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Abstract: In this paper, we first determine the generalized taxicab distance formulae between a point and a line and
two parallel lines in the real plane, then we determine the generalized taxicab distance formulae between a point and a
plane, two parallel planes, a point and a line, two parallel lines and two skew lines in three dimensional space, giving
also the relations between these formulae and their well-known Euclidean analogs. Finally, we give the generalized
taxicab distance formulae between a point and a plane, a point and a line and two skew lines in n -dimensional space,
by generalizing the concepts used for three dimensional space to n -dimensional space.
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1. Introduction
Taxicab geometry was introduced by Menger [10] and developed by Krause [9], using the taxicab metric which
is the special case of the well-known lp -metric (also known as the Minkowski distance) for p = 1 . In [11],
Wallen altered the taxicab metric by redefining it in order to get rid of imperative symmetry, and called it
(slightly) generalized taxicab metric (also known as the weighted taxicab metric; see [6]). Later, isometries,
trigonometry, and some properties in the generalized taxicab plane are investigated in [2, 3, 5, 7, 8]. Then,
Euclidean isometries were given in three dimensional generalized taxicab space in [4].

In the generalized taxicab geometry; points, lines, and planes are the same as the Euclidean ones, but the
distance function is different. Thus, the generalized taxicab analogs of topics that include the distance concept
may also be different and interesting. In the plane, for points P1 = (x1, y1) , P2 = (x2, y2) , and positive real
numbers λ1 and λ2 , the generalized taxicab metric is defined by

dTg
(P1, P2) = λ1 |x1 − x2|+ λ2 |y1 − y2| (1.1)

while the well-known Euclidean metric is

dE(P1, P2) =
[
(x1 − x2)

2 + (y1 − y2)
2
]1/2

. (1.2)

Geometrically, the generalized taxicab distance between P1 and P2 is the sum of weighted lengths of line
segments joining the points, each of which is parallel to a coordinate axis, while the Euclidean distance between
P1 and P2 is the length of the straight line segment joining the points (see Figures 1 and 2).
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Figure 1. Figure 2.

In recent years, beyond the mathematics, metrics with their properties, especially the well-known lp -
metric with its special cases; taxicab (also known as l1 or Manhattan), Euclidean (also known as l2 ), and
maximum (also known as l∞ or Chebyshev) metrics, have been very important keys for many application areas
such as data mining, machine learning, pattern recognition, and spatial analysis. In this study, mainly we
determine some distance properties of the weighted taxicab metric in two, three, and n -dimensional spaces,
considering that these weights can reflect relative importance of different criteria or dimensions. Here, we first
investigate formulae for the generalized taxicab distance between a point and a line and two parallel lines in
the real plane, and then formulae for the generalized taxicab distance between a point and a plane, two parallel
planes, a point and a line, two parallel lines and two skew lines in three dimensional space, determining the
relations between the given formulae and their Euclidean analogs which are well-known already. Lastly, we
determine the generalized taxicab distance formulae between a point and a plane, a point and a line and two
skew lines for n -dimensional space, by generalizing the concepts that we used in three dimensional space to
n -dimensional space.

2. Generalized taxicab distance formulae in R2 and R3

One can see that in the plane the unit generalized taxicab circle is a rhombus with vertices V1 = (1/λ1, 0) ,
V ′
1 = (−1/λ1, 0) , V2 = (0, 1/λ2) , V ′

2 = (0,−1/λ2) , having points (x, y) on it, satisfying the equation
λ1 |x|+ λ2 |y| = 1 (see Figure 3).

Figure 3. The unit generalized taxicab circle for λ1 = 1/5 , λ2 = 1/3 .

Besides, in three dimensional space, for points P1 = (x1, y1, z1) , P2 = (x2, y2, z2) , and positive real
numbers λ1 , λ2 , and λ3 , the generalized taxicab metric is defined by

dTg (P1, P2) = λ1 |x1 − x2|+ λ2 |y1 − y2|+ λ3 |z1 − z2| , (2.1)

and one can also see that the unit generalized taxicab sphere is an octahedron with vertices V1 = (1/λ1, 0, 0) ,
V ′
1 = (−1/λ1, 0, 0) , V2 = (0, 1/λ2, 0) , V ′

2 = (0,−1/λ2, 0) , V3 = (0, 0, 1/λ3) , V ′
3 = (0, 0,−1/λ3) , having points

(x, y, z) on it, satisfying the equation λ1 |x|+ λ2 |y|+ λ3 |z| = 1 (see Figure 4).
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Figure 4. The unit generalized taxicab sphere for λ1 = 1/2 , λ2 = 1/7 , λ3 = 1/4 .

We use generalized taxicab circle generalized taxicab, sphere, and tangent notions as our main tools
in this study. Let us clarify the tangent notion by the following definition given as a natural analog to the
Euclidean geometry:

Definition 2.1 Given a generalized taxicab circle with center P and radius r , in the plane. We say that a line
is tangent to the generalized taxicab circle, if its generalized taxicab distance from P is r . Similarly, given a
generalized taxicab sphere with center P and radius r , in the three dimensional space. We say that a plane or
a line is tangent to the generalized taxicab sphere, if its generalized taxicab distance from P is r .

In Figure 5, see that the generalized taxicab distance from the point P to the lines ℓ1 and ℓ2 is equal to
the radius of the given generalized taxicab circle with center P . Thus, the lines ℓ1 and ℓ2 are tangent to the
generalized taxicab circle, at a vertex and an edge respectively. Obviously, there are infinitely many tangent
lines at a vertex, while there is only one tangent line at an edge of the generalized taxicab circle.

In Figure 6, see that the generalized taxicab distance from the point P to the planes Π1 , Π2 , Π3 , and
lines ℓ1 and ℓ2 is equal to the radius of the given generalized taxicab sphere with center P . Thus, the planes
Π1 , Π2 and Π3 are tangent to the generalized taxicab sphere, at a vertex, an edge, and a face respectively; and
the lines ℓ1 and ℓ2 are tangent to the generalized taxicab sphere, at a vertex and a line segment, respectively.
Clearly, there are infinitely many tangent planes at a point on an edge (that can also be a vertex) or an edge,
while there is only one tangent plane at a face of the generalized taxicab sphere, and there are infinitely many
tangent lines at a point on an edge (that can also be a vertex), while there is only one tangent line at a line
segment on a face (that can also be an edge) of the generalized taxicab sphere.

Figure 5. Figure 6.
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Clearly, in the plane, the generalized taxicab distance from a point to a line, is equal to the radius of
the expanding generalized taxicab circle when the line touches to the generalized taxicab circle -in other words,
the line becomes tangent to the generalized taxicab circle. The following proposition gives the formula for the
generalized taxicab distance between a point and a line, with an equation which relates the Euclidean distance
to the generalized taxicab distance between a point and a line in the plane.

Proposition 2.2 The generalized taxicab distance between a point P = (x0, y0) and a line ℓ : Ax+By+C = 0

in R2 is

dTg
(P, ℓ) =

|Ax0 +By0 + C|
max {|A/λ1| , |B/λ2|}

. (2.2)

In addition,
dE(P, ℓ)

dTg
(P, ℓ)

=
max {|A/λ1| , |B/λ2|}

(A2 +B2)1/2
. (2.3)

Proof Clearly, the generalized taxicab distance between the point P and the line ℓ is

dTg
(P, ℓ) = min

{
dTg

(P,X) : X ∈ ℓ
}
,

which is equal to the radius of the generalized taxicab circle with center P , such that the line ℓ is tangent to it.
Then, at least one vertex of the generalized taxicab circle is on ℓ , which is also on one of the lines through P

and parallel to a coordinate axis. In other words, if ℓx and ℓy denote the lines passing through P and parallel
to x and y axis respectively, then there exists at least one of the points

Q1 = ℓ ∩ ℓx and Q2 = ℓ ∩ ℓy,

which can be expressed by Q1 = (xQ1
, y0) , Q2 = (x0, yQ2

) , such that ℓ is tangent to the generalized taxicab
circle at least one of them (see Figure 7).

Figure 7.

Thus, we have
dTg

(P, ℓ) = min{dTg
(P,Q1), dTg

(P,Q2)}.

For the case A ̸= 0 and B ̸= 0 , Q1 and Q2 exist and we obtain

dTg (P,Q1) = λ1 |x0 − xQ1 | = λ1

∣∣∣∣x0 −
−By0 − C

A

∣∣∣∣ = |Ax0 +By0 + C|
|A/λ1|
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and

dTg
(P,Q2) = λ2 |y0 − yQ2

| = λ2

∣∣∣∣y0 − −Ax0 − C

B

∣∣∣∣ = |Ax0 +By0 + C|
|B/λ2|

.

Then we have

dTg (P, ℓ) = min
{
|Ax0 +By0 + C|

|A/λ1|
,
|Ax0 +By0 + C|

|B/λ2|

}
,

and so

dTg (P, ℓ) =
|Ax0 +By0 + C|

max {|A/λ1| , |B/λ2|}
.

Other cases affect only existence of points Q1 and Q2 , and do not change the conclusion. Besides, since we
have

dE(P, ℓ) =
|Ax0 +By0 + C|
(A2 +B2)1/2

,

we get equation (2.3). 2

Remark 2.3 If we label the foot of the perpendicular from the point P to the line ℓ by H , then we get

dE(P, ℓ) = dE(P,H) =
|Ax0 +By0 + C|
(A2 +B2)1/2

.

On the other hand, one can easily see that

dE(P,H)

dTg
(P,H)

=
(A2 +B2)1/2

λ1 |A|+ λ2 |B|
.

Thus, we obtain

dTg (P,H) =
(λ1 |A|+ λ2 |B|) |Ax0 +By0 + C|

A2 +B2
.

Concerning equations (2.2) and (2.3), in general, we have

dTg (P, ℓ) ̸= dTg (P,H) and
dE(P,H)

dTg (P,H)
̸= dE(P, ℓ)

dTg (P, ℓ)
.

Another fact is that nearest point or points on the line ℓ to the point P , in the generalized taxicab sense, are the
points of tangency of the line ℓ to the generalized taxicab circle with center P and radius dTg (P, ℓ) , so either
there is only one nearest point or there are infinitely many nearest points on a line to a point (see Figure 5).

The following example is an application of equation (2.2):

Example 2.4 Let us find the generalized taxicab distance between the point P = (1, 2) and the line ℓ : x+2y−7 =

0 in R2 . Using equation (2.2), one gets

dTg (P, ℓ) =
2

max{1/λ1, 2/λ2}
= min{2λ1, λ2}.
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In fact, ℓx : y = 2 , ℓy : x = 1 , and Q1 = (3, 2) , Q2 = (1, 3) . Thus, we get dTg (P,Q1) = 2λ1, dTg (P,Q2) = λ2,

and then
dTg

(P, ℓ) = min{2λ1, λ2}.

Clearly, two distinct lines either intersect or are parallel, and the generalized taxicab distance between
two intersecting lines is 0 . The following corollary which follows directly from Proposition 2.2, gives the formula
for the generalized taxicab distance between two parallel lines, with an equation which relates the Euclidean
distance to the generalized taxicab distance between two parallel lines in the plane:

Corollary 2.5 The generalized taxicab distance between two parallel lines ℓ1 : Ax + By + C1 = 0 and
ℓ2 : Ax+By + C2 = 0 in R2 is

dTg (ℓ1, ℓ2) =
|C1 − C2|

max {|A/λ1| , |B/λ2|}
. (2.4)

In addition,
dE(ℓ1, ℓ2)

dTg
(ℓ1, ℓ2)

=
max {|A/λ1| , |B/λ2|}

(A2 +B2)1/2
. (2.5)

For the case of three dimensional space, we simply use the generalized taxicab sphere instead of the
generalized taxicab circle, with the same approach. The generalized taxicab distance from a point to a plane
or a line is equal to the radius of the expanding generalized taxicab sphere when the plane or the line becomes
tangent to the generalized taxicab sphere. The following proposition gives the formula for the generalized
taxicab distance between a point and a plane, with an equation which relates the Euclidean distance to the
generalized taxicab distance between a point and a plane in three dimensional space:

Proposition 2.6 The generalized taxicab distance between a point P = (x0, y0, z0) and a plane Π : Ax+By+

Cz +D = 0 in R3 is

dTg
(P,Π) =

|Ax0 +By0 + Cz0 +D|
max {|A/λ1| , |B/λ2| , |C/λ3|}

. (2.6)

In addition,
dE(P,Π)

dTg
(P,Π)

=
max {|A/λ1| , |B/λ2| , |C/λ3|}

(A2 +B2 + C2)1/2
. (2.7)

Proof Clearly, the generalized taxicab distance between the point P and the plane Π is

dTg (P,Π) = min
{
dTg (P,X) : X ∈ Π

}
,

which is equal to the radius of the generalized taxicab sphere with center P , such that the plane Π is tangent
to it. Then, at least one vertex of the generalized taxicab sphere is on Π , which is also on one of the lines
through P and parallel to a coordinate axis. In other words, if ℓx , ℓy and ℓz denote the lines passing through
P and parallel to x , y and z axis respectively, then there exists at least one of the points

Q1 = Π ∩ ℓx, Q2 = Π ∩ ℓy and Q3 = Π ∩ ℓz,

which can be expressed by Q1 = (xQ1
, y0, z0) , Q2 = (x0, yQ2

, z0) , Q3 = (x0, y0, zQ3
) , such that Π is tangent

to the generalized taxicab sphere at least one of them (see Figure 8).
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Figure 8.

Thus, we have
dTg

(P,Π) = min{dTg
(P,Q1), dTg

(P,Q2), dTg
(P,Q3)}.

For the case A ̸= 0 , B ̸= 0 and C ̸= 0 , all of the points Q1 , Q2 and Q3 exist and we obtain

dTg
(P,Q1) = λ1 |x0 − xQ1

| = λ1

∣∣∣∣x0 −
−By0 − Cz0 −D

A

∣∣∣∣ = |Ax0 +By0 + Cz0 +D|
|A/λ1|

and similarly

dTg
(P,Q2) =

|Ax0 +By0 + Cz0 +D|
|B/λ2|

and dTg
(P,Q3) =

|Ax0 +By0 + Cz0 +D|
|C/λ3|

.

Then, we have

dTg
(P,Π) = min

{
|Ax0 +By0 + Cz0 +D|

|A/λ1|
,
|Ax0 +By0 + Cz0 +D|

|B/λ2|
,
|Ax0 +By0 + Cz0 +D|

|C/λ3|

}
,

and so

dTg
(P,Π) =

|Ax0 +By0 + Cz0 +D|
max {|A/λ1| , |B/λ2| , |C/λ3|}

.

Other cases affect only existence of points Q1 , Q2 , Q3 , and do not change the conclusion. Besides, since

dE(P,Π) =
|Ax0 +By0 + Cz0 +D|

(A2 +B2 + C2)1/2
,

we have equation (2.7). 2

Remark 2.7 Notice that the nearest point or points on the plane Π , to P , in the generalized taxicab sense, are
the points of tangency of Π to the generalized taxicab sphere with center P and radius dTg

(P,Π) . Thus, either
there is only one nearest point or there are infinitely many nearest points on a plane to a point (see Figure 6).

Clearly, two distinct planes either intersect or are parallel, and the generalized taxicab distance between
two intersecting planes is 0 . The following corollary which follows directly from Proposition 2.6, gives the
formula for the generalized taxicab distance between two parallel planes, with an equation which relates the
Euclidean distance to the generalized taxicab distance between two parallel planes in three dimensional space:
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Corollary 2.8 The generalized taxicab distance between two parallel planes Π1 : Ax+By + Cz +D1 = 0 and
Π2 : Ax+By + Cz +D2 = 0 in R3 is

dTg
(Π1,Π2) =

|D1 −D2|
max {|A/λ1| , |B/λ2| , |C/λ3|}

. (2.8)

In addition,
dE(Π1,Π2)

dTg
(Π1,Π2)

=
max {|A/λ1| , |B/λ2| , |C/λ3|}

(A2 +B2 + C2)1/2
. (2.9)

Note that a plane and a line which does not lie on this plane, either intersect or are parallel, and if the
line intersects with the plane the generalized taxicab distance between the line and the plane is 0 . Clearly, if
the line is parallel to the plane, then the generalized taxicab distance from any point on the line to the plane
is constant. Thus, one can find the generalized taxicab distance between the line and the plane by calculating
the generalized taxicab distance from any point on the line to the plane.

The following proposition gives the formula for the generalized taxicab distance between a point and a
line, with an equation which relates the Euclidean distance to the generalized taxicab distance between a point
and a line in three dimensional space:

Proposition 2.9 The generalized taxicab distance between a point P = (x0, y0, z0) and a line ℓ passing through
P1 = (x1, y1, z1) and parallel to the vector −→u = (u1, u2, u3) in R3 is

dTg
(P, ℓ) = min

i,j,k∈{1,2,3}
i̸=j ̸=k ̸=i

{
λi

∣∣∣∣ρi − ui

uk
ρk

∣∣∣∣+ λj

∣∣∣∣ρj − uj

uk
ρk

∣∣∣∣} , (2.10)

where ρ1 = (x0 − x1) , ρ2 = (y0 − y1) and ρ3 = (z0 − z1) . In addition,

dE(P, ℓ)

dTg
(P ,ℓ) =

√
((u2ρ1 − u1ρ2)2 + (u3ρ1 − u1ρ3)2 + (u3ρ2 − u2ρ3)2)√

(u2
1 + u2

2 + u2
3) min

i,j,k∈{1,2,3}
i ̸=j ̸=k ̸=i

{
λi

∣∣∣∣ρi − ui

uk
ρk

∣∣∣∣+ λj

∣∣∣∣ρj − uj

uk
ρk

∣∣∣∣} . (2.11)

Proof Clearly, the generalized taxicab distance between the point P and the line ℓ is

dTg (P, ℓ) = min
{
dTg (P,X) : X ∈ ℓ

}
,

which is equal to the radius of the generalized taxicab sphere with center P such that the line ℓ is tangent to
it. Observe that if the line ℓ is tangent to this generalized taxicab sphere, at least one point on an edge of the
sphere is on ℓ , which is also on one of the planes through P and perpendicular to a coordinate axis. In other
words, if Πx , Πy , and Πz denote the planes through P and perpendicular to x , y , and z axis, respectively,
then there exists at least one of the points

R1 = ℓ ∩Πx, R2 = ℓ ∩Πy and R3 = ℓ ∩Πz,

which can be expressed by R1 = (x0, yR1 , zR1) , R2 = (xR2 , y0, zR2) , R3 = (xR3 , yR3 , z0) , such that ℓ is tangent
to the generalized taxicab sphere at one of them (see Figure 9).
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Figure 9.

Thus, we have
dTg (P, ℓ) = min{dTg (P,R1), dTg (P,R2), dTg (P,R3)}.

For the case of u1 ̸= 0 , u2 ̸= 0 , and u3 ̸= 0 , all of the points R1 , R2 , and R3 exist and we get that

dTg
(P,R1) = λ2 |y0 − yR1

|+ λ3 |z0 − zR1
|

= λ2

∣∣∣∣y0 − u1y1 + u2(x0 − x1)

u1

∣∣∣∣+ λ3

∣∣∣∣z0 − u1z1 + u3(x0 − x1)

u1

∣∣∣∣
= λ2

∣∣∣∣(y0 − y1)−
u2

u1
(x0 − x1)

∣∣∣∣+ λ3

∣∣∣∣(z0 − z1)−
u3

u1
(x0 − x1)

∣∣∣∣
= λ2

∣∣∣∣ρ2 − u2

u1
ρ1

∣∣∣∣+ λ3

∣∣∣∣ρ3 − u3

u1
ρ1

∣∣∣∣ ,
where ρ1 = (x0 − x1) , ρ2 = (y0 − y1) and ρ3 = (z0 − z1) . Similarly, we can obtain

dTg
(P,R2) = λ1

∣∣∣∣ρ1 − u1

u2
ρ2

∣∣∣∣+ λ3

∣∣∣∣ρ3 − u3

u2
ρ2

∣∣∣∣ ,
dTg

(P,R3) = λ1

∣∣∣∣ρ1 − u1

u3
ρ3

∣∣∣∣+ λ2

∣∣∣∣ρ2 − u2

u3
ρ3

∣∣∣∣ .
Thus, we have

dTg (P, ℓ) = min
i,j,k∈{1,2,3}
i ̸=j ̸=k ̸=i

{
λi

∣∣∣∣ρi − ui

uk
ρk

∣∣∣∣+ λj

∣∣∣∣ρj − uj

uk
ρk

∣∣∣∣} .

Other cases affect only existence of points R1 , R2 , R3 , and do not change the conclusion. Besides, since

dE(P, ℓ) =
∥(u1, u2, u3)× (x0 − x1, y0 − y1, z0 − z1)∥

∥(u1, u2, u3)∥

=

√
((u2ρ1 − u1ρ2)2 + (u3ρ1 − u1ρ3)2 + (u3ρ2 − u2ρ3)2)√

u2
1 + u2

2 + u2
3

,

where ρ1 = (x0 − x1) , ρ2 = (y0 − y1) , ρ3 = (z0 − z1) , one gets equation (2.11). 2
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Remark 2.10 Notice that the nearest point or points on the line ℓ to the point P , in the generalized taxicab
sense, are the points of tangency of the line ℓ to the generalized taxicab sphere with center P and radius
dTg (P, ℓ) . Observe that either there is only one nearest point or there are infinitely many nearest points on a
line to a point (see Figure 6).

The following is an application of equation (2.10):

Example 2.11 Let us find the generalized taxicab distance between the point P = (1, 2, 5) and the line passing
through P1 = (−1, 0, 2) and parallel to the vector −→u = (1, 2, 1) in R3 . Substituting values into equation (2.10),
one gets ρ1 = 2 , ρ2 = 2 , ρ3 = 3 and

dTg (P, ℓ) = min{2λ2 + λ3, λ1 + 2λ3, λ1 + 4λ2}.

In fact, Πx : x = 1 , Πy : y = 2 , Πz : z = 5 , ℓ : α(t) = (−1 + t, 2t, 2 + t) , R1 = (1, 4, 4) , R2 = (0, 2, 3) ,
R3 = (2, 6, 5) . Thus,

dTg (P,R1) = 2λ2 + λ3, dTg (P,R2) = λ1 + 2λ3, dTg (P,R3) = λ1 + 4λ2,

and we get
dTg

(P, ℓ) = min{2λ2 + λ3, λ1 + 2λ3, λ1 + 4λ2}.

Clearly, two distinct lines either intersect or are parallel which are coplanar and do not intersect or
are skew which are not coplanar and do not intersect, and the generalized taxicab distance between two
intersecting lines is 0 . The following corollary that follows directly from Proposition 2.9, gives the formula
for the generalized taxicab distance between two parallel lines, with an equation which relates the Euclidean
distance to the generalized taxicab distance between two parallel lines, in three dimensional space:

Corollary 2.12 Let ℓ1 and ℓ2 be two parallel lines whose equations are

ℓ1 : α1 (t) = (x1, y1, z1) + t (u1, u2, u3) ,

ℓ2 : α2 (t) = (x2, y2, z2) + t (u1, u2, u3) .

The generalized taxicab distance between ℓ1 and ℓ2 is

dTg
(ℓ1,ℓ2) = min

i,j,k∈{1,2,3}
i ̸=j ̸=k ̸=i

{
λi

∣∣∣∣ρi − ui

uk
ρk

∣∣∣∣+ λj

∣∣∣∣ρj − uj

uk
ρk

∣∣∣∣} , (2.12)

where ρ1 = (x1 − x2) , ρ2 = (y1 − y2) , ρ3 = (z1 − z2) . In addition,

dE(ℓ1, ℓ2)

dTg (ℓ1, ℓ2)
=

√
((u2ρ1 − u1ρ2)2 + (u3ρ1 − u1ρ3)2 + (u3ρ2 − u2ρ3)2)√

u2
1 + u2

2 + u2
3 min
i,j,k∈{1,2,3}
i̸=j ̸=k ̸=i

{
λi

∣∣∣∣ρi − ui

uk
ρk

∣∣∣∣+ λj

∣∣∣∣ρj − uj

uk
ρk

∣∣∣∣} . (2.13)

The following proposition gives the formula for the generalized taxicab distance between two skew lines,
with an equation which relates the Euclidean distance to the generalized taxicab distance between two skew
lines, in three dimensional space:
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Proposition 2.13 Let ℓ1 and ℓ2 be two skew lines whose equations are

ℓ1 : β1 (t) = (x1, y1, z1) + t (u1, u2, u3) ,

ℓ2 : β2 (t) = (x2, y2, z2) + t (v1, v2, v3) .

Then, the generalized taxicab distance between the lines ℓ1 and ℓ2 is

dTg (ℓ1, ℓ2) =

∣∣(x1 − x2)δ(2,3) + (y1 − y2)δ(3,1) + (z1 − z2)δ(1,2)
∣∣

max
{∣∣δ(2,3)/λ1

∣∣ , ∣∣δ(3,1)/λ2

∣∣ , ∣∣δ(1,2)/λ3

∣∣} , (2.14)

where δ(a,b) = uavb − ubva . In addition,

dE(ℓ1, ℓ2)

dTg
(ℓ1, ℓ2)

=
max

{∣∣δ(2,3)/λ1

∣∣ , ∣∣δ(3,1)/λ2

∣∣ , ∣∣δ(1,2)/λ3

∣∣}
(δ2(2,3) + δ2(3,1) + δ2(1,2))

1/2
. (2.15)

Proof Clearly, if lines ℓ1 and ℓ2 are skew, then there is only one plane Π passing through the line ℓ2 and
parallel to the line ℓ1 , which can be constructed by the line ℓ2 and a line ℓ′1 which intersects with ℓ2 at any
point and is parallel to ℓ1 . Then, we have

dTg (ℓ1,Π) = dTg (P1,Π).

Observe that ℓ2 is tangent to one of the generalized taxicab spheres whose centers are on the line ℓ1 , to which
the plane Π is tangent, and this generalized taxicab sphere has minimum radius among those whose centers are
on the line ℓ1 to which the line ℓ2 is tangent (see Figure 10). Therefore, we have

dTg
(ℓ1, ℓ2) = dTg

(P1,Π)

for the point P1 = (x1, y1, z1) on the line ℓ1 .

Figure 10.

Then, since
⟨P2X, (u1, u2, u3)× (v1, v2, v3)⟩ = 0

for points X = (x, y, z) and P2 = (x2, y2, z2) on the plane Π , one can easily find the equation of the plane Π
as

(x− x2)δ(2,3) + (y − y2)δ(3,1) + (z − z2)δ(1,2) = 0,
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where δ(a,b) = uavb − ubva . Thus, by Proposition 2.6, one gets

dTg
(ℓ1, ℓ2) = dTg

(P1,Π) =

∣∣(x1 − x2)δ(2,3) + (y1 − y2)δ(3,1) + (z1 − z2)δ(1,2)
∣∣

max
{∣∣δ(2,3)/λ1

∣∣ , ∣∣δ(3,1)/λ2

∣∣ , ∣∣δ(1,2)/λ3

∣∣} .

Besides, since

dE(ℓ1, ℓ2) =

∣∣(x1 − x2)δ(2,3) + (y1 − y2)δ(3,1) + (z1 − z2)δ(1,2)
∣∣

(δ2(2,3) + δ2(3,1) + δ2(1,2))
1/2

we have equation (2.15). 2

Remark 2.14 Clearly, we can make two skew lines ℓ1 and ℓ2 intersect, by translating one of them along a
coordinate axis which is not parallel to them. Thus, if the lines ℓ1 and ℓ2 are not parallel to coordinate axes,
then we make the skew lines ℓ1 and ℓ2 intersect, by translating one of them along any coordinate axis. Observe
that the shortest generalized taxicab distance between the skew lines ℓ1 and ℓ2 , is equal to the minimum of
the weighted amounts of translations along coordinate axes. In other words, if ℓ1 and ℓ2 are not parallel to
coordinate axes, we get three pairs of points (X1, X2) , (Y1, Y2) and (Z1, Z2) on mutual lines, by translating
each of the lines along coordinate axes x , y , and z respectively, such that ℓ1 and ℓ2 intersect at them. Then,
we have

dTg
(ℓ1, ℓ2) = min{dTg

(X1, X2), dTg
(Y1, Y2), dTg

(Z1, Z2)}.

Notice that pairs of points (X1, X2) , (Y1, Y2) , and (Z1, Z2) are also determine the nearest pairs of points, in
the generalized taxicab sense. Observe that when the lines ℓ1 and ℓ2 are not parallel to coordinate axes, if the
generalized taxicab distances between these pairs of points are different, then there is only one nearest pair of
points, having the minimum generalized taxicab distance, otherwise there are infinitely many nearest pairs of
points on mutual lines.

The following is an application of equation (2.14):

Example 2.15 Let us find the generalized taxicab distance between two skew lines ℓ1 : β1 (t1) = (0, 2, 2) +

t1(1, 2, 1) and ℓ2 : β2 (t2) = (−2, 1, 4) + t2(−1, 0, 3) in R3 . Substituting values into equation (2.14), one gets
δ(2,3) = 6 , δ(3,1) = −4 , δ(1,2) = 2 , and

dTg (ℓ1, ℓ2) =
4

max {6/λ1, 4/λ2, 2/λ3}
= min

{
2
3λ1, λ2, 2λ3

}
.

In fact, the plane Π passing through the line ℓ2 and parallel to the line ℓ1 , has the equation

6x− 4y + 2z + 8 = 0,

and by Proposition 2.6, one gets

dTg
(ℓ1, ℓ2) = dTg

(P1,Π) =
4

max {6/λ1, 4/λ2, 2/λ3}
= min

{
2
3λ1, λ2, 2λ3

}
.

Notice that one can get the same result by using the concept given in Remark 2.14: Consider the following
translations along coordinate axes

Tx : (x, y, z) → (x+ c1, y, z), Ty : (x, y, z) → (x, y + c2, z), Tz : (x, y, z) → (x, y, z + c3),
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which make the image of, let say ℓ2 , intersect with ℓ1 . Then, one can obtain that c1 = 2
3 , c2 = −1 and c3 = 2 ,

and so
dTg

(ℓ1, ℓ2) = min {λ1 |c1| , λ2 |c2| , λ3 |c3|} = min
{

2
3λ1, λ2, 2λ3

}
.

Using t1 and t2 values which we derive while we obtain ci values, one can also find the pairs of points (X1, X2) ,
(Y1, Y2) , and (Z1, Z2) defined in Remark 2.14, as follows

X1 = (− 1
2 , 1,

3
2 ), X2 = (− 7

6 , 1,
3
2 ), Y1 = (−1, 0, 1), Y2 = (−1, 1, 1), Z1 = (− 1

2 , 1,
3
2 ), Z2 = (− 1

2 , 1,−
1
2 ).

Thus, for example if λ1 = λ2 = λ3 = 1 , then it is obvious that the nearest pair of points on mutual lines is
(X1, X2) .

Clearly, if λ1 = λ2 = λ3 = 1 , then the taxicab distance formulae are obtained in three dimensional space
with different approaches and proofs from those given in [1].

3. Generalized taxicab distance formulae in Rn

In this section, we determine generalized taxicab distance formulae from a point to a plane and a line in
n -dimensional space, by generalizing the sphere-tangent concept to n -dimensional space. Then, we determine
generalized taxicab distance formula between two skew lines in n -dimensional space, by using translations along
coordinate axes. First, let us give the generalized taxicab distance between two points in n -dimensional space:

Definition 3.1 Let X = (x1, ..., xn) and Y = (y1, ..., yn) be two points in Rn . For positive real numbers
λ1, ..., λn , the function dTg

: Rn × Rn → [0,∞) defined by

dTg
(X,Y ) =

n∑
i=1

λi |xi − yi| (3.1)

is called generalized taxicab distance function in Rn , and the real number dTg
(X,Y ) is called generalized

taxicab distance between points X and Y .

Since the generalized taxicab metric in Rn can be induced by the norm

∥x∥Tg
=

n∑
i=1

λi |xi| , (3.2)

it generates convex hyperspheres in n -dimensional space. Therefore, we can use the same sphere-tangent concept
to find the generalized taxicab distance formulae from a point to a plane or a line in Rn . Thus, in Rn we say
that a hyperplane or a line is tangent to a given generalized taxicab hypersphere with center P and radius r ,
if its generalized taxicab distance from P is r . Clearly, the unit generalized taxicab hypersphere is the set of
all points (x1, ..., xn) in Rn , satisfying the equation

n∑
i=1

λi |xi| = 1, (3.3)

and it has 2n vertices: V1 = (1/λ1, ..., 0) , V ′
1 = (−1/λ1, ..., 0) , ... , Vn = (0, ..., 1/λn) , V ′

n = (0, ...,−1/λn) .
The following proposition gives the formula for the generalized taxicab distance between a point and a

plane in n -dimensional space:
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Proposition 3.2 The generalized taxicab distance between a point P = (x1(0), ..., xn(0)) and a hyperplane

Π :
n∑

i=1

Aixi +B = 0 in Rn is

dTg (P,Π) =

∣∣∣∣ n∑
i=1

Aixi(0) +B

∣∣∣∣
max

i∈{1,...,n}
{|Ai/λi|}

. (3.4)

Proof Clearly, the generalized taxicab distance between the point P and the hyperplane Π is

dTg
(P,Π) = min

{
dTg

(P,X) : X ∈ Π
}
.

which is equal to the radius of the generalized taxicab hypersphere with center P , such that the hyperplane Π

is tangent to it. Then, at least one vertex of the generalized taxicab hypersphere is on Π , which is also on one
of the lines through P and parallel to a coordinate axis. In other words, if ℓxi

denotes the line passing through
P and parallel to xi -axis for i ∈ {1, ..., n} , then there exists at least one of the points

Qi = Π ∩ ℓxi ,

which can be expressed by Qi = (x1(0), ..., xi−1(0), xi(Qi), xi+1(0), ..., xn(0)) , such that Π is tangent to the
generalized taxicab hypersphere at one of them. Thus, we have

dTg
(P,Π) = min

i∈{1,...,n}
{dTg

(P,Qi)}.

For the case Ai ̸= 0 , i ∈ {1, ..., n} , every point Qi exists and we obtain

dTg
(P,Qi) = λi

∣∣xi(0) − xi(Qi)

∣∣
= λi

∣∣∣∣xi(0) −
−A1x1(0) − · · · −Ai−1xi−1(0) −Ai+1xi+1(0) − · · · −Anxn(0) −B

Ai

∣∣∣∣
=

∣∣A1x1(0) + · · ·+Anxn(0) +B
∣∣

|Ai/λi|
.

Then, we have

dTg
(P,Π) = min

i∈{1,...,n}


∣∣∣∣ n∑
i=1

Aixi(0) +B

∣∣∣∣
|Ai/λi|

 =

∣∣∣∣ n∑
i=1

Aixi(0) +B

∣∣∣∣
max

i∈{1,...,n}
{|Ai/λi|}

.

Other cases affect only existence of points Qi , and do not change the conclusion. 2

The following proposition gives the formula for the generalized taxicab distance between a point and a
line in n -dimensional space:

Proposition 3.3 The generalized taxicab distance between a point P = (x1(0), ..., xn(0)) and a line ℓ passing
through P1 =

(
x1(1), ..., xn(1)

)
and parallel to the vector −→u = (u1, ..., un) in Rn is

dTg
(P, ℓ) = min

i∈{1,...,n}

 ∑
j∈{1,...,n}\{i}

λj

∣∣∣∣(xj(0) − xj(1))−
uj

ui
(xi(0) − xi(1))

∣∣∣∣
 . (3.5)
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Proof Clearly, the generalized taxicab distance between the point P and the line ℓ is

dTg (P, ℓ) = min
{
dTg (P,X) : X ∈ ℓ

}
,

which is equal to the radius of the generalized taxicab hypersphere with center P , such that the line ℓ is tangent
to it. If a generalized taxicab hypersphere tangent to a line, at least one point on an edge is on ℓ , which is also
on one of the hyperplanes through P and perpendicular to a coordinate axis. In other words, if Πxi denotes
the plane through P and perpendicular to xi -axis for i ∈ {1, ..., n} , then there exists at least one of the points

Ri = ℓ ∩Πxi ,

which can be expressed by Ri = (x1(Ri), ..., xi−1(Ri), xi(0), xi+1(Ri), ..., xn(Ri)) , such that ℓ is tangent to the
generalized taxicab hypersphere at one of them. Thus, we have

dTg
(P, ℓ) = min

i∈{1,...,n}
{dTg

(P,Ri)}.

For the case ui ̸= 0 , i ∈ {1, ..., n} , every point Ri exists and we find

dTg
(P,Ri) =

∑
j∈{1,...,n}\{i}

λj

∣∣xj(0) − xj(Ri)

∣∣
=

∑
j∈{1,...,n}\{i}

λj

∣∣∣∣xj(0) −
(
xj(1) +

uj(xi(0) − xi(1))

ui

)∣∣∣∣
=

∑
j∈{1,...,n}\{i}

λj

∣∣∣∣(xj(0) − xj(1))−
uj

ui
(xi(0) − xi(1))

∣∣∣∣ .
Thus, we have

dTg
(P, ℓ) = min

i∈{1,...,n}

 ∑
j∈{1,...,n}\{i}

λj

∣∣∣∣(xj(0) − xj(1))−
uj

ui
(xi(0) − xi(1))

∣∣∣∣
 .

Other cases affect only existence of points Ri , and do not change the conclusion. 2

Since cross product of two vectors in n -dimensional space is not defined, we cannot follow the way used
in Proposition 2.13 to give the generalized taxicab distance between two skew lines. However, we can generalize
the way mentioned in Remark 2.14 to n -dimensional space as follows: Consider two skew lines with equations

ℓ1 : γ1 (t1) =
(
x1(1), ..., xn(1)

)
+ t1 (u1, ..., un) ,

ℓ2 : γ2 (t2) =
(
x1(2), ..., xn(2)

)
+ t2 (v1, ..., vn) ,

and let us denote by ℓ′2 , the image of the line ℓ2 under the translation

T : (x1, ..., xn) → (x1 + c1, ..., xn + cn).

Here, T can also be seen as the composition of translations along n coordinate axes, such that |ci| is the
amount of the translation along the coordinate axis xi . If the lines ℓ1 and ℓ′2 intersect, then the following
system of n linear equations in two variables has unique solution: t1u1 − t2v1

...
t1un − t2vn

 =

 x1(2) − x1(1) + c1
...

xn(2) − xn(1) + cn

 .
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Clearly, if two of ci values are equal to 0 , then the system has unique solution. Thus, we can state that one
makes two skew lines ℓ1 and ℓ2 intersect, by translating one of them along (n− 2) coordinate axes which are
not parallel to them. Therefore, if the lines ℓ1 and ℓ2 are not parallel to coordinate axes, then translations can
be along any (n− 2) of coordinate axis. Thus, the shortest generalized taxicab distance between the skew lines
ℓ1 and ℓ2 , is the minimum of the sum of weighted amounts of translations along any (n− 2) coordinate axes.

Now, the following proposition gives the formula for the generalized taxicab distance between two skew
lines in n -dimensional space:

Proposition 3.4 Let ℓ1 and ℓ2 be two skew lines whose equations are

ℓ1 : γ1 (t1) =
(
x1(1), ..., xn(1)

)
+ t1 (u1, ..., un) ,

ℓ2 : γ2 (t2) =
(
x1(2), ..., xn(2)

)
+ t2 (v1, ..., vn) .

Then, the generalized taxicab distance between the lines ℓ1 and ℓ2 is

dTg
(ℓ1, ℓ2) = min

i,j∈{1,...,n}
i ̸=j

 ∑
k∈{1,...,n}\{i,j}

∣∣∣∣∣
(
xk(1) − xk(2)

)
δ(i,j) +

(
xi(1) − xi(2)

)
δ(j,k) + (xj(1) − xj(2))δ(k,i)

δ(i,j)/λk

∣∣∣∣∣
 ,

(3.6)
where δ(a,b) = uavb − ubva for a, b ∈ {1, ..., n} and a ̸= b .

Proof Let us consider translation T : (x1, ..., xn) → (x1 + c1, ..., xn + cn) such that ci = cj = 0 for
i, j ∈ {1, ..., n} and i ̸= j , which is the composition of translations along (n− 2) coordinate axes different from
xi and xj . Then we have

t1ui − t2vi = xi(2) − xi(1),

t1uj − t2vj = xj(2) − xj(1).

Solving this system of equations, we obtain

t1 =
vj

(
xi(2) − xi(1)

)
− vi(xj(2) − xj(1))

(uivj − ujvi)
and t2 =

uj(xi(2) − xi(1))− ui(xj(2) − xj(1))

(uivj − ujvi)

and so

λk |ck| =

∣∣∣∣∣
(
xk(1) − xk(2)

)
δ(i,j) +

(
xi(1) − xi(2)

)
δ(j,k) + (xj(1) − xj(2))δ(k,i)

δ(i,j)/λk

∣∣∣∣∣
for k ∈ {1, ..., n}\{i, j} , where δ(a,b) = uavb−ubva for a, b ∈ {1, ..., n} and a ≠ b . Then, we have the generalized
taxicab distance between the skew lines ℓ1 and ℓ2 as follows

dTg
(ℓ1, ℓ2) = min

i,j∈{1,...,n}
i ̸=j

 ∑
k∈{1,...,n}\{i,j}

∣∣∣∣∣
(
xk(1) − xk(2)

)
δ(i,j) +

(
xi(1) − xi(2)

)
δ(j,k) + (xj(1) − xj(2))δ(k,i)

δ(i,j)/λk

∣∣∣∣∣
 .

2

One can easily see that equation (3.4) gives equations (2.2) and (2.6), for the special cases of n = 2 and
n = 3 , respectively, and equations (3.5) and (3.6) give equations (2.10) and (2.14) respectively, for the special
case of n = 3 .
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