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Abstract: In this paper we introduce a new generalization of telephone numbers. We give the generating function,
direct formulae, and matrix generators for these numbers. Moreover, we present their interpretations and we prove some
properties of these numbers connected with congruences.
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1. Introduction
The classical telephone numbers, also known as involution numbers, are given by the recurrence relation

T (n) = T (n− 1) + (n− 1)T (n− 2) (1)

for n ≥ 2 , with initial conditions T (0) = T (1) = 1 . Connections of these numbers with symmetric groups were
observed for the first time in 1800 by Heinrich August Rothe, who pointed out that T (n) is the number of
involutions (self-inverse permutations) in the symmetric group Sn (see, for example, [5, 8]). Because involutions
correspond to standard Young tableaux it is clear that the nth involution number is also the number of Young
tableaux on the set {1, 2, . . . , n} (for details see [3]). It is worth mentioning that a telephone interpretation of
recursion (1) is due to John Riordan, who noticed that T (n) is the number of connection patterns in a telephone
system with n subscribers (see [10]). Obviously one can find many other interpretations of recurrence relation
(1), for example in the mathematics of chess or theory of representation.

Quite recently, the paper [12] introduced generalized telephone numbers T (p, n) defined for integers n ≥ 0

and p ≥ 1 by the following recursion:

T (p, n) = pT (p, n− 1) + (n− 1)T (p, n− 2),

with initial conditions T (p, 0) = 1, T (p, 1) = p . The authors gave a new interpretation of numbers T (p, n) and
proved some of their properties. In this paper, we present a new one-parameter generalization of the classical
telephone numbers. We give two interpretations of these numbers, the first one connected with telephones and
the second one connected with a special edge coloring of a graph. We also derive direct formulae for these
numbers and we show a connection with Hessenberg matrices’ determinants. Moreover, we prove some results
on congruences being generalizations of the classical results for telephone numbers.
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2. Definition and interpretations

Let p ≥ 1 , n ≥ 0 be integers. Generalized telephone numbers Tp(n) are defined recursively as follows:

Tp(n) = Tp(n− 1) + p(n− 1)Tp(n− 2) for n ≥ 2, (2)

with initial conditions Tp(0) = Tp(1) = 1 .
The first table presents generalized telephone numbers Tp(n) for some values of n .

Table 1.

n 0 1 2 3 4 5 6
Tp(n) 1 1 1 + p 1 + 3p 1 + 6p+ 3p2 1 + 10p+ 15p2 1 + 15p+ 45p2 + 15p3

The second table presents generalized telephone numbers Tp(n) for a few fixed values of p and n .

Table 2.

n 0 1 2 3 4 5 6 7 8 9 10
T1(n) 1 1 2 4 10 26 76 232 764 2620 9496
T2(n) 1 1 3 7 25 81 331 1303 5937 26785 133651
T3(n) 1 1 4 10 46 166 586 3574 15880 101656 530416

As we can observe, if p = 1 , then we obtain telephone numbers T1(n) = T (n) . Moreover, for odd p

and n ≥ 2 generalized telephone numbers Tp(n) are even numbers. In turn, for even p , generalized telephone
numbers are odd numbers.

Now we present a few interpretations of generalized telephone numbers Tp(n) . We begin with an
interpretation connected with telephones.

By Riordan’s interpretation, as mentioned earlier, the classical telephone numbers count connection
patterns in a telephone system with n subscribers. It is known that such a network can be modeled by
a complete n vertex graph Kn and each pattern of connections in such a network is a matching (a set of
independent edges) in Kn . Thus, in the language of graph theory, the nth telephone number is the total
number of matchings of a complete graph Kn . It is worth emphasizing that the total number of matchings
of a given graph, also known as the Hosoya index, is an important graph parameter used in chemical graph
theory (cf. [11]). Note that modern networks give their members many more possibilities than only a classical
phone call (it can be a video call, a fax, etc.). If we assume that a network with n subscribers gives its users
p possibilities of connections with each member of the network, then such a network can be modeled by a
complete multigraph Kp

n . It is clear that each pattern of connections in such a network is a matching in Kp
n .

Let µ(Kp
n) be the total number of connection patterns in the network modeled by a complete multigraph Kp

n .
We will prove that µ(Kp

n) is equal to the nth generalized telephone number Tp(n) . For convenience, in our
calculation we put µ(Kp

0 ) = 1 .

Theorem 1 Let p ≥ 1 and n ≥ 0 be integers. Then µ(Kp
n) = µ(Kp

n−1) + p(n− 1)µ(Kp
n−2) with initial values

µ(Kp
0 ) = µ(Kp

1 ) = 1 .
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Proof The initial conditions are obvious. Let a complete multigraph Kp
n be a model of a network with

n subscribers and p possibilities of connections between each two members of the network. Assume that a
vertex x corresponds to a fixed subscriber of this network. If x is not calling then the number of connection
patterns in the network is equal to µ(Kp

n−1) . If x is calling another member of the network then the remaining
n − 2 subscribers of this network realize their connections in a network modeled by a complete multigraph
Kp

n−2 . A subscriber x chooses one of n− 1 members of the network and one of p possibilities of connections.
Thus, in the case when x is calling, there are p(n − 1)µ(Kp

n−2) patterns of connections. Finally, we get
µ(Kp

n) = µ(Kp
n−1) + p(n− 1)µ(Kp

n−2) . 2

By the definition of generalized telephone numbers Tp(n) and Theorem 1, we obtain:

Corollary 2 Let p ≥ 1 and n ≥ 0 be integers. Then µ(Kp
n) = Tp(n) .

Now we present a graph interpretation related to a special edge-shade coloring. We use the concept of
this coloring introduced and studied in [1, 2].

Let G be an undirected, connected, and simple graph. Let us consider an edge coloring of a graph G ,
c : E(G) → {A, 2B1, ..., 2Bp} , p ≥ 1 . A graph G is (A, 2B1, ..., 2Bp) -edge colored if for every monochromatic
subgraph H induced by all edges of color 2Bi , i = 1, ..., p in G , there is a partition of H into edge disjoint
paths of length two. There are no restrictions for a color A . In other words, the edges of G are partitioned into
paths and paths of length two can be colored with one of 2Bi possible shades, for i = 1, ..., p . We also have to
consider all possible partitions into paths of every monochromatic subgraph. Clearly, this edge coloring always
exists in an arbitrary graph.

Let C(G) = {cj(G) : j ≥ 1} be a family of all distinct (A, 2B1, ..., 2Bp) -edge colored copies of a graph
G . Clearly, cj(G) is an (A, 2B1, ..., 2Bp) -edge colored graph G . By θ(cj(G)) we denote the total number of
partitions of all 2Bi -monochromatic subgraphs H of cj(G) into edge disjoint paths of length two. If G is
colored only with A , then θ(cj(G)) = 1 .

Let σ(A,2B1,...,2Bp)(G) denote the total number of (A, 2B1, ..., 2Bp) -edge colorings of G . Then

σ(A,2B1,...,2Bp)(G) =

|C(G)|∑
j=1

θ(cj(G)).

Let e be an arbitrary edge of G . By σA(e)(G) and σ2Bi(e)(G) , for 1 ≤ i ≤ p , we denote a number of all
(A, 2B1, ..., 2Bp) -edge colorings of G , where edge e has a color A or 2Bi , respectively. Then

σ(A,2B1,...,2Bp)(G) =

p∑
i=1

σ2Bi(e)(G) + σA(e)(G)

is the basic rule of counting the parameter σ(A,2B1,...,2Bp)(G) .

Let S(m) be a star of size m , m ≥ 1 . We will prove that the total number of (A, 2B1, ..., 2Bp) -edge
colorings of a star S(m) is equal to the mth generalized telephone number Tp(m) .

Theorem 3 Let p ≥ 1 and m ≥ 1 be integers. Then σ(A,2B1,...,2Bp)(S(m)) = Tp(m) .
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Proof (by induction on m) If m = 1, 2 , then obviously the theorem is true. Let m ≥ 2 and e be an arbitrary
edge of S(m) . Suppose that σ(A,2B1,...,2Bp)(S(k)) = Tp(k) for k < m . If c(e) = A , then a graph S(m) \ e is
isomorphic to S(m− 1) , and by induction hypothesis it holds that σA(e)(S(m)) = σ(A,2B1,...,2Bp)(S(m− 1)) =

Tp(m − 1) . If c(e) = 2Bi, i = 1, . . . , p , then there exists an edge e′ adjacent to e which is also 2Bi colored.
The edge e′ can be chosen in m− 1 ways in the star S(m) . Moreover, we can choose the color 2Bi in p ways.
Using the induction hypothesis and the fact that the graph S(m) \ {e, e′} is isomorphic to the graph S(m− 2)

we obtain
p∑

i=1

σ2Bi(e)(S(m)) = p(m− 1)σ(A,2B1,...,2Bp)(S(m− 2)) = p(m− 1)Tp(m− 2) .

Finally, taking into account the above considerations, we have

σ(A,2B1,...,2Bp)(S(m)) = p(m− 1)Tp(m− 2) + Tp(m− 1) = Tp(m),

which ends the proof.
2

The following theorem gives the direct formula for generalized telephone numbers.

Theorem 4 Let m ≥ 2 and p ≥ 1 be integers. Then

Tp(m) = 1 +
∑

2≤2j≤m

(
m

2j

)
(2j − 1)!!pj .

Proof To prove this theorem we use the graph interpretation mentioned earlier. Let us consider (A, 2B1, ..., 2Bp) -
edge colorings of a star S(m) . If a star S(m) is colored only by A , then σA(e)(S(m)) = 1 .

Assume that the colors 2Bi , i = 1, . . . , p are used. Then, according to the definition of (A, 2B1, ..., 2Bp) -
edge colorings, we color an even number of edges of the star S(m) . In this way we obtain a subgraph of a star
S(m) with even number of edges. Hence, such a subgraph can be chosen in

(
m
2j

)
ways. Moreover, 2j edges can

be partitioned into paths of length 2 in (2j − 1)(2j − 3) . . . · 3 · 1 ways. Taking into account that we have p

colors 2Bi and in every partition of 2j edges there are j parts to color, we obtain pj possibilities of coloring

of this subgraph. Consequently,
p∑

i=1

σ2Bi(e)(S(m)) =
∑

2≤2j≤m

(
m
2j

)
(2j − 1)!!pj .

Finally, according to Theorem 4, we obtain

σ(A,2B1,...,2Bp)(S(m)) = Tp(m) = 1 +
∑

2≤2j≤m

(
m

2j

)
(2j − 1)!!pj

and the theorem is proved.
2

3. Generating function, summation formula, and matrix generator of Tp(n)

In the previous section we obtained a direct formula for generalized telephone numbers based on their graph
interpretation. To get another direct formula for numbers Tp(n) we use a generating function. It is well

known (cf. [5]) that the exponential generating function of the classical telephone numbers is
∞∑

n=0

T (n)xn

n! =
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exp

(
x+

x2

2

)
and a summation formula, obtained by the generating function, is T (n) = n!

∞∑
i+2j=n

1
2ji!j! . Now

we derive the exponential generating function and the summation formula for generalized telephone numbers
Tp(n) .

Theorem 5 The generating function of the generalized telephone numbers Tp(n) is

∞∑
n=0

Tp(n)x
n

n!
= exp

(
x+

p x2

2

)
.

Proof Suppose that Tp(n) = n!an . Substituting to (2) we obtain

nan = an−1 + p an−2 with a0 = a1 = 1. (3)

Let y =
∞∑

n=0
anx

n be the generating function of the sequence an . By properties of generating functions and (3)

we have

x
dy

dx
=

∞∑
n=1

nanx
n = x+

∞∑
n=2

(an−1 + p an−2)x
n = x+ x

∞∑
n=1

anx
n + p x2

∞∑
n=0

anx
n.

Thus, the generating function y should satisfy a differential equation of the form

x
dy

dx
= xy + p x2y.

Solving this equation by separating variables, we get

y = Cexp

(
x+

p x2

2

)
.

Since a0 = 1 , then C = 1 , which completes the proof. 2

As an immediate consequence of Theorem 5 we obtain a summation formula for generalized telephone
numbers Tp(n) .

Corollary 6 Let n ≥ 1 , p ≥ 1 be integers. Then Tp(n) = n!
∑

i+2j=n

pj

2ji!j! .

Proof By the proof of Theorem 5 it follows that an is the coefficient of xn in the power series of exp (x+ p x2

2
) .

Using the fact that

exp

(
x+

p x2

2

)
= exp (x) · exp (p x2/2) =

∞∑
i=0

xi

i!
·

∞∑
j=0

pjx2j

2jj!
=

∑
i+2j=n

pj

2ji!j!
xn,

we obtain

an =

∞∑
i+2j=n

pj

2ji!j!
,
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and by dependence Tp(n) = n!an we get

Tp(n) = n!

∞∑
i+2j=n

pj

2ji!j!
.

2

Now we present the connection between generalized telephone numbers Tp(n) and lower Hessenberg
matrices’ determinants.

Let us recall that a square matrix A = [aij ] of size n is the lower Hessenberg matrix if aij = 0 , for
j > i + 1 , and ai,i+1 ̸= 0 , for some i . It is worth mentioning that Hessenberg matrices are often used as
matrix generators of numbers defined recursively. There are many such known generators for numbers of the
Fibonacci type (for details, see, for instance, [4, 6, 7]). In this paper we define a lower Hessenberg matrix being
the generator of the generalized telephone numbers Tp(n) .

Let Hp,n = [hij ] be the lower Hessenberg matrix of size n defined as follows:

hij =



0 if j > i+ 1,

−1 if j = i+ 1,

1 if i+ j is even and j ≤ i,

p(n+ 1− i)− 1 if i+ j is odd and j < j and i < n,

p if i+ j is odd and j < i and i = n.

From the above definition for i = 1, 2, 3, 4 we have

Hp,1 =
[
1
]
, Hp,2 =

[
1 −1
p 1

]
, Hp,3 =

 1 −1 0
2p− 1 1 −1

1 p 1

 , Hp,4 =


1 −1 0 0

3p− 1 1 −1 0
1 2p− 1 1 −1
p 1 p 1

 ,

and generally

Hp,n =



1 −1 0 · · · 0 0
p(n− 1)− 1 1 −1 · · · 0 0

1 p(n− 2)− 1 1 · · · 0 0
p(n− 3)− 1 1 p(n− 3)− 1 · · · 0 0

...
...

... . . . ...
...

2p− 1 1 2p− 1 · · · 1 −1
1 p 1 · · · p 1


for odd n and

Hp,n =



1 −1 0 · · · 0 0
p(n− 1)− 1 1 −1 · · · 0 0

1 p(n− 2)− 1 1 · · · 0 0
p(n− 3)− 1 1 p(n− 3)− 1 · · · 0 0

...
...

... . . . ...
...

1 2p− 1 1 · · · 1 1
p 1 p · · · 1 p


for even n .

Theorem 7 Let n ≥ 1 , p ≥ 1 be integers. Then detHp,n = Tp(n) .
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Proof (by induction on n) If n = 1, 2 , then the result is obvious. Now assume that detHp,k = Tp(k) , for
k < n . We shall show that detHp,n = Tp(n) . Computing detHp,n by Laplace expansion of the determinant
with respect to the first row and then applying the basic properties of determinants, we have

detHp,n = detHp,n−1 + p(n− 2)detHp,n−2.

Hence, by induction assumption and recurrence relation (2), we obtain

detHp,n = Tp(n− 1) + p(n− 1)Tp(n− 2) = Tp(n),

as desired. 2

Note that for p = 1 , by Theorem 7, we get the lower Hessenberg matrix generator H1,n for the classical
telephone numbers T (n) .

4. Some properties of generalized telephone numbers

In this section we present some properties of generalized telephone numbers Tp(n) connected with congruences.
By recursion (2) we can deduce that

Tp(n+ 1) ≡ Tp(n) (mod pn),

and hence, by properties of congruences, we have

Tp(n+ 1) ≡ Tp(n) (mod p), Tp(n+ 1) ≡ Tp(n) (modn).

Now we will prove the following property.

Theorem 8 Let n ≥ 0 , p ≥ 1 be integers. Then for any odd integer m ,

Tp(n+m) ≡ Tp(n) (mod pm).

Proof We proceed by induction on n . If n = 0 , then by Theorem 4 and initial conditions for generalized
telephone numbers Tp(n) we obtain

Tp(m)− Tp(0) =
∑

2≤2j≤m

(
m

2j

)
(2j − 1)!!pj .

Because m is odd and 2j is even it is clear that pm divides Tp(m) − Tp(0) . Thus, Tp(m) ≡ Tp(0) (mod pm).

Analogously, for n = 1 , we get Tp(1 +m) ≡ Tp(1) (mod pm) .
Suppose the theorem is true for n < k . By recursion (2), for n = k , we have

Tp(k +m) = Tp(k +m− 1) + p(k +m− 1)Tp(k +m− 2).

Hence,

Tp(k +m) ≡ Tp(k +m− 1) + p(k − 1)Tp(k +m− 2) (mod pm).

Using the induction assumption we obtain

Tp(k +m− 1) ≡ Tp(k − 1) (mod pm) and Tp(k +m− 2) ≡ Tp(k − 2) (mod pm),
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and then by properties of congruences we have

Tp((k +m− 1) + p(k − 1)Tp(k +m− 2) ≡ Tp(k − 1) + p(k − 1)Tp(k − 2) (mod pm).

Finally, by the transitivity property we get Tp(k +m) ≡ Tp(k) (mod pm) , which ends the proof. 2

An obvious consequence of Theorem 4 and properties of congruences is the following corollary.

Corollary 9 If n ≥ 0 , p ≥ 1 are integers and m is as odd integer, then:

(i) Tp(n+m) ≡ Tp(n) (mod p) ,

(ii) Tp(n+m) ≡ Tp(n) (modm) .

From Theorem 4, for p = 1 and odd integer m we obtain T1(n + m) ≡ T1(n) (modm) , and because
T1(n) = T (n) we have T (n + m) ≡ T (n) (modm) . Such a congruence for the classical telephone numbers
was proved by Chowla et al. (see [5]). In 1955 Moser and Wyman [9] proved that if we resign from the
assumption that m is odd, then the following property for the classical telephone numbers holds:

T (n+m) ≡ T (n) · T (m) (modm),

where n ≥ 0 and m ≥ 1 are integers. It turns out that generalized telephone numbers Tp(n) satisfy analogous
congruence.

Theorem 10 Let n ≥ 0 , m ≥ 1 , p ≥ 1 be integers. Then

Tp(n+m) ≡ Tp(n) · Tp(m) (mod pm).

Proof (by induction on n) For n = 0 the theorem is obvious and for n = 1 it follows immediately from
recursion (2). Now assume that the theorem is true for n < k . We shall prove it is also true for n = k . By
recurrence relation (2) we have

Tp(k +m) = Tp(k +m− 1) + p(k +m− 1)Tp(k +m− 2).

Hence,
Tp(k +m) ≡ Tp(k +m− 1) + p(k − 1)Tp(k +m− 2) (mod pm).

By induction assumption we have

Tp(k +m− 1) ≡ Tp(k − 1) · Tp(m) (mod pm)

and
Tp(k +m− 2) ≡ Tp(k − 2) · Tp(m) (mod pm).

Then, using properties of congruences, we can write

Tp(k +m− 1) + p(k − 1)Tp(n+m− 2) ≡ Tp(k) · Tp(m) (mod pm),

and finally we obtain
Tp(k +m) ≡ Tp(k) · Tp(m) (mod pm).

Thus, the proof is complete. 2

As an immediate consequence of Theorem 10 and properties of congruences, we get the following corollary.
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Corollary 11 If n ≥ 0 , m ≥ 1 , and p ≥ 1 are integers, then:

(i) Tp(n+m) ≡ Tp(n) · Tp(m) (mod p) ,

(ii) Tp(n+m) ≡ Tp(n) · Tp(m) (modm).
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