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Abstract: Solvability of the main boundary value problems for the nonlocal Poisson equation is studied. Existence and
uniqueness theorems for the considered problems are obtained. The necessary and sufficient solvability conditions for all
problems are given and integral representations for the solutions are constructed.
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1. Introduction
The concept of a nonlocal operator and the related concept of a nonlocal differential equation appeared in
mathematics quite recently. For example, in [20], the notion of nonlocal differential equations incorporated the
loaded equations, equations with fractional derivatives of the unknown function, and equations with deviating
arguments, or in other words all equations in which the unknown functions and/or their derivatives enter with
different values of arguments.

A specific type of nonlocal differential equation is formed by equations in which the deviation of arguments
has an involutive character. A mapping S is called an involution if S2(x) ≡ S(S(x)) = x for all x . It is well
known that differential equations containing an involution in the unknown function or its derivative give model
equations with alternating deviation of the argument. Generally speaking, these equations can be attributed to
the class of functional-differential equations.

The study of equations with involution has a long history. In 1816 Babbage considered in [5] some
algebraic and differential equations with involution. A treatment of solvability for various differential equations
with involution was given by Przeworska-Rolewicz in [21] and Wiener in [33]. Spectral problems for a first-
order differential equation with involution were studied in [6, 7]. In [16–19, 23, 29], further problems in the
spectral theory of the first- and second-order differential operators with involution were discussed. The results
of studying the spectral properties for differential equations with involution were used in [1, 14, 31] to solve the
related inverse problems. The series of papers by Cabada and Tojo (see [8, 30] for an expanded list of citations)
pioneered in creating a comprehensive theory of Green’s functions for the one-dimensional differential equations
with involution.
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Solvability issues for certain partial differential equations with involution were covered in [2–4]. Further-
more, in [12, 27, 28, 32], boundary value problems for second- and fourth-order elliptic equations were studied
in the case when an involution appears in the boundary conditions.

This paper studies the principal boundary value problems for a nonlocal Poisson equation. The paper
is organized as follows. After the introduction of the key notions and main problems, Section 2 proceeds with
auxiliary statements from the theory of systems of algebraic equations. Section 3 proves Theorem 3.5 on the
uniqueness of solutions to the main problems. In Section 4, the existence of the solution to the Dirichlet problem
is obtained. Similar statements for the Neumann and Robin problems are presented in Sections 5 and 6.

Let us proceed with the statement of the considered problems.
Let Ω = {x ∈ Rn : |x| < 1} be the unit ball, n ≥ 2 , ∂Ω be the unit sphere, and S be a real orthogonal

matrix: S · ST = E . Suppose also that there exists a natural number l ∈ N such that Sl = E .
Note that, since any orthogonal transform is isometric, any x ∈ Ω and any x ∈ ∂Ω satisfy the inclusions

Skx ∈ Ω , and Skx ∈ ∂Ω respectively for any positive integer k .
Let us give some simple examples of such mappings S .

Example 1.1 Let, for any x ∈ Ω , the mapping S be defined by the relation Sx = −x , i.e. S = −E . Obviously,
one has S · ST = −E (−E) = E , S2 = E , and therefore l equals 2 .

Example 1.2 The mapping S can clearly be a rotation in the space Rn , e.g., S is the product of rotations
S = C1

φ1
C2
φ2

· · ·Cn−2
φn−2

where Ci
φ corresponds to the matrix


Ei 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 En−i−2

 ,

Ei is the i × i unit matrix, and i = 1, n− 2 . Indeed, one has ST = Cn−2
−φn−2

. . . C2
−φ2

C1
−φ1

, Ci
φC

i
ψ = Ci

φ+ψ ,
and therefore

SST = C1
φ1
C2
φ2

. . . Cn−2
φn−2

· Cn−2
−φn−2

. . . C2
−φ2

C1
−φ1

= E.

Moreover, it is necessary to suppose that there exists a natural number l ∈ N such that Sl = E .

Let a1, a2, . . . , al be some real numbers, and let f(x) and g(s) be functions defined on Ω and ∂Ω ,
respectively. Introduce the operator

Lu(x) ≡ −
l∑

k=1

ak∆u
(
Sk−1x

)
.

We consider the following boundary value problems in Ω .
Dirichlet problem. Find a function u(x) ∈ C2(Ω) ∩ C(Ω̄) that satisfies the equation

Lu(x) = f(x), x ∈ Ω, (1.1)

and the boundary condition
u(s) = g(s), s ∈ ∂Ω. (1.2)
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Neumann problem. Find a function u(x) ∈ C2(Ω) ∩ C1(Ω̄) that satisfies equation (1.1) and the
boundary condition

∂u(s)

∂ν
= g(s), s ∈ ∂Ω, (1.3)

where ν is the external normal to the sphere ∂Ω .
Robin problem. Find a function u(x) ∈ C2(Ω) ∩ C1(Ω̄) that satisfies equation (1.1) and the boundary

condition
∂u(s)

∂ν
+ cu(s) = g(s), s ∈ ∂Ω, (1.4)

with a given positive real c .
In the case when a1 ̸= 0, ak = 0, k = 2, 3, . . . , l we obtain the classical Dirichlet, Neumann, and Robin

problems for the conventional Poisson equation. Note that in [22] nonlocal boundary value problems for the
classical two-dimensional Laplace equation with the mapping S from Example 1.2 in the boundary condition
are studied.

2. Auxiliary statements
In this section we present some auxiliary statements from the theory of systems of algebraic equations.

Consider the following matrix A , which depends on the real numbers a1, a2, . . . , al :

A =


a1 a2 . . . al
al a1 . . . al−1

...
... . . . ...

a2 a3 · · · a1

 .

Lemma 2.1 Let λ1 = exp(i 2πl ) be the primitive l th root of unity. Then

detA =

l∏
k=1

(
a1λ

k
0 + . . .+ alλ

k
l−1

)
,

where λk = exp(i 2πkl ), k = 0, . . . , l − 1 .

Proof Clearly, λk = λk1 and λl = λ0 = 1 . Let us prove that the number

µk = a1λ
k
0 + . . .+ alλ

k
l−1 =

l∑
q=1

aqλ
k
q−1 (2.1)

is an eigenvalue and the vector Bk =
(
1, λk1 , . . . , λ

k
l−1

)T is its eigenvector of the matrix A for any k = 1, . . . , l .
Since indices of the numbers λk can be changed modulo l , in what follows we may consider indices of numbers
ak also modulo l . Then, for example, a0 = al , a−1 = al−1 , and al+1 = a1 . Since the mth row of the matrix
A has the form (a2−m, a3−m, . . . , al−m+1) , the element in the mth row of the vector Ck = ABk (m = 1, . . . , l )
equals

(ABk)m =

l∑
j=1

aj−m+1λ
k
j−1 = λkm−1

l∑
j=1

aj−m+1λ
k
j−m = µkλ

k
m−1;
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here we apply the relation λkm = λksλ
k
m−s . Therefore, ABk = Ck = µkBk .

Hence, the equality

detA =

l∏
k=1

µk =

l∏
k=1

(
a1λ

k
0 + . . .+ alλ

k
l−1

)
yields the lemma’s statement. The lemma is proved. 2

Example 2.2 If l = 3 , then λ1 = exp(i 2π3 ) , and therefore λk = exp(i 2πk3 ) . In this case, we have

detA = det

 a1 a2 a3
a3 a1 a2
a2 a3 a1



=

(
a1 + a2exp(i2π

3
) + a3exp(i4π

3
)

)(
a1 + a2exp(i4π

3
) + a3exp(i8π

3
)

)
(a1 + a2 + a3)

= (a1 + a2 + a3) (a
2
1 + a22 + a23 − a2a3 − a1a2 − a1a3) = a31 + a32 + a33 − 3a1a2a3.

If l = 4 , then λ1 = exp(i 2π4 ) = i , and we have

detA = (a1 + a2i− a3 − a4i) (a1 − a2 + a3 − a4) (a1 − a2i− a3 + a4i) (a1 + a2 + a3 + a4)

=
(
(a1 + a3)

2 − (a2 + a4)
2
)(

(a1 − a3)
2
+ (a4 − a2)

2
)
.

Lemma 2.3 Let the numbers µk in (2.1) be nonzero. Then there exists an inverse to the matrix A , which is
given by the following formula:

A−1 ≡


a1 a2 . . . al
al a1 . . . al−1

...
... . . . ...

a2 a3 · · · a1


−1

=
1

l
M+diag−1 (µ1, . . . , µl)M−

T ,

where

M+ =


1 1 . . . 1
λ1 λ2

1 . . . λl1
...

... . . . ...
λl−1 λ2

l−1 · · · λll−1

 , M− =


1 1 . . . 1

λ−1
1 λ−2

1 . . . λ−l
1

...
... . . . ...

λ−1
l−1 λ−2

l−1 · · · λ−l
l−1

 .

Proof Obviously, M+ = (B1, . . . , Bl) where Bk =
(
1, λk1 , . . . , λ

k
l−1

)T is the eigenvector of A corresponding
to the eigenvalue µk (see Lemma 2.1). Then AM+ = (µ1B1, . . . , µlBl) , and hence

AM+diag−1 (µ1, . . . , µl) = (µ1B1, . . . , µlBl)diag
(
µ−1
1 , . . . , µ−1

l

)
= (B1, . . . , Bl) = M+.

This relation yields the equality

AM+diag−1 (µ1, . . . , µl)M−
T = M+M−

T .
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In order to calculate the latter product

M+M−
T ≡ (mi,j)i,j=1,...,l,

we start with the obvious relation

mi,j =

l∑
k=1

λki−1λ
−k
j−1 =

l∑
k=1

(
λi−1

λj−1

)k
=

l∑
k=1

λki−j , (2.2)

where it was taken into account that λk/λj = λk−j and λ0 = 1 . Clearly, the number λi−j = λi−j1 is the l th
root of unity for any integers i and j .

It is known that if λ is the l th root of unity then

l∑
k=1

λk =

{
l, λ = 1,
0, λ ̸= 1.

(2.3)

Indeed, for λ = 1 it is obvious, and for λ ̸= 1 one has the relations

λ+ λ2 + . . .+ λl−1 + λl =
1

1− λ

(
λ+ λ2 + . . .+ λl−1 + λl

)
(1− λ) =

1

1− λ

(
λ− λl+1

)
= 0.

Therefore,

mi,j =

{
l, i = j,
0, i ̸= j,

and consequently
AM+diag

(
µ−1
1 , . . . , µ−1

l

)
M−

T = lE.

The latter relation yields the lemma’s statement. 2

Theorem 2.4 Let µk = a1λ
k
0 + . . .+ alλ

k
l−1 ̸= 0, k = 1, . . . , l , where {λk} are the l th roots of unity. Then the

solution of the system of algebraic equations Ab = g can be written in the form

b = (bi)i=1,...,l =
1

l

 l∑
k=1

1

µk

l∑
j=1

λi−jk gj


i=1,...,l

.

Proof Let us find elements of the inverse matrix that exists by Lemma 2.3. Similar to (2.2) we have

(
A−1

)
ij
=

1

l

(
M+diag−1 (µ1, . . . , µl)M−

T
)
ij
=

1

l

l∑
k=1

λki−1

µk
λ−k
j−1 =

1

l

l∑
k=1

λki−j
µk

=
1

l

l∑
k=1

λi−jk

µk
. (2.4)

It follows from (2.4) that

bi =
(
A−1g

)
i
=

1

l

l∑
j=1

gj

l∑
k=1

λi−jk

µk
=

1

l

l∑
k=1

1

µk

l∑
j=1

λi−jk gj .

The theorem is proved. 2
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3. Uniqueness

In order to study the uniqueness of the solution to the Dirichlet problem (1.1), (1.2), we start with the following
statement.

Lemma 3.1 The operator ISu(x) = u(Sx) and the Laplace operator ∆ commute: ∆ISu(x) = IS∆u(x) .
Operators Λ =

∑n
i=1 xiuxi(x) and IS also commute: ΛISu(x) = ISΛu(x) , and the equality ∇IS = ISS

T∇
holds.

Proof We write the orthogonal matrix S in the form S = (sij)i,j=1,...,l . Since

∂

∂xi
ISu(x) =

∂

∂xi
u(Sx) =

∂

∂xi
u((S1

row, x), . . . , (S
n
row, x)) =

n∑
j=1

sjiISuxj (x) = (Sicol, IS∇u(x)) = IS(S
i
col,∇)u(x),

we obtain

ΛISu(x) = Λu(Sx) =

n∑
i=1

xi
∂

∂xi
u(Sx) =

n∑
i=1

xi
(
Sicol, IS∇u(x)

)
=

(
n∑
i=1

xiS
i
col, IS∇u(x)

)

= (Sx, IS∇u(x)) = IS(x,∇u(x)) = ISΛu(x).

Furthermore, one has the relation

∂2

∂x2
i

ISu(x) =
∂

∂xi
IS(S

i
col,∇)u(x) = IS(S

i
col,∇)2u(x),

and therefore,

∆ISu(x) =

n∑
i=1

IS(S
i
col,∇)

2
u(x) = IS

∣∣((S1
col,∇), . . . , (Sncol,∇)

)∣∣2u(x)
= IS

∣∣ST∇∣∣2u(x) = IS(S
T∇, ST∇)u(x) = IS(SS

T∇,∇)u(x) = IS∆u(x).

Finally, the following relations hold:

∇ISu(x) = IS((S
1
col,∇), . . . , (Sncol,∇))u(x) = IS(S

T∇)u(x).

The lemma is proved completely. 2

Corollary 3.2 If a function u(x) is harmonic in Ω, then the function u(Sx) = ISu(x) is also harmonic in Ω.

Indeed, by Lemma 3.1, the equality ∆u(x) = 0 yields the relation ∆ISu(x) = IS∆u(x) = 0 .

Corollary 3.3 If a function u(x) is harmonic in Ω , then it satisfies the homogeneous equation (1.1) in Ω .

Indeed, according to Lemma 3.1, for any x ∈ Ω , we have

Lu(x) = −
l∑

k=1

ak∆u
(
Sk−1x

)
=

l∑
k=1

ak∆ISk−1u (x) =

l∑
k=1

akISk−1∆u (x) = 0.

The converse statement is also true.
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Lemma 3.4 Suppose that a function u ∈ C2(Ω) satisfies the homogeneous equation (1.1). Then, under the
condition detA ̸= 0 , the function u(x) is harmonic in the domain Ω .

Proof Let a function u ∈ C2(Ω) satisfy the homogeneous equation (1.1). Denote

v(x) =

l∑
k=1

aku(S
k−1x). (3.1)

It is obvious that v(x) ∈ C2(Ω) and ∆v(x) = 0 , x ∈ Ω , i.e. the function v(x) is harmonic in the domain
Ω . It follows from Corollary 3.2 that functions v(Skx) are also harmonic in Ω . On the other hand, due to the
condition Sl = E , equation (3.1) yields the following relations:

v(Sx) = alu(x) + a1u(Sx) + . . .+ al−1u(S
l−1x),

v(S2x) = al−1u(x) + alu(Sx) + . . .+ al−2u(S
l−1x),

. . . . . . . . .

v(Sl−1x) = a2u(x) + a3u(Sx) + . . .+ a1u(S
l−1x).

(3.2)

Therefore, the functions u(x), u(Sx), . . . , u(Sl−1x) satisfy the system of algebraic equations (3.1), (3.2)
with matrix A : 

v(x)
v(Sx)

...
v(Sl−1x)

 =


a1 a2 . . . al
al a1 . . . al−1

...
... . . . ...

a2 a3 . . . a1




u(x)
u(Sx)

...
u(Sl−1x)

 .

As the determinant of this system does not vanish, we may apply Theorem 2.4 with

b =
(
u(x), u(Sx), . . . , u(Sl−1x)

)T
and

g =
(
v(x), v(Sx), . . . , v(Sl−1x)

)T
.

It follows from Theorem 2.4 with i = 1 that

u(x) = b1 =
1

l

l∑
k=1

1

µk

l∑
j=1

λ1−j
k gj =

1

l

l∑
k=1

1

µk

l∑
j=1

λ1−j
k v(Sj−1x) =

l∑
j=1

v(Sj−1x)
1

l

l∑
k=1

1

λj−1
k µk

,

where, according to (2.1), µk = a1λ
k
0 + . . .+ alλ

k
l−1 and λk = exp

(
i 2πl k

)
= λk1 . If we denote

bj =
1

l

l∑
k=1

1

λj−1
k µk

,

for j = 1, 2, . . . , l , then we get

u(x) =

l∑
j=1

bjv(S
j−1x) = b1v(x) + b2v(Sx) + . . .+ blv(S

l−1x). (3.3)
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As was noted above, the functions v(Skx) are harmonic in Ω for all k = 0, 1, . . . , l − 1 , and thus the
function u(x) in (3.3) is also harmonic on the domain Ω . The lemma is proved. 2

Lemma 3.4 yields the following statement.

Theorem 3.5 Suppose that the inequalities µk = a1λ
k
0 + . . .+alλ

k
l−1 ̸= 0 hold for all k = 1, . . . , l and solutions

of Dirichlet, Neumann, and Robin problems exist. Then:
1) the solution of the Dirichlet problem (1.1), (1.2) is unique;
2) the solution of the Neumann problem (1.1), (1.3) is unique up to a constant term;
3) for any c > 0 , the solution of the Robin problem (1.1), (1.4) is unique.

Proof 1) Let us prove that the homogeneous problem (1.1), (1.2) has only the trivial solution, and hence
the solution of the nonhomogeneous problem (1.1), (1.2) is unique. Let u(x) be a solution of the homogeneous
problem (1.1), (1.2). If µk = a1λ

k
0 + . . . + alλ

k
l−1 ̸= 0 for all k = 1, . . . , l , then by Lemma 2.1, detA ̸= 0 . It

follows from Lemma 3.4 that the function u(x) is harmonic in the domain Ω and satisfies the homogeneous
condition (1.2). Therefore, the function u(x) is a solution to the following Dirichlet problem:

∆u(x) = 0, x ∈ Ω; u(x)
∣∣
∂Ω

= 0.

As the solution of this Dirichlet problem is unique, we have u(x) ≡ 0 .
2) If u(x) is a solution of the homogeneous problem (1.1), (1.3), then by Lemma 3.4, the function u(x)

is harmonic in the domain Ω and hence satisfies the boundary condition of the following Neumann problem:

∆u(x) = 0, x ∈ Ω;
∂u(x)

∂ν

∣∣∣
∂Ω

= 0.

This problem has only constant solutions: u(x) ≡ C .
3) In this case the function u(x) satisfies the homogeneous Robin problem:

∆u(x) = 0, x ∈ Ω;
∂u(x)

∂ν
+ cu(x)

∣∣∣∣
∂Ω

= 0.

If c > 0 then the unique solution to this problem is the function u(x) ≡ 0 . The theorem is proved. 2

4. Existence of the solution to the Dirichlet problem
In this section we study the existence of solutions to the Dirichlet problem. Let

P (x, y) =
1

ωn

1− |x|2

|x− y|n

be the Poisson kernel, ωn be an area of the unit sphere ∂Ω , and G(x, y) be the Green’s function of the Dirichlet
problem, which can be represented in the following form (see, e.g., [9]):

G(x, y) =
1

ωn

[
E(x, y)− E

(
x|y|, y

|y|

)]
, E(x, y) =

{
− ln |x− y|, n = 2,
(n− 2)−1|x− y|2−n, n ≥ 3.

Let us start with the following auxiliary statements.
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Lemma 4.1 Assume that g(x) is an arbitrary continuous function on ∂Ω or on Ω . Then the equalities

∫
∂Ω

g(Sky) dsy =

∫
∂Ω

g(y) dsy,

∫
Ω

g(Sky) dy =

∫
Ω

g(y) dy

hold for all k ∈ N .

Proof Let the function w(x) be a solution of the Dirichlet problem for the Laplace equation in Ω with the
condition w(x) = g(x) on the boundary ∂Ω . Then the function w(Skx) is a solution of the Dirichlet problem
for the Laplace equation in Ω (Corollary 3.3) with the condition w(Skx) = g(Skx) on ∂Ω . It is known that
solutions of these problems could be represented via the Poisson integrals

w(x) =

∫
∂Ω

P (x, y)g(y) dsy, w(Skx) =

∫
∂Ω

P (x, y)g(Sky) dsy.

Since

P (0, y) =
1

ωn

1

|y|n
=

1

ωn
,

for y ∈ ∂Ω , we have the relation

1

ωn

∫
∂Ω

g(y) dsy = w(0) =
1

ωn

∫
∂Ω

g(Sky) dsy,

which implies the first equality.
The second equality appears after the change of variables in the multiple integral

∫
Ω

g(Sy) dy =

∫
Ω

g(z)|detST | dz =

∫
Ω

g(y) dy.

The lemma is proved. 2

Lemma 4.2 Let µk = a1λ
k
0 + . . .+alλ

k
l−1 ̸= 0 for all k = 1, . . . l . Then the matrix A−1 has a structure similar

to matrix A : 
a1 a2 . . . al
al a1 . . . al−1

...
... . . . ...

a2 a3 . . . a1


−1

=


b1 b2 . . . bl
bl b1 . . . bl−1

...
... . . . ...

b2 b3 . . . b1

 ,

where, as in (3.3),

bj =
1

l

l∑
k=1

1

λj−1
k µk

(4.1)

for j = 1, 2, . . . , l, and µk are defined in (2.1). Moreover, for k = 1, 2, . . . , l , the equality µk(b) = 1/µk(a)

holds where µk(a) = a1λ
k
0 + . . .+ alλ

k
l−1 and µk(b) = b1λ

k
0 + . . .+ blλ

k
l−1 .
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Proof If we consider the indexes of numbers ak modulo l then it is easy to see that the matrix A can be
written as A = (aj−i+1)i,j=1,...,l . By formula (2.4) from Theorem 2.4, we find the inverse of A explicitly:

(
A−1

)
i,j

=
1

l

l∑
k=1

λi−jk

µk
=

1

l

l∑
k=1

1

µkλ
j−i
k

,

and, since the indexes i and j of elements in the inverse matrix are powers of the numbers λk , then they can
be calculated modulo l and the following equality holds:

(
A−1

)
i,j

=
1

l

l∑
k=1

1

µkλ
j−i+1−1
k

= bj−i+1,

where

bj =
1

l

l∑
k=1

1

λj−1
k µk

.

Thus, we have A−1 = (bj−i+1)i,j=1,...,l .

Let us now calculate µk(b) . Taking into account equality (2.3), we obtain the following relations:

µk(b) =

l∑
j=1

bjλ
k
j−1 =

1

l

l∑
j=1

λkj−1

l∑
p=1

1

λj−1
p µp(a)

=
1

l

l∑
p=1

1

µp(a)

l∑
j=1

λkj−1

λj−1
p

=

l∑
p=1

1

µp(a)

1

l

l∑
j=1

λkj−1

λpj−1

=

l∑
p=1

1

µp(a)

1

l

l∑
j=1

λk−pj−1 =
1

µk(a)
.

The lemma is proved. 2

Remark 4.3 Obviously, one has the equalities

µl(a) = a1λ
l
0 + . . .+ alλ

l
l−1 =

l∑
j=1

aj , µl(b) = b1λ
l
0 + . . .+ blλ

l
l−1 =

l∑
i=1

bi,

and therefore,
∑l
j=1 aj

∑l
i=1 bi = 1 .

The following theorem is the main one for the Dirichlet problem (1.1), (1.2).

Theorem 4.4 Let numbers {ak : k = 1, . . . , l} satisfy the inequalities µk = a1λ
k
0 + . . . + alλ

k
l−1 ̸= 0 for all

k = 1, . . . , l , where {λk} are l th roots of unity. Then, for arbitrary functions f ∈ C1(Ω̄) , g ∈ C(∂Ω) , the
solution of the problem (1.1), (1.2) exists, is unique, and can be represented in the following integral form:

u(x) =

∫
Ω

GS(x, y)f(y) dy +

∫
∂Ω

PS(x, y)

l∑
k=1

akg(S
k−1y) dsy, (4.2)
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where

GS(x, y) =

l∑
q=1

bqG(Sq−1x, y), PS(x, y) =

l∑
q=1

bqP (Sq−1x, y), (4.3)

and bq is defined by (4.1) for all q = 1, . . . , l .

Proof Consider the following Dirichlet problem for the function v(x) in the domain Ω :

−∆v(x) = f(x), x ∈ Ω; v(s) =

l∑
k=1

akg(S
k−1s) ≡ h(s), s ∈ ∂Ω. (4.4)

It is clear that g ∈ C(∂Ω) implies h ∈ C(∂Ω) , and therefore, the solution of the Dirichlet problem (4.4)
exists and is unique. It is also known (see, e.g., [9], p. 35) that for the given functions f(x) and h(s) in (4.4),
the solution of problem (4.4) can be represented in the following form:

v(x) =

∫
Ω

G(x, y)f(y) dy +

l∑
k=1

ak

∫
∂Ω

P (x, y)g(Sk−1y) dsy. (4.5)

Consider the vector V =
(
v(x), v(Sx), . . . , v(Sl−1x)

)T . It follows from Lemma 4.2 that the matrix A−1

repeats the structure of the matrix A . Thus, similarly to equalities (3.1) and (3.2), we define the vector

U =
(
u(x), u(Sx), . . . , u(Sl−1x)

)T by the equality U = A−1V . As µk = a1λ
k
0 + . . . + alλ

k
l−1 ̸= 0 , then, by

Lemma 2.1, A is nonsingular and thus detA−1 ̸= 0 . Since AU = V , it follows from (3.3) that the function
u(x) is uniquely defined via the function v(x) from (4.5) by the formula

u(x) =

l∑
q=1

bqv(S
q−1x), (4.6)

where the numbers bq are defined in (4.1).
Let us check that the function u(x) in (4.6) is the solution of the problem (1.1), (1.2). On one hand, we

have the implications

f ∈ C1(Ω̄), g ∈ C(∂Ω) ⇒ v ∈ C2(Ω) ∩ C(Ω̄) ⇒ u ∈ C2(Ω) ∩ C(Ω̄).

On the other hand, due to Lemma 3.1 and equality (4.4), we get the equalities

∆u(x) =

l∑
q=1

bq∆v(Sq−1x) =

l∑
q=1

bqISq−1∆v(x) =

l∑
q=1

bqISq−1∆v(x) = −
l∑

q=1

bqISq−1f(x) = −
l∑

q=1

bqf(S
q−1x)

for all x ∈ Ω .
Hence, taking into account the relations b0 = bl and Sl = E , we obtain

−IS∆u(x) = ∆u(Sx) =

l∑
q=1

bqf(S
qx) =

l−1∑
q=1

bqf(S
qx) + blf(x) = b0f(x)+

l∑
q=2

bq−1f(S
q−1x) =

l∑
q=1

bq−1f(S
q−1x).
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Similarly, assuming b−1 = bl−1 , we get the relations

−∆u(S2x) =

l∑
q=1

bq−1f(S
qx) =

l−1∑
q=1

bq−1f(S
qx) + bl−1f(x) = b−1f(x) +

l∑
q=2

bq−2f(S
q−1x)

=

l∑
q=1

bq−2f(S
q−1x).

Continuing this process and assuming further that b−p = bl−p , we come to the general relation

∆u(Sp−1x) = −
l∑

q=1

bq−p+1f(S
q−1x)

for any p = 1, . . . , l . Taking into account these equalities, we can calculate the left-hand side of (1.1):

Lu(x) = −
l∑

p=1

ap∆u(Sp−1x) =

l∑
p=1

ap

l∑
q=1

bq−p+1f(S
q−1x) =

l∑
q=1

f(Sq−1x)

l∑
p=1

apbq−p+1.

Inserting here the values bp from (4.1) and µk from (2.1), one can simplify the sum:

l∑
p=1

apbq−p+1 =
1

l

l∑
p=1

ap

l∑
k=1

1

λq−pk µk
=

1

l

l∑
k=1

1

λq−1
k µk

l∑
p=1

λkp−1ap =
1

l

l∑
k=1

µk

λq−1
k µk

=
1

l

l∑
k=1

λ1−q
k =

1

l

l∑
k=1

λk1−q.

It follows from (2.3) that
l∑

p=1

apbq−p+1 =

{
1, q = 1,
0, q ̸= 1,

(4.7)

and thus, equation (1.1) holds true:

−
l∑

p=1

ap∆u(Sp−1x) = f(x).

Let us now verify the boundary condition (1.2). For s ∈ ∂Ω , we have

h(s) =

l∑
k=1

akg(S
k−1s),

and hence

h(Ss) =

l∑
k=1

akg(S
ks) =

l−1∑
k=1

akg(S
ks) + alg(s) = alg(s) +

l∑
k=2

ak−1g(S
k−1s) =

l∑
k=1

ak−1g(S
k−1s),
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and, similarly by induction, we come to the relations

h(Sp−1s) = ISh(S
p−2s) =

l∑
k=1

ak−p+2g(S
ks) =

l−1∑
k=1

ak−p+2g(S
ks)+al−p+2g(s) = al−p+2g(s)+

l∑
k=2

ak−p+1g(S
k−1s)

=

l∑
k=1

ak−p+1g(S
k−1s).

Therefore,

u(s)|∂Ω =

l∑
p=1

bpv(S
p−1s)|∂Ω =

l∑
p=1

bph(S
p−1s) =

l∑
p=1

bp

l∑
k=1

ak−p+1g(S
k−1s) =

l∑
k=1

g(Sk−1s)

l∑
p=1

ak−p+1bp.

In order to calculate the latter internal sum, we change the index q = k − p + 1 ⇒ p = k − q + 1 and
apply equality (4.7):

l∑
p=1

ak−p+1bp =

l∑
q=1

aqbk−q+1 =

{
1, k = 1,
0, k ̸= 1.

Hence, we get the equality

u(s)|∂Ω =

l∑
k=1

g(Sk−1s)

l∑
p=1

ak−p+1bp = g(s),

and therefore the boundary condition (1.2) for the function u(x) holds true.
Furthermore, it follows from (4.5) that

v(Sq−1x) =

∫
Ω

G(Sq−1x, y)f(y) dy +

∫
∂Ω

P (Sq−1x, y)

l∑
k=1

akg(S
k−1y) dsy.

Substituting this expression in (4.6) instead of v(Sq−1x) and taking into account (4.3), we obtain the
relation

u(x) =

∫
Ω

[
l∑

q=1

bqG(Sq−1x, y)

]
f(y) dy +

∫
∂Ω

[
l∑

q=1

bqP (Sq−1x, y)

]
l∑

k=1

akg(S
k−1y) dsy

=

∫
Ω

GS(x, y)f(y) dy +

∫
∂Ω

PS(x, y)

l∑
k=1

akg(S
k−1y) dsy.

Thus, representation (4.2) for function u(x) is verified. The theorem is proved. 2

Remark 4.5 Applying Lemma 4.1, one can rewrite the last term on the right-hand side of (4.2) in the following

1616



KARACHIK et al./Turk J Math

form:

∫
∂Ω

PS(x, y)

l∑
k=1

akg(S
k−1y) dsy =

l∑
k=1

ak

∫
∂Ω

PS(x, y)g(S
k−1y) dsy =

l∑
k=1

ak

∫
∂Ω

PS(x,
(
Sk−1

)T
z)g(z) dsz

=

∫
∂Ω

(
l∑

k=1

akPS(x,
(
Sk−1

)T
z)

)
g(z) dsz =

∫
∂Ω

(
l∑

k=1

ak

l∑
q=1

bqP (Sq−1x,
(
Sk−1

)T
z))

)
g(z) dsz.

Example 4.6 Let S be a symmetric matrix satisfying S2 = E ( l = 2). In this case the problem (1.1), (1.2)
takes the form

−a1∆u(x)− a2∆u(Sx) = f(x), x ∈ Ω; u(s) = g(s), s ∈ ∂Ω.

Here we have λ1 = eiπ = −1 , λ2 = e2iπ = 1 , µ1 = a1 − a2 , µ2 = a1 + a2 , and

A =

(
a1 a2
a2 a1

)
, detA = µ1 · µ2 = a21 − a22.

Suppose that a21 − a22 ̸= 0 ⇔ a1 ̸= ±a2 . Then, by (4.1), we obtain the relations

b1 =
1

2

2∑
k=1

1

λ0
kµk

=
1

2

(
1

µ1
+

1

µ2

)
=

1

2

(
1

a1 − a2
+

1

a2 + a1

)
=

a1
a21 − a22

,

b2 =
1

2

2∑
k=1

1

λ1
kµk

=
1

2

(
1

−µ1
+

1

µ2

)
=

1

2

(
− 1

a1 − a2
+

1

a2 + a1

)
=

−a2
a21 − a22

.

According to formula (4.3) of Theorem 4.4, we find the functions GS(x, y) and PS(x, y) by the following
equalities:

GS(x, y) =

2∑
q=1

bqG(Sq−1x, y) = b1G(x, y) + b2G(Sx, y) =
a1G(x, y)− a2G(Sx, y)

a21 − a22
,

PS(x, y) =

2∑
q=1

bqP (Sq−1x, y) =
a1P (x, y)− a2P (Sx, y)

a21 − a22
,

and it follows from (4.2) that the solution takes the form

u(x) =

∫
Ω

GS(x, y)f(y) dy+

∫
∂Ω

PS(x, y)

l∑
k=1

akg(S
k−1y) dsy =

∫
Ω

a1G(x, y)− a2G(Sx, y)

a21 − a22
f(y) dy

+

∫
∂Ω

a1P (x, y)− a2P (Sx, y)

a21 − a22
(a1g(y) + a2g(Sy)) dsy.

Applying Lemma 4.1 and the symmetry of S , the last integral on the right-hand side of this representation
can be rewritten in the following form:

I =

∫
∂Ω

a1P (x, y)− a2P (Sx, y)

a21 − a22
(a1g(y) + a2g(Sy)) dsy

=

∫
∂Ω

(a1 (a1P (x, y)− a2P (Sx, y)) + a2 (a1P (x, Sy)− a2P (Sx, Sy)))

a21 − a22
g(y) dsy.
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If we note that, for y ∈ ∂Ω , the equalities

P (Sx, y) =
1

ωn

1− |Sx|2

|Sx− y|n
=

1

ωn

1− |x|2

|x− Sy|n
= P (x, Sy),

P (Sx, Sy) =
1

ωn

1− |Sx|2

|Sx− Sy|n
=

1

ωn

1− |x|2

|x− y|n
= P (x, y)

hold, then the integral I equals

I =
1

a22 − a21

∫
∂Ω

(
a21 − a22

)
P (x, y)g(y) dsy =

∫
∂Ω

P (x, y)g(y) dsy,

and finally

u(x) =

∫
Ω

a1G(x, y)− a2G(Sx, y)

a21 − a22
f(y) dy +

∫
∂Ω

P (x, y)g(y) dsy.

Consider a particular case of the above problem when f(x) = −xi and g(s) = s2j with some i, j :
1 ≤ i, j ≤ n . Then the auxiliary problem (4.4) takes the form

∆v(x) = xi, x ∈ Ω; v
∣∣
∂Ω

= (a1 + a2)s
2
j .

Here it is more convenient to use the results of [10] instead of the integral representation for v(x) . The
straightforward calculation shows that

v(x) = (a1 + a2)x
2
j +

(
1− |x|2

)(a1 + a2
n

− xi
2(n+ 2)

)
,

and therefore the problem’s solution is given explicitly:

u(x) =
a1

a21 − a22

(
(a1 + a2)x

2
j +

(
1− |x|2

)(a1 + a2
n

− xi
2(n+ 2)

))
− a2

a21 − a22

(
(a1 + a2)x

2
j +

(
1− |x|2

)(a1 + a2
n

+
xi

2(n+ 2)

))
= x2

j +
(
1− |x|2

)( 1

n
− xi

2(n+ 2)(a1 − a2)

)
.

It is easy to verify this representation. Obviously, the boundary condition holds true and the validity of
the equation follows from the relations

a1∆u(x) + a2∆u(−x) = (a1 + a2)∆x2
j −

a1 + a2
n

∆|x|2

+ (a1 − a2)∆

(
xi|x|2

2(n+ 2)(a1 − a2)

)
= (a1 + a2)(2− 2) + 2(n+ 2)

xi
2(n+ 2)

= xi.

Here we applied the equality ∆
(
|x|2mPs(x)

)
= 2m(2m + 2s + n − 2)|x|2m−2Ps(x) [11] where Ps(x) is

any homogeneous harmonic polynomial of degree s .
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5. Existence of the solution to the Neumann problem

Let us find necessary and sufficient conditions for the solvability of the Neumann problem (1.1), (1.3). Let
GN (x, y) denote the Green’s function of the classical Neumann problem. Note that the explicit form of this
Green’s function in the ball Ω for the cases n = 2 and n = 3 is well known (see, e.g., [9, 15]), while in the case
of dimensions n ≥ 4 it is constructed in [25, 26].

Theorem 5.1 Let detA ̸= 0 , f ∈ C1(Ω̄) , g ∈ C(∂Ω) . Then the condition

∫
Ω

f(x) dx+

(
l∑

k=1

ak

)∫
∂Ω

g(x) dSx = 0 (5.1)

is necessary and sufficient for the solvability of the problem (1.1), (1.3). If the solution of the problem exists
then it is unique up to a constant term and can be represented in the form

u(x) =

∫
Ω

GN,S(x, y)f(y) dy +

∫
∂Ω

GN,S,l(x, y)g(y) dSy, (5.2)

where

GN,S(x, y) =

l−1∑
m=0

bmGN (Sm−1x, y), GN,S,l(x, y) =

l∑
m=1

bm

l∑
k=1

akGN

(
Sm−1x,

(
Sk−1

)T
y
)
,

and the coefficients bm are given by formula (4.1).

Proof Suppose that solution u(x) of the problem (1.1), (1.3) exists, and the operator Λ =
∑n
j=1 xj

∂
∂xj

is

defined in Lemma 3.1. For convenience, we assume that the function u(x) belongs to the class C3(Ω) ∩C1(Ω̄)

(it is sufficient to require that f(x) ∈ Cλ(Ω̄) , g(x) ∈ Cλ+1(∂Ω) with λ > 1). We apply the operator Λ to the
function u(x) and introduce w(x) = Λu(x) . Then, taking into account the equality ∆Λu(x) = (Λ + 2)∆u(x) ,
x ∈ Ω , and the commutability of the operators Λ and IS (by Lemma 3.1), we obtain the following relations:

Lw(x) = −
l∑

k=1

ak∆ISk−1Λu (x) = −
l∑

k=1

ak∆ΛISk−1u (x)

= − (Λ + 2)

l∑
k=1

ak∆u
(
Sk−1x

)
= (Λ + 2)Lu(x) = (Λ + 2) f(x).

It follows from boundary condition (1.3) and the property of Λ that

w(x)
∣∣
∂Ω

= Λu(x)
∣∣
∂Ω

=
∂u(x)

∂ν

∣∣∣
∂Ω

= g(x).

Thus, if u(x) solves the problem (1.1), (1.3), then the function w(x) = Λu(x) satisfies the Dirichlet-type
boundary value problem (1.1), (1.2):

Lw(x) = (Λ + 2) f(x), x ∈ Ω; w(x)
∣∣
∂Ω

= g(x). (5.3)
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Moreover, the equality w(x) = Λu(x) implies the necessity of the condition w(0) = 0 .
Furthermore, if the functions F (x) = (Λ + 2) f(x) and g(x) are smooth enough, then, by Theorem 4.4,

the solution of the problem (5.3) exists, is unique, and can be represented in the form (4.2), i.e.

w(x) =

∫
Ω

GS(x, y)F (y) dy +

∫
∂Ω

PS(x, y)

l∑
k=1

akg(S
k−1y) dsy, (5.4)

where functions GS(x, y) and PS(x, y) are defined in (4.3).
Let us find the conditions under which the equality w(0) = 0 holds. It follows from the representation

(5.4) that

w(0) =

∫
Ω

GS(0, y)F (y) dy +

∫
∂Ω

PS(0, y)

l∑
k=1

akg(S
k−1y) dsy.

Furthermore, in the case when n > 2 , we obtain the relations

GS(0, y) =

l∑
q=1

bqG(0, y) = G(0, y)

l∑
q=1

bq = C1

(
|y|2−n − 1

)
,

PS(0, y) =

l∑
q=1

bqP (0, y) = P (0, y)

l∑
q=1

bq = C2,

where

C1 =
1

(n− 2)ωn
µl(b), C2 =

1

ωn
µl(b),

and, due to Remark 4.3, µl(b) =
∑l
q=1 bq .

Let us consider the following integral:

Ij ≡
∫
Ω

(
|y|2−n − 1

)
yj

∂

∂yj
f(y) dy.

Taking it by parts, we obtain the following equalities:

Ij =

∫
Ω

yj
(
|y|2−n − 1

) ∂

∂yj
f(y) dy =

∫
∂Ω

y2j
(
|y|2−n − 1

)
f(y) dy −

∫
Ω

∂

∂yj

[
yj
(
|y|2−n − 1

)]
f(y) dy

= −
∫
Ω

[
|y|2−n − 1 + (2− n)y2j |y|−n

]
f(y) dy =

∫
Ω

[
1− |y|2−n + (n− 2)y2j |y|−n

]
f(y) dy.

Since

F (y) = (Λ + 2)f(y) =

2 +

n∑
j=1

yj
∂

∂yj

 f(y)

and

n∑
j=1

[
1− |y|2−n + (n− 2)y2j |y|−n

]
= n

(
1− |y|2−n

)
+ (n− 2)|y|−n

n∑
j=1

y2j

= n
(
1− |y|2−n

)
+ (n− 2)|y|2−n = n− 2|y|2−n,
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we get the relations

∫
Ω

GS(0, y)F (y) dy =

∫
Ω

GS(0, y)

2 +

n∑
j=1

yj
∂

∂yj

 f(y) dy

= C1

(∫
Ω

[
n− 2|y|2−n

]
f(y) dy + 2

∫
Ω

[
|y|2−n − 1

]
f(y) dy

)
= (n− 2)C1

∫
Ω

f(y) dy = (n− 2)
1

(n− 2)ωn
µl(b)

∫
Ω

f(y) dy =
µl(b)

ωn

∫
Ω

f(y) dy.

On the other hand, keeping in mind that µl(a) =
∑l
q=1 aq , and applying the equality µl(a)µl(b) = 1

from Lemma 4.2, we get the relations

∫
∂Ω

PS(0, y)

l∑
k=1

akg(S
k−1y) dsy = C2

∫
∂Ω

l∑
k=1

akg(S
k−1y) dsy

= C2µl(a)

∫
∂Ω

g(y) dsy = µl(a)µl(b)
1

ωn

∫
∂Ω

g(y) dsy =
1

ωn

∫
∂Ω

g(y) dsy.

Thus, w(0) vanishes if and only if the following equality holds true:

w(0) = µl(b)
1

ωn

∫
Ω

f(y) dy +
1

ωn

∫
∂Ω

g(y) dsy = 0.

Therefore, by Lemma 4.2, we finally obtain the condition∫
Ω

f(y) dy + µl(a)

∫
∂Ω

g(y) dsy = 0.

Hence, the necessity of condition (5.1) for existence of the solution to the problem (1.1), (1.3) is verified.
Now let us show that the condition (5.1) is also sufficient for existence of the solution of (1.1), (1.3). For

that purpose, we consider the following Neumann problem with respect to the function v(x) in the domain Ω :

−∆v(x) = f(x), x ∈ Ω;

∂v(x)

∂ν

∣∣∣
∂Ω

= a1g(s) + a2g(Ss) + . . .+ alg(S
l−1s) ≡ h(s).

(5.5)

It is known that the solvability condition for this problem is given by the following relation:

∫
Ω

f(x) dx+

∫
∂Ω

h(x) dsx = 0 ⇔
∫
Ω

f(x) dx+

l∑
k=1

ak

∫
∂Ω

g(Sk−1x) dsx = 0. (5.6)

Since, by Lemma 4.1, ∫
∂Ω

g(Skx) dsx =

∫
∂Ω

g(x) dsx,
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we get
l∑

k=1

ak

∫
∂Ω

g(Sk−1x) dsx = µl(a)

∫
∂Ω

g(x) dsx,

and therefore, condition (5.6) can be rewritten in the form of (5.1). If this condition holds true then the solution
of problem (5.5) exists up to a constant term and can be represented in the following form (see, e.g., [15]):

v(x) =

∫
Ω

GN (x, y)f(y) dy +

l∑
k=1

ak

∫
∂Ω

GN (x, y)g(Sk−1y) dsy. (5.7)

Similarly to the Dirichlet problem, the solution of the Neumann problem can be obtained by the formula

u(x) =

l∑
m=1

bmv(Sm−1x), (5.8)

where the coefficients bm are given by (4.1).

Indeed, if we consider the vector V =
(
v(x), v(Sx), . . . , v(Sl−1x)

)T , then, under the theorem’s conditions,

one can determine the vector U =
(
u(x), u(Sx), . . . , u(Sl−1x)

)T via the equality U = A−1V . Due to the relation
AU = V and the formula (3.3), the function u(x) is uniquely determined via the function v(x) from (5.8) and
(5.7). Mimicking the reasoning for the Dirichlet problem, it can be shown that the function (5.8) satisfies all
conditions of the problem (1.1), (1.3). Furthermore, inserting the function v(x) from (5.7) into the right-hand
side of (5.8), we have the relations

u(x) =

l∑
m=1

bm

∫
Ω

GN (Sm−1x, y)f(y) dy +

l∑
m=1

bm

l∑
k=1

ak

∫
∂Ω

GN (Sm−1x, y)g(Sk−1y) dsy

=

∫
Ω

[
l∑

m=1

bmGN (Sm−1x, y)

]
f(y) dy +

∫
∂Ω

[
l∑

m=1

bm

l∑
k=1

akGN

(
Sm−1x,

(
Sk−1

)T
y
)]

g(y) dsy

=

∫
Ω

GN,S(x, y)f(y) dy +

∫
∂Ω

GN,S,l(x, y)g(y) dsy,

where we used the notations

GN,S(x, y) =

l−1∑
m=0

bmGN (Sm−1x, y), GN,S,l(x, y) =

l∑
m=1

bm

l∑
k=1

akGN

(
Sm−1x,

(
Sk−1

)T
y
)
.

Hence, representation (5.2) for the solution of the problem (1.1), (1.3) is verified. The theorem is proved.
2

6. Existence of the solution to the Robin problem

Now we give the main statement for the problem (1.1), (1.4). Let GR(x, y) be the Green’s function of the
classical Robin problem. Note that the explicit form of GR(x, y) is constructed in [13, 24].

The following statement holds true.
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Theorem 6.1 Let c > 0 and the numbers {ak : k = 1, . . . , l} be such that µk = a1λ
k
0 + . . . + alλ

k
l−1 ̸= 0 for

all k = 1, . . . , l , where {λk} are l th roots of unity. Then, for any f ∈ C1(Ω̄) , g ∈ C(∂Ω) , the solution of the
problem (1.1), (1.4) exists, is unique, and can be represented in the following form:

u(x) =

∫
Ω

GR,S(x, y)f(y) dy +

∫
∂Ω

GR,S,l(x, y)g(y) dsy, (6.1)

where

GR,S(x, y) =

l∑
q=1

bqGR(S
m−1x, y),

GR,S,l(x, y) =

l∑
q=1

bq

l∑
k=1

akGR

(
Sm−1x,

(
Sk−1

)T
y
)
,

(6.2)

and the coefficients bq are given by (4.1).

Proof Consider the following Robin problem for the function v(x) in the domain Ω :

−∆v(x) = f(x), x ∈ Ω;

∂v(s)

∂ν
+ cu(s) =

l∑
k=1

akg(S
k−1s) ≡ h(s), s ∈ ∂Ω.

(6.3)

It is known that, for any given functions f(x) and h(s) =
∑l
k=1 akg(S

k−1s) , the solution of the problem
(6.3) exists, is unique, and can be represented in the following form (see, e.g., [15]):

v(x) =

∫
Ω

GR(x, y)f(y) dy +

l∑
k=1

ak

∫
∂Ω

GR(x, y)g(S
k−1y) dsy. (6.4)

Let us further consider the vector V =
(
v(x), v(Sx), . . . , v(Sl−1x)

)T . It follows from the vector equality
U = A−1V and Lemma 4.2 that the structure of the matrix A−1 is similar to A . Therefore, similarly to

equalities (3.1) and (3.2), we define the vector U =
(
u(x), u(Sx), . . . , u(Sl−1x)

)T from the equality U = A−1V .
Since µk = a1λ

k
0 + . . . + alλ

k
l−1 ̸= 0 , it follows from Lemma 2.1 that A is nonsingular and detA−1 ̸= 0 . As

AU = V , formula (3.3) implies that the function u(x) is uniquely determined via the function v(x) in (6.4) by
the formula

u(x) =

l∑
q=1

bqv(S
q−1x), (6.5)

where the coefficients bq are defined in (4.1). Now, as in the case of the Dirichlet problem, it can be easily
shown that the function u(x) in (6.5) is the solution of the problem (1.1), (1.4).

Furthermore, the representation (6.4) yields the following equality:

v(Sq−1x) =

∫
Ω

GR(S
q−1x, y)f(y) dy +

∫
∂Ω

GR(S
q−1x, y)

l∑
k=1

akg(S
k−1y) dsy,
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and hence, substituting this expression instead of v(Sq−1x) in equality (6.5) and taking into account the formula
(6.2), we get the relations

u(x) =

∫
Ω

[
l∑

q=1

bqGR(S
q−1x, y)

]
f(y) dy +

∫
∂Ω

[
l∑

q=1

bqGR(S
q−1x, y)

]
l∑

k=1

akg(S
k−1y) dsy

=

∫
Ω

GR,S(x, y)f(y) dy +

∫
∂Ω

[
l∑

q=1

bq

l∑
k=1

akGR(S
q−1x,

(
Sk−1

)T
y)

]
g(y) dsy =

∫
Ω

GR,S(x, y)f(y) dy

+

∫
∂Ω

GR,S,l(x, y)g(y) dsy.

Thus, representation (6.1) for function u(x) is verified. The theorem is proved. 2
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