce execution errors. The mathematical base forms a great advantage for any
language such as Lisp, Miranda, ML, Scheme, Haskell, Gofer, which are well-known languages. While some of
these languages are developed purely functional, others are constructed with a theoretical and educational base,
meaning that each of these languages are defined in a special way. Contrary to the imperative programming
language, the programming languages mentioned above do not affect loops, recursions, and outputs since they
operate with a sequence of functions. This property is an outstanding feature for developing high-performance
computers and parallel computing architecture [8].

In addition, category theory procures a link with type theory providing great opportunity to define strong
data types. Recognizing strong types, a programming language is built in productive fields. Integer, Float, Bool,
and Array are the most common types for any programming language. Different from these common types,
any specific conceptual type releases a unique language defining new properties. In this perspective, category
theory generates an abstract point of view, which fosters monads, domain theory, abstract data types, and λ -
type theory [9].
Any algorithm is written in a simple, short, and apparent syntax. For example, in Haskell data declaration is

data List a = Nil | Cons a (List a)

and a ’sum ’ function is defined
sum:: [Int] -> [Int]
sum xs=foldr (+) 0 xs

as well.
In this paper, categorical notions will be defined and Haskell, a functional programming language, will

be used for a simple algorithm to compute whether any list is a category or not. Algorithms which are used in
the Haskell implementations of these structures are analyzed in detail in the second author’s MSc thesis, [14].
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2. Preliminaries
In this section, we will recall some definitions and examples of category theory about functional programming
[2].

A category C for which;
(i) Let Ob(C ) be a class, elements of this class are called objects.
(ii) For A,B ∈Ob(C ); Mor(A,B) or C (A,B) denotes the morphism set from A to B.
(iii) For all A ∈Ob(C ),

1A : A −→ A

denotes the by unit morphism.
(iv) For f : A −→ B and g : B −→ C morphisms, the only morphism of composition of f and g is

g ◦ f : A −→ C

must satisfy the following conditions:
K1) For f : A −→ B ,g : B −→ C and h : C −→ D ,

h(gf) = (hg)f

in other words,

A

f

��

h(gf)=(hg)f //

gf

''

D

B
g

//

hg

GG

C

h

OO

this diagram must have associativity.
K2) Identity law: For any morphism f : A −→ B ,

f.1A = 1B .f = f

equation is satisfied. With these four structures, any category C is denoted by

C ∼(Ob(C),Mor(C),Mor(C)×Mor(C) ◦−→Mor(C); Conditions)

2.1. Examples of category

1)C =Sets;Set Category
Ob(C ): Class of sets
Mor(C ): Sets of functions on sets
Composition: Composition of functions.
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2)C = Grp;Group Category
Ob(C ): Class of groups
Mor(C ): Sets of homomorphisms of groups
Composition: Composition of homomorphisms(functions).

3)C = Top;Category of topological space
Ob(C ): Class of topological spaces
Mor(C ): Sets of continuous functions between topological spaces
Composition: Composition of continuous functions.

4)C = hTop;Category of homotopy
Ob(C ): Class of topological spaces
Mor(C ): Homotopy classes of continuous functions
Composition: Composition of homotopy classes.

2.2. Small categories

Definition: A small category is a category whose classes of objects are sets. Small category’s objects and
morphisms are denoted by O and A , respectively. Thus, for f ∈ A

s(f) ∈ O and t(f) ∈ O

and

A
s //
t

// O

the diagram are obtained. In this diagram, s and t functions are called source and target functions. For

O
c−→ A

function, for every object x ∈ A ,
c(x) = 1x : x −→ x

is the identity morphism. That is, for x = s(cx) = t(cx) is denoted by the following diagram.

•x

c(x)=cx

��

With these functions, the composition

◦ : A×A −→ A
(f, g) 7−→ ◦(f, g) = g ◦ f = gf

is defined with
t(f) = s(g)
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condition. Because
s(f)

f−→ t(f) = s(g)
g−→ t(g)

the diagram gives equation. Thus, the composition is defined by

A×o A = {(f, g)|t(f) = s(g)} ⊆ A×A

fiber product.

2.3. Special objects and morphisms
Let C be a category. For every object X, if

B
∃!−→ X

is the only morphism, so B is C ’s initial object and denoted by 0.
Dual notion of an initial object is the terminal object. Thus, for every object X, if

X
∃!−→ V

arrow is the only morphism, so V is C ’s terminal object and denoted by 1.

2.4. Constants
In the set category, for any x in A is denoted by

1 = {∗} f−→ A
∗ 7−→ f(∗) = x

function. Thus, any element of A

x ∈ A←→ {1 x−→ A}

gives this element representation. In category theory,

x : 1 −→ A

morphism corresponds with constant for any element of A.

2.5. Functors and natural transformations
A functor is a structure-preserving map between categories in the same way that a homomorphism is a structure-
preserving map between graphs.

Let C and D be the categories.
F1) For an object A of C ,

F (idA) = idF (A)

F2)For a composition g ◦ f of C

F (g ◦ f) = F (g) ◦ F (f)

are satisfied, the function F is a functor from category C to D . This functor is denoted by

F : C −→ D.

Meanwhile, F and G are functors from category C to D .
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NT1) For any A object of C
ηA : F (A) −→ G(A)

is a morphism of D .
NT2) Let f be a morphism from A to B in category C . The diagram,

A

f

��
B

F (A)
ηA //

F (f)

��

G(A)

G(f)

��
F (B)

ηB

// G(B)

is commutative. If the above conditions are satisfied, the morphism

η : F ⇒ G

is a natural transformation from the functor F to the functor G .

3. Category theory and functional programming
Mathematical conception of computational algorithms is identified as a key factor evaluated as time-saving and
stable process for programming. Various algorithms are obtained by different proceedings such as asymmetric
encryption in parallel programming. These crucial features of programming languages must be compatible
with the mathematical thinking to construct strong algorithms. In this manner, the most suitable language
corresponds to functional programming language. Number of coding lines, processing time of the algorithms,
and errors derived from compiler can be minimized to an acceptable amount.

Imperative computing including object-oriented programming languages precisely focuses on the result
displayed by the compiler. Except from the acquired result, each output is called as a side effect. As a matter
of fact, these side effects can be preventive factors to reach the result. On the contrary, functional programming
languages have a tendency to put emphasis on calculations. Concluding, functional programming languages
could have strong properties compared to the other programming languages [11].

Functional programming languages have four main elements:
FPL-1) Primitive data types
FPL-2) Constants of every data type
FPL-3) Functions between data types
FPL-4) Constructors
In the second element, the constant is a nonparametric value constructor. Also, the constructor is a

function whose variables are functions. With these features, any functional programming language generates a
category. For composing this category, we need some little changes which are:

A-1) This language must have a do-nothing function (idA ).
A-2) For calling a constant with a function, language needs to have a type called 1. This type looks like

a terminal object in language’s category.
A-3) Language’s composition has input and output types. Thus, a composition looks like a derived

program.
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With these changes, for a functional programming language, L has a category structure C(L) . C(L)
has the following properties:

FPC-1) Objects of C(L) are the types of L .
FPC-2) Arrows of C(L) are operations of L .
FPC-3) The sources and targets of arrows are input and output types of operation of L .
FPC-4) Compositions of C(L) are the constructors of L .
FPC-5) The identity arrows of C(L) are do-nothing operations of L [4].
Similar to this structure, a functional programming language’s category, for example, Haskell, has functors

and natural transformations. A simple example of a functor is List : Set → Set that corresponds to the list
type constructor in Haskell. The object part of the functor maps a set A to the set of lists over A , i.e.
sequences of the form [x1, ..., xn] where each xi is an element of A . The morphism part of the functor maps
a function f : A → B to the function normally written as map f in Haskell which sends a list [x1, ..., xn] to
[f(x1), ..., f(xn)] . In the categorical notation, the function map f will be written as List f : List A → List
B (see [12]).

Natural transformations of functional programming language Haskell are functions which satisfy the
natural transformations conditions of the category. For example, ’reverse’ is a natural transformation of Haskell’s
category (Hask). This function reverses the lists. For

List : C(L) −→ C(L)

functor,
η = reverse : Ob(C(L)) −→Mor(C(L))

is a natural transformation.
Natural transformations represent polymorphic functions. Polymorphic functions are maps between type

constructors. A few examples of polymorphic functions:

append[A] : List A× List A→ List A
map[A,B] : [A→ B]→ [List A→ List B]
foldr[A,B] : [A× B → B]× B → [List A→ B]

More details about this may be found in [5, 12, 13].
As a result, one of the functional programmings, Haskell gives rise to a category, functor, and natural

transformations with language’s structures [15].
Let L be a functional programming language with 3 data types as follows:

NAT : Natural numbers
BOOLEAN = {true, false}

CHAR : ASCII characters

Then we can construct the C(L) category. Objects of C(L) are

Ob(C(L)) = {NAT,BOOLEAN,CHAR, 1},

where 1 is a singleton. The arrows of C(L) together with

Mor(C(L))
s //
t

// Ob(C(L))
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source and target functions are as follows:

s(idNAT ) = t(idNAT ) = NAT
s(idCHAR) = t(idCHAR) = CHAR
s(idBOOLEAN ) = t(idBOOLEAN ) = BOOLEAN
s(id1) = t(id1) = 1
s(0) = 1 and t(0) = NAT
s(c) = 1 and t(c) = CHAR
s(false) = 1 and t(false) = BOOLEAN
s(true) = 1 and t(true) = BOOLEAN
s(n) = BOOLEAN and t(n) = BOOLEAN
s(succ) = NAT and t(succ) = NAT
s(ord) = CHAR and t(ord) = NAT
s(chr) = NAT and t(chr) = CHAR
s(id1) = 1 and t(id1) = 1
s(x) = NAT and t(x) = 1
s(y) = CHAR and t(y) = 1
s(z) = BOOLEAN and t(z) = 1

Mor(L) = {id1, idNAT , idCHAR, idBOOLEAN , 0, c, false, true, n, succ, ord, chr, x, y, z}.

The constant 0 in NAT and the function succ are defined by

0 : 1 −→ NAT succ : NAT −→ NAT
x 7−→ 0 x 7−→ x+ 1

and all natural numbers can be generated with the composition of 0 and succ .

1
0 // NAT

succ

��

Short for American Standard Code for Information Interexchange, ASCII is a standard that assigns letters,
numbers, and other characters in the 256 slots available in the 8-bit code. chr and ord functions which are
8-bit character code are used to convert characters into their ASCII value and vice versa.

chr : NAT −→ CHAR

takes an ASCII value and returns the equivalent character, and

ord : CHAR −→ NAT

performs the reverse operation by converting a character to its numeric value.

c : 1 −→ CHR

is constant in CHR and all elements of the CHR object can be generated with below composition.

1
c // CHR

ord // NAT

succ

��
chr // CHR
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There should be two constants true and false

true : 1 −→ BOOLEAN false : 1 −→ BOOLEAN
x 7−→ true x 7−→ false

and a function n which is defined by

n : BOOLEAN −→ BOOLEAN
true 7−→ false

false 7−→ true

From here, all elements of the BOOLEAN object can be generated with

1
true // BOOLEAN

n

��

composition.
Then C(L) is a category with the following equations being satisfied (see for details [4, 14]) .

n ◦ true = false

n ◦ false = true

n ◦ n = idBOOLEAN

chr ◦ ord = idCHAR

The diagram of the category C(L) looks like this:

Nat

succ

�� chr //

x

��

Char

y

vv

ord
oo

1

0

OO

c

=={{{{{{{{{{{{{{{{{{{{{{{{{{{ true(t) //
false(f)

// Bool

n

ZZ

z

cc

4. Haskell implementation
As we mentioned above, a small category is a category whose classes of objects are sets. We established the
small category of a functional programming language and different structures. Reversely, a small category can
be controlled by the package of functional programming language. That is to say, we can inspect the conditions
of a category step by step under the control and implementation of Haskell programming1.

1Odabas A, Soylu Yılmaz E. Haskell implementations of small categories, http://fef.ogu.edu.tr/aodabas/files/small_category.hs
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In this implementation, a small category is denoted by a graph. The details of these implementations can
be found in [14]. A graph can be called with nodes and edges which provides a different view to the common
definition of the graph. That is, nodes are the points and the edges define the relations between these points. A
graph with directed edges is called directed graph. Many functions in Haskell are implemented on this directed
graph. Mainly, functions are established as defining the compositions, source and target objects and controlling
the conditions of the category in the package. By the steps mentioned above, we can conclude with the following
results. Firstly, the package that consists of functions must be uploaded in Haskell compiler. Right after the
uploading procedure is completed, compiler outcomes can be achieved.

Prelude> :load "small_category.hs"
[1 of 1] Compiling Main ( small_category.hs, interpreted )
Ok, one module loaded.

In this section, we will give an algorithm for checking the axioms of a category.

Algorithm 1: iscategory
Input: dG , directed graph
Output: true iff dG is a category
begin

obj ← the objects of dG
mor ← the morphisms of dG
comp← the compositions of morphisms of dG
id← the identity morphisms of obj
while different results arise for the composition in comp do

clist← add the selection for composition in comp
end
if not For each morphism f : A→ B in mor, f ◦ idA = f and idB ◦ f = f then

return false
else if not associativity for right type (obj ,mor ,comp ,id ,clist) then

return false
else

return true
end

end

We can assume a small category as a directed graph. The functions ob, mor, comp are used to determine
objects, morphisms and compositions of given directed graph.

ob :: Graf -> [Int]
Main> ob [((1,1),'f')]
[1]
Main> ob [((1,2),'s'),((2,3),'d')]
[1,2,3]
mor :: Graf -> [(Int,Int)]
Main> mor [((1,2),'s'),((2,3),'d')]
[(1,2),(2,3)]
comp :: Graf -> [(Int, Int)]
Main> comp [((1,2),'s'),((2,3),'d')]
[(1,3)]
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On the other hand, source and target functions are used to determine source and target objects of
given morphisms.

source :: [(Int,Int)] -> [Int]
Main> source [(1,2),(2,3)]
[1,2]
target :: [(Int,Int)] -> [Int]
Main> target [(1,3),(1,1)]
[3,1]

With these functions, some controlling structures are given for determining if the directed graph is a
category or not. The function iscategory is used to verify that the axioms are satisfied. In the following
Haskell session, we will see whether some different directed graphs are categories.

1
f // 2

g

}}

h

aa

Main> iscategory
Please give a list like [((Int,Int),Char)]
[((1,2),'f'),((2,1),'g'),((2,1),'h')]
false

1

m

�� f // 2

g

}}

Main> iscategory
Please give a list like [((Int,Int),Char)]
[((1,2),'f'),((2,1),'g'),((1,1),'m')]
choose a number from [1,2] respectively for different compositions :
[('f','g',"1"),('f','g',"m")]
2
choose a number from [1,2] respectively for different compositions :
[('m','m',"1"),('m','m',"m")]
2
true
Main> iscategory
Please give a list like [((Int,Int),Char)]
[((1,2),'f'),((2,3),'g'),((1,3),'h')]
true
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