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Abstract: We establish a characterization of the Lyapunov and Mittag-Leffler stability through (fractional) Lyapunov
functions, by proving converse theorems for Caputo fractional order systems. A hierarchy for the Mittag-Leffler order
convergence is also proved which shows, in particular, that fractional differential equation with derivation order lesser
than one cannot be exponentially stable. The converse results are then applied to show that if an integer order system
is (exponentially) stable, then its corresponding fractional system, obtained from changing its differentiation order, is
(Mittag-Leffler) stable. Hence, available integer order control techniques can be disposed to control nonlinear fractional
systems. Finally, we provide examples showing how our results improve recent advances published in the specialized
literature.
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1. Introduction
The Lyapunov stability concept is central in the qualitative study of dynamical systems [14, 20, 23]. There
are two main reasons explaining its importance: first, this concept allows to formalize practical goals (e.g., to
obtain a desired response of a system reached with a quantifiable degree of accuracy); and second, the powerful
method of Lyapunov functions, which allows asserting the stability property of a wide class of systems without
using their analytic solutions, which are not easy to obtain due to the complexity of many differential equations,
including for instance many fractional differential equations.

The second reason is strengthened in converse theorems that prove the existence of Lyapunov functions
for stable systems (see [12] for a survey of results in integer order systems). This class of theorems is analogous to
existence results for differential equations; before trying any function as a solution, to know if there exists such
a function is a commonsense requirement. As a consequence, a characterization of stability through Lyapunov
functions is obtained and the term stability usually means the Lyapunov one.

Although converse results may seem purely mathematical ones, some practical applications of them can
be found. With their application, a linearization equivalence to study the asymptotic stability of nonlinear
systems was shown [14, Theorem 3.13]. Also, they provide tools to analyze perturbed systems [23, Theorem
23.1].
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Our contributions are summarized as follows. In Section 2, we recall some stability notions and show
that the suited one for fractional systems is weaker than the one for integer systems. Indeed, if the latter
stability is assumed, main open problems [6, 22] can be easily solved. Then, we provide a hierarchy for the
order of the Mittag-Leffler convergence, which precludes that systems of a given differentiation order to have
arbitrarily fast convergence. In particular, we show that fractional systems of order lesser than one cannot be
exponentially stable. It follows that some stability proofs for fractional systems—e.g., those based on fractional
generalizations of Gronwall Lemma—cannot be right since they yield exponential convergence (see e.g., [4]).

In Section 3, we establish converse Lyapunov theorems for (Mittag-Leffler) stable local and nonlocal
systems. We use the 2-flow characterization of fractional systems provided in [1]. The converse is stated for a
weaker stability notion which is suited for fractional systems as well as time-varying integer order systems.

In Section 4, we use the converse results to show that if an integer order system is (exponential) stable,
then its corresponding fractional system, obtained by changing the derivation order, is (Mittag-Leffler) stable.
The importance of this result is that to prove the stability of fractional systems we can use known integer order
methods [14]. We also use converse results to show a perturbed-type result involving the differentiation order.
Finally, in Section 5, we provide several examples showing how our results can, in addition, improve recent
progresses in the specialized literature.

Notation. Let X ⊆ Rn . ∥ · ∥ stands for the Euclidean norm in Rn . ∥ · ∥ also denotes a matrix norm
on Rn×n compatible with the Euclidean norm. For x, y ∈ X , xT y denotes the inner product. R≥0 is the set
of nonnegative real numbers.

A Ck function is a n−times continuously differentiable function. A class K function is a strictly increasing
continuous function γ : R≥0 → R≥0 such that γ(0) = 0 . V : X×R≥0 → R≥0 is radially unbounded if ∥x∥ → ∞
implies V (x, t) → ∞ for all t > 0 .

The Mittag-Leffler function is defined as Eα(z) :=
∑∞

k=0
zk

Γ(αk+1) , where z ∈ C , α > 0 and Γ is the

gamma function [5]. Note that Eα=1(z) = exp(z) .

Dα stands for the Caputo derivative defined by Dα
0+f(t) :=

(
Im−α
0+ Dmf

)
(t) [5], where α > 0 , m = ⌈α⌉

and

Iα0+f(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ.

We omit the subindex 0 in Dα since wlog all the results are referred to this initial time.

2. Stability preliminaries

In this section, we recall stability notions to show a subtlety in their applications to fractional order systems
and to establish a convergence’s order hierarchy.

The stability concepts are referred to the following system

Dαx(t) = f(x, t), (2.1)

where x(t), f(x(t), t) ∈ Rn for all t ≥ 0 , f(0, ·) ≡ 0 and α ∈ (0, 1] . We consider X ⊆ Rn a neighborhood
of x = 0 such that ∀x0 ∈ X , the initial value problem associated to (2.1) has a unique continuous solution
x : [0,∞) → X satisfying x(0) = x0 . Such X is called a positively invariant set of (2.1). A sufficient condition
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to have X = Rn is that f be continuous and Lipschitz continuous in its first argument [3, 5]. Note that for the
uniqueness, x0 must be specified at the initial time of the fractional derivative (t = 0 in our case).

Let φ(τ ; t, x) be the solution of (2.1) at time τ ≥ 0 , given that it takes the value x at time t ≥ 0 . This
function is well defined on every x ∈ X for local and nonlocal dynamical systems [1, Theorem 20, 22]. Main
examples of nonlocal dynamics are linear and nonlinear one-dimensional and triangular n−dimensional Caputo
fractional systems.

Definition 2.1 Consider a point xe ∈ X and any solution x(·) of (2.1) starting at X

(i) xe is Lyapunov stable at t0 ≥ 0 if ∀ϵ > 0 , ∃δ = δ(ϵ, t0) > 0 such that if ||x(t0) − xe|| < δ , then
||x(t) − xe|| < ϵ for any t ≥ t0 . xe is Lyapunov stable if it is Lyapunov stable for any t0 . If δ = δ(ϵ) ,
then xe is uniformly Lyapunov stable.

(ii) xe is asymptotically Lyapunov stable at t0 ≥ 0 if it is stable at t0 and ∃r = r(t0) such that if
||x(t0) − xe|| < r then limt→∞ ||x(t) − xe|| = 0 . If r does not depend on t0 , xe ∈ X is uniformly
asymptotically stable.

(iii) x = 0 is Mittag-Leffler stable of order α if there exist numbers a, λ,m, α > 0 and a neighborhood of the
origin B ⊂ X such that

∥x(t)∥a ≤ mEα(−λtα)∥x0∥ ∀t > 0,∀x(0) = x0 ∈ B. (2.2)

In particular, x = 0 is exponentially stable if it is Mittag-Leffler stable with α = 1 .

The (asymptotic) stability concept is standard in the literature and can be found, e.g., in [14, Definition
4.1, p.112]. The Mittag-Leffler stability as stated here was already proposed in [15]. In general, the above
definitions concern an equilibrium point, i.e. a point such that if x(0) = xe then x(t) = xe , ∀t > t0 .

When α = 1 and f = f(x) , stability at t0 is equivalent to stability. Since fractional systems have a
fixed initial time and have a nonlocal behavior [5], the stability at t = 0 appears to be suited for them. In fact,
we will see that (fractional) Lyapunov functions yield this weak type of stability. First, to stress the weakness
of the stability at t0 , the following result presents a fractional integral version of the Lyapunov direct method,
based critically on stability. It can be seen also as a sufficient condition for a fractional like Barbalat Lemma.
Both problems have remained open (see [6, 22]).

Theorem 2.2 Consider that for system (2.1) there exist β > 0 and γ ∈ K satisfying

(I.1)
(
Iβγ(∥x∥)

)
(t) < C < ∞ ∀t ≥ 0 and for any x(·) solution of (2.1) with x(0) ∈ X , where C ∈ R is

independent of time, although it can depend on x0 .

(I.2) x = 0 is uniformly Lyapunov stable.

Then x = 0 is uniformly asymptotically stable.

Proof From hypothesis (I.1), we have lim inft→∞ γ(||x(t)||) = 0 according to [6, Proposition 15]. Since γ ∈ K ,
lim inft→∞ ||x(t)|| = 0 .
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If x does not converge to zero, there exist ϵ > 0 and a sequence (tn)n∈N , with tn → ∞ as n → ∞ , such
that ||x(tn)|| > ϵ for each n ∈ N . Since x = 0 is uniformly Lyapunov stable at every t0 , there exists δ0 = δ(ϵ)

such that ||x(t)|| > δ0,∀t ≤ tn and ∀n ∈ N , where δ is the function in Definition (2.1)(i). Since tn → ∞ as
n → ∞ , it follows that ||x(t)|| > δ0,∀t ≥ 0 . However, this contradicts that lim inft→∞ ||x(t)|| = 0 .

Therefore, x converges to zero and x = 0 is uniformly asymptotically stable. 2

Corollary 2.3 Consider that for system (2.1) x = 0 is uniformly stable and there exist a continuous function
V : X × R≥0 → R≥0 , a number β ∈ (0, 1) and γ1, γ2, γ3 class-K functions satisfying

(V.1) γ1(∥x∥) ≤ V (x, t) ≤ γ2(∥x∥) ∀t ≥ 0 and ∀x ∈ X ,

(V.2) V (t) = V (x(t), t) satisfies DβV (t) ≤ −γ3(∥x(t)∥) ∀t ≥ 0 and for all solution x(·) of (2.1) with x(0) ∈ X .

Then x = 0 is uniformly asymptotically stable.

Proof Using hypothesis (V.2) , we obtain

V (t)− V (0) ≤ −
(
Iβγ(V )

)
(t),

where we have used the comparison Lemma [3, Proposition 23] for the inequality DβV (t) ≤ −γ3(∥x(t)∥) ≤
−γ3(γ

−1
2 (V (t))) =: −γ(V (t)) and the fact that the continuous solution of the equation DβV (t) = −γ(V (t))

with initial condition V (0) is given by V (t) = V (0) +
(
Iβγ(V )

)
(t) . For the latter, note that γ is also a

class-K function and, by taking β−derivative of the continuous function V (t) = V (0)+
(
Iβγ(V )

)
(t) , we obtain

DβV = γ(V ) using [5, Theorem 3.7]. For the uniqueness of the continuous solution, we can take γ local Lipschitz
without loss of generality since if it is not the case, one can take enough smooth class-K function γ′ such that
γ′ ≤ γ since γ is strictly increasing and continuous or to note that the equation DβV1 −DβV2 = γ(V1)− γ(V2)

with V1(0) = V2(0) implies DβV1(0) = DβV2(0) .
Using this together with hypothesis (V.1) , we get Iβγ(γ1(∥x∥)) ≤ V (0) < ∞ . The claim x = 0 uniformly

asymptotically stable follows from applying Theorem 2.2 (note that γ(γ1(·)) is also a class-K function). 2

V is called fractional Lyapunov function if it satisfies conditions (V.1) and DβV ≤ 0 for some β > 0

and for any solution of (2.1) that starts in X , in the same sense (i.e. along the solutions of (2.1)) that for (V.1)

and V̇ ≤ 0 it is called a Lyapunov function. Note that the existence of a fractional Lyapunov function (and
therefore, the function V in Corollary 2.3) assures uniform stability only at t = 0 [7]. Therefore, the uniform
stability of the origin must be asserted separately when β < 1 , whereas for β = 1 it is implied by condition
(V.2) [14].

The invariant condition on X , which obviously includes the global case X = Rn , is reasonable as a
local statement, for the existence of such an invariant neighborhood of x = 0 can be deduced from a local
condition along the following lines. Suppose that (DαV )(t) ≤ g(x(t)) , where g(x) ≤ 0 for any x ∈ Br =

{x ∈ Rn : ∥x∥ ≤ r} . Let c < γ1(r) . Then {x ∈ Br : γ1(x) < c} is contained in the interior of Br . Let
Xc = {x ∈ Br : V (x) ≤ c} . Then {x ∈ Br : γ2(x) < c} ⊆ Xc ⊆ {x ∈ Br : γ1(x) < c} (see p.151 in [14]). Since
any solution of (2.1) starting at Xc must move along Xc when it is in Br , because (DαV )(t) ≤ 0 , whenever
x(t) ∈ Br , implies V (x(t)) ≤ V (x(0)) ≤ c , and since Xc is contained in the interior of Br , any continuous
solution never can leave Br . Therefore, Xc is invariant.
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The following result shows a hierarchy for the Mittag-Leffler stability,

Theorem 2.4 Consider system (2.1) with f : Ωr × [0,∞) → Rn a continuously differentiable function,
Ωr = {x ∈ Rn|∥x∥ < r} for some r > 0 , f(0, t) = 0 for all t ≥ 0 and the Jacobian matrix

(
∂f/∂x

)
(x, t) is

bounded and Lipschitz continuous on Ωr , uniformly in t . Then x = 0 cannot be Mittag-Leffler stable of order
β ∈ (α, 1] .

Proof By contradiction, suppose that x = O(Eβ(−λtβ)) for some β > α and λ > 0 , where O stands for the
big O notation. According to Definition (2.1) and the fact that Eβ(−λtβ) is monotonically decreasing as a time
function, we can choose δ such that for any ∥x(0)∥ < δ , x(t) ∈ Ωr for any t > 0 . Let A(t) :=

(
∂f/∂x

)
(0, t) .

From Taylor’s Theorem and the fact that f(0, t) = 0 for all t ≥ 0 , we can rewrite (2.1) as

Dαx = A(t)x+ q(x; t)

where q(x; t) = [
(
∂f/∂x

)
(ξ, t)−

(
∂f/∂x

)
(0, t)]x and ξ is a point in the ball of radius ∥x(0)∥ (see [14, p. 166]).

By α− integration or using the integral equivalence in [5], the solution of equation (2.1) can be written as

x(t) = x(0) +
(
IαAx+ q

)
(t).

By the Lipschitz assumption on the Jacobian, we have ∥q(x, t)∥ ≤ L∥x∥2 for some constant L > 0 (see
[14, p. 161]). Since x = O(Eβ(−λtβ) and Eβ(−λtβ) < 1 is decreasing, ||x||2 = O(Eβ(−λtβ)) . By the bounded
hypothesis on the Jacobian matrix, ∥Ax∥ ≤ ∥A∥∥x∥ . Hence, there exists a constant number C such that

∥
(
IαAx+ q

)
(t)∥ ≤ C

(
IαEβ(−λτβ)

)
(t) ∀t > 0.

On the other hand, limt→∞
(
IαEβ(−λτβ)

)
(t) = 0 , since Eβ(−λtβ) ≤ C0t

−β [19, Theorem 1.6] and(
Iατ−β

)
(t) = C1t

α−β [19, §2.2.4]. It follows that limt→∞ ∥
(
IαAx+q

)
(t)∥ = 0 and, in particular, limt→∞

(
IαAx+

q
)
(t) = 0 , when β > α . Thus, limt→∞ x(t) = x(0) , which is a contradiction whenever x(0) ̸= 0 , as required to

determine the stability. Therefore, x = 0 cannot be a Mittag-Leffler stable point of (2.1) of order β > α . 2

Remark 2.5 (i) As a consequence, fractional systems of derivation order lesser than one cannot be exponentially
stable. This invalidates some proofs of asymptotic stability, which conclude an exponential order of convergence
for fractional systems. The mistake could be related to the use of an improper generalization of the Gronwall’s
inequality (see e.g., [4]).

(ii) After sending this article, we have taken note of an alternative version of Theorem 2.4 segregated
in the results of [3, Theorem 6, Lemma 5, Remark 10, Remark 7], where no differentiability but just a local
Lipschitz condition is required on f .

3. Existence of Lyapunov functions

In this section, converse results are presented as a characterization of stability concepts through (fractional)
Lyapunov functions.
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3.1. Stability

We will start proving the existence of (fractional) Lyapunov functions for stable systems. We included also a
result for globally bounded systems, i.e. systems of type (2.1) where for any a > 0 and ∥x(0)∥ ≤ a there exists
b ∈ R s.t. ∥x(t)∥ ≤ b for all t ≥ 0 (see [14, Definition 4.6]).

Theorem 3.1 Suppose that x = 0 is an equilibrium point of the (nonlocal) dynamical system (2.1).

(i) x = 0 is Lyapunov stable at t = 0 if and only if there exist a function V : X × R≥0 → R≥0 , a number
β ∈ (0, 1] and a class K function γ such that V (0, ·) is continuous, V (0, 0) = 0 , V (x, t) ≥ γ(∥x∥) for
any x ∈ X , and V (t) = V (x(t), t) satisfies DβV ≤ 0 for all solution x(·) of (2.1) with x(0) ∈ X . When
f = f(x) and α = 1 , 0 is Lyapunov stable if and only if there exists a positive definite continuous function
V : X → R≥0 such that V̇ ≤ 0 .

(ii) The solutions are globally bounded if and only if there exist a number β ∈ (0, 1] and a nonnegative, radially
unbounded function V : Rn ×R≥0 → R≥0 , such that V (t) = V (x(t), t) satisfies DβV ≤ 0 for all solution
x(·) of (2.1).

Proof (i) Necessity. For any smooth nondecreasing function W : R → R such that W (r) = 0 for all r ≤ 0 ,
define V (x, t) := W (||φ(0; t, x)||) , where φ(0; t, x) is the solution of (2.1) at time 0 given that it takes the value
x at time t > 0 . This function is well defined on X×R≥0 since φ is defined by a (nonlocal) dynamical system.
In addition, V (0, ·) is continuous from the continuous property of φ and the choice of W .

Then V (x, t) ≥ 0 , V (0, 0) = 0 and along the trajectories of (2.1) that start at X , V (x, t) is constant.
Hence, V̇ = 0 and DβV =

(
I1−βV̇

)
(t) ≤ 0 for any 0 < β ≤ 1 .

From Definition (2.1), for any ϵ > 0 , there exists δ(ϵ) such that if ϵ = ||x|| , then ||φ(0; t, x)|| ≥ δ . Hence,
we have that V (x, t) ≥ W (δ(ϵ)) for any x ∈ X and the existence of the class K function γ(·) follows.

If f = f(x) and α = 1 , we have V (x, t) = V (x) is smooth if f does it (see also [23, Theorem 18.6, p.
91]).

Sufficiency. By assumption, there exists β ∈ (0, 1] such that DβV ≤ 0 . A direct application of the
comparison Lemma [3, Proposition 23] yields 0 ≤ V (x(t), t) ≤ V (x(0), 0) , ∀t > 0 .

Using that γ is a class K function and the hypothesis V (x, t) ≥ γ(∥x∥) for any x ∈ X and t > 0 ,
we have 0 < γ(ϵ) ≤ V (x, t) for any ϵ > 0 such that x ∈ X and ∥x∥ = ϵ . Since V (·, 0) is continuous and
V (0, 0) = 0 , there exists δ(ϵ) such that ||x0|| < δ implies V (x0, 0) < γ(ϵ) . Suppose that x = 0 is not stable.
Hence, there exists t1 , such that ||x0|| < δ implies ||x(t1; 0, x0)|| = ϵ . Since V (x(t1; 0, x0), t1) ≤ V (x0, 0) , we
have γ(ϵ) ≤ V (x(t1; 0, x0), t1) ≤ V (x0, 0) < γ(ϵ) . This is a contradiction and hence, x = 0 is stable.

(ii) Sufficiency. By assumption, there exists β ∈ (0, 1] such that DβV ≤ 0 . Let V (t) = V (x(t), t) .
Hence, 0 ≤ V (t) ≤ V (0) , ∀t > 0 . By the radially unbounded hypothesis, V (0) < ∞ whenever x(0) ∈ Rn .
Therefore, V (t) < V (0) < ∞ , ∀t > 0 . Applying again the radially unbounded hypothesis, it follows that x

must be globally bounded.
Necessity. Consider function V of the part (i). Since the system is globally bounded, this function is well

defined on Rn × R≥0 . Moreover, V (x, t) → ∞ as ∥x∥ → ∞ , for all t ≥ 0 . Hence, V is radially unbounded
and a nonnegative function. The rest of the proof is similar to the one of the part (i). 2
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Remark 3.2 (i) The weakness of the notion stability at t = 0 is reflected in the fact that a Lyapunov function
is also a fractional Lyapunov function ( V̇ ≤ 0 implies DβV = I1−βV̇ ≤ 0) but the converse is not necessarily
true (see e.g. [7, Proposition 3]).

(ii) An alternative to the radially unbounded hypothesis is to use a finite function V s.t. V (x, t) ≥ γ(∥x∥) ,
since V (t) < V (0) implies ∥x∥ ≤ γ−1(V (0)) (see [13]).

3.2. Asymptotic stability
We will show a characterization of the Mittag-Leffler stability through fractional Lyapunov functions.

Theorem 3.3 Consider the (non-local) dynamical system (2.1). The equilibrium point x = 0 is Mittag-Leffler
stable if and only if there exist neighborhoods of the origin B ⊆ X , a set G ⊆ X ×R≥0 , a function V : G → R
and constant numbers c1, c2, c3, λ > 0 such that for any solution x(·) of (2.1) with x(0) ∈ B the following hold

(i) c1∥x(t)∥ ≤ V (x(t), t) and V (x(t), 0) ≤ c2∥x(t)∥c3 ∀t ≥ 0 ,

(ii) DαV (t) ≤ −λV (t) ∀t ≥ 0 , where V (t) := V (x(t), t) .

Proof
Necessity. Since x = 0 is Mittag-Leffler stable, there exist numbers a,m, λ > 0 and a neighborhood of

the origin B satisfying Definition (2.1)(iii). Consider the function

V (x, t) := {mEα(−λtα)∥φ(0; t, x)∥}1/a. (3.1)

defined on G := {(x, t) ∈ X × R≥0 : φ(0; t, x) ∈ B} . V is well defined by the bijection property of the flow φ

[1] and the fact that V (x, t) ≤ {m||x(0)||}1/a < ∞ for all t > 0 and x ∈ B , since Eα(0) = 1 and Eα(−λtα) is
nonincreasing [11].

From Mittag-Leffler stability (Definition (2.1)(iii)), ∥x(t)∥ ≤ V (x(t), t) for all t > 0 when x(0) ∈ B .
Since x = 0 is an equilibrium point, V (0, t) = 0 . Since Eα(0) = 1 , V (x, 0) ≤ {m∥x∥}1/a . Putting c3 = 1/a ,
c2 = m1/a and c1 = 1 , the part (i) is obtained.

Note that along trajectories of system (2.1), φ(0; ·, x) ≡ x(0) . Since Eα(−λtα) is a solution of Dαy = −λy

when y(0) = 1 , it follows that DαV (t) = −λV (t) and the part (ii) is proven.
Sufficiency. From (i), (ii) and the comparison Lemma [3, Proposition 23] or applying Gronwall inequality

[5, Lemma 6.19], c1∥x(t)∥ ≤ V (x(t), t) ≤ V (x(0), 0)Eα(−λtα) ≤ c2∥x(0)∥Eα(−λtα) . Therefore, x = 0 is
Mittag-Leffler stable. 2

Remark 3.4 (i) In the necessity part of Theorems 3.1 and 3.3, the dynamical character of the flow φ was used
only to obtain the initial value φ(0; t, x) . Putting aside transitive or even continuity properties of the flow, this
function exists provided that there is no intersection of trajectories, i.e. if for every (t1, x1) there is only one
initial condition x0 such that the system reaches x1 at time t1 . Although not all fractional systems hold this
(see [1, Theorem 22]), one could define V excluding the set of intersection points and consider the inequality
involving DαV almost everywhere for t > 0 , to get a more general result.

(ii) In the sufficient part of Theorems 3.1 and 3.3, the assumption on the dynamical character of the
flow ϕ , whereby they are valid for every fractional system, is not necessary. Moreover, it must be noted that
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similar statements have already been proven in the literature [3, 7, 9, 15]. The novelty relies in the bounded case
(Theorem 3.1(ii)) and the underscore that the stability is respect to the initial time of the derivative (t = 0).

We recall converse results for the exponential and the uniform asymptotic stability, which we will use in
the next section.

Theorem 3.5 Consider system (2.1) with α = 1 and f = f(x) a continuously differentiable function with
Jacobian matrix bounded on X . If the equilibrium point x = 0 is exponentially stable, then there exist a
neighborhood of the origin B ⊂ X , a smooth function V : B → R and constant numbers c1, c2, c3, c4 > 0 such
that for any x ∈ B

(i) c1∥x∥2 ≤ V (x) ≤ c2∥x∥2,

(ii) ∇V T f(x) ≤ −c3V (x) ,

(iii) ∥∇V (x)∥ ≤ c4∥x∥ .

Moreover, for items (i), (ii) the function V can be chosen (enough) smooth, provided that f is (enough) smooth.

Proof Items (i), (ii), and (iii) follow from [14, Theorem 4.14, p.162], particularized to autonomous dynamics.
The smooth part follows from [18, Theorem 11]. 2

Theorem 3.6 Consider system (2.1) with α = 1 and f = f(x) a continuously differentiable function with
Jacobian matrix bounded on X . If the equilibrium point x = 0 is uniformly asymptotically stable, then there
exist a neighborhood of the origin B ⊂ X , a continuously differentiable function V : B → R and class K
functions γ1, γ2, γ3, γ4 such that for any x ∈ B

(i) γ1(∥x∥) ≤ V (x) ≤ γ2(∥x∥),

(ii) ∇V T f(x) ≤ −γ3(∥x∥) ,

(iii) ∥∇V (x)∥ ≤ γ4(∥x∥) .

Moreover, for items (i), (ii), the function V can be chosen smooth provided that f is smooth.

Proof Items (i), (ii), and (iii) follow from [14, Theorem 4.16, p.162] when particularized to autonomous
dynamics. The smooth claim follows from [16, Proposition 4.2]. 2

4. Applications

Converse results are mainly applied in perturbed systems (see e.g., [14, 23]): by assuming that the unperturbed
system is (asymptotically) stable, a Lyapunov function exists, which is used in the perturbed case to prove
(asymptotic) stability. The following results can be seen as an extension of these applications, in which the
perturbation (or rather the uncertainty) occurs in the derivation order.

Proposition 4.1 Consider the system
ẋ = f(x, t) (4.1)
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where f : X ×R → Rn is a continuously differentiable function with f(0, t) = 0 for any t ≥ 0 , and the system

Dαx = f(x, t), (4.2)

where α ∈ (0, 1] is a constant number. Assume that the Lyapunov functions obtained from the application of
the converse results in Section 3 are differentiable, locally convex around x = 0 and does not depend on time.

(i) If x = 0 is a Lyapunov stable equilibrium point of (4.1), then x = 0 is a Lyapunov stable point at time
t = 0 for (4.2).

(ii) If x = 0 is exponentially stable for system (4.1), then it is Mittag-Leffler stable for (4.2).

(iii) If x = 0 is uniformly asymptotically stable for system (4.1), then it is uniformly asymptotically stable for
(4.2) whenever it is uniformly Lyapunov stable.

Proof (i). Since x = 0 is a stable point for system (4.1), it has a Lyapunov function according to Theorem
3.1. This function is differentiable and locally convex V = V (x) by the additional hypothesis in the statement.
Then, we have in some neighborhood of x = 0

V̇ =
∂V

∂x

T

ẋ =
∂V

∂x

T

f(x, t) ≤ 0.

By using (4.2), we get for any t > 0

∂V

∂x

T

Dαx(t) ≤ 0,

where we have passed to an invariant neighborhood of x = 0 if necessary (see the paragraph before Theorem
2.4).

Since f is locally Lipschitz continuous, the solutions of (4.1) are continuous. Using [22, Theorem 3] (or

[10, Lemma 3]) which states that DαV (t) ≤ ∂V
∂x

T
Dαx when V is convex and differentiable, it follows that

DαV (t) ≤ 0, ∀t ≥ 0.

By Theorem 3.1 and Remark 3.4(ii), the origin of system (4.2) is stable at time t = 0 .
(ii). If x = 0 is exponentially stable for system (4.1), by Theorem 3.5, there exist a neighborhood B

around x = 0 and a positive definite smooth function V = V (x) such that

∂V

∂x

T

f(x, t) ≤ −λ∥x∥2,

for all x ∈ B .
Then, using (4.2), we have

∂V

∂x

T

Dαx ≤ −λ∥x∥2.

Since f is Lipschitz continuous, the solutions of (4.2) are continuous. Using [22, Theorem 3] (or [10,

Lemma 3]) which states that DαV (t) ≤ ∂V
∂x

T
Dαx when V is convex and differentiable, it follows that(

DαV (x)
)
(t) ≤ −λ∥x(t)∥2, ∀t ≥ 0.
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Since V is convex by assumption and where we have passed to an invariant neighborhood of x = 0 if necessary
(see the paragraph before Theorem 2.4). Therefore, for all t ≥ 0 ,

DαV (t) ≤ − λ

c2
V (t),

where c2 > 0 is obtained according to Theorem 3.5. Using a similar reasoning to that in the proof of Theorem
3.3 and Remark 3.4, it follows that the origin of system (4.2) is Mittag-Leffler stable for ||x||2 . Note that,
without loss of generality, B can be assumed bounded. Thus, f , a continuously differentiable function, has
Jacobian matrix bounded on B .

(iii). The proof is similar to part (i) by using Theorem 3.6 instead of Theorem 3.5 and Corollary 2.3
instead of Theorem 3.3. 2

The additional assumption in Proposition 4.1 of convexity, which also appears in [3, Theorem 25] and
[22, Theorem 3] for the case when f = f(x) , can be omitted when exponential stability of x = 0 for (4.1) is
assumed and f = f(x) .

Theorem 4.2 Consider the system
ẋ = f(x) (4.3)

where f : X → X is a C2 function with f(0) = 0 , and the system

Dαx = f(x) (4.4)

where α ∈ (0, 1] is a constant number. If x = 0 is exponentially stable for system (4.3), then it is Mittag-Leffler
stable for (4.4).

Proof Since x = 0 is exponentially stable for system (4.1), by Theorem 3.5 there exists V = V (x) a C2

positive definite function. Hence, x = 0 is a local minimum of V and ∇V (0) = 0 . By a Taylor’s expansion
around x = 0 , we have

V (x) =
1

2
xTHV (0)x+O(∥x∥3)

where HV is the Hessian of V . Since V ≥ 0 , it follows that HV (0) ≥ 0 (otherwise, one can choose a sufficiently
small ϵ > 0 and an eigenvector ξ of HV (0) with negative eigenvalue obtaining V (ϵξ) < 0).

Consider the function W (x) := V (x) + εxTx , where ε > 0 is a constant to be precised. Clearly, W is
C2 positive definite function such that ∇W (0) = 0 and HW (0) > 0 . Therefore, W is locally convex i.e. there
exists a neighborhood around x = 0 where W is convex. Moreover, for any x around zero

∇WT (x)f(x) = ∇V T (x)f(x) + 2εxT f(x)

≤ −c3c1∥x∥2 + 2Lε∥x∥2

where we have used 3.5 to get the constants c3, c1 , that f is locally Lipschitz with constant L (due to its
smoothness), f(0) = 0 and the Cauchy-Schwartz inequality. Pick any ε ∈ (0, c3c1

2L ) . Then, ∇WT (x)f(x) ≤

−λ∥x∥2 for some λ = λ(ε) > 0 . Using the same arguments of Proposition 4.1(ii) for W instead of V , the claim
follows. 2

The next result deals with the stability under perturbations in the field as well as in the derivation order.
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Theorem 4.3 Consider the system
ẋ = f(x) (4.5)

where f : X → X is a continuously differentiable function and x = 0 is an exponentially stable point (in
particular, f(0) = 0). Consider the following perturbed system

Dαx = f(x) + g(x, t) (4.6)

where α ∈ (0, 1] is a constant number, and g is a locally Lipszchitz function on its first argument, with local
Lipschitz constant L(r) when ||x|| < r such that limr→0 L(r) = 0 uniformly in t and such that g(0, t) = 0 for
all t ≥ 0 . Then, x = 0 is Mittag-Leffler stable for (4.6).

Proof Since x = 0 is exponentially stable for system (4.5) and using the convex construction as in the proof of
Theorem 4.2 if necessary, there exist a neighborhood B around x = 0 , a positive definite convex continuously
differentiable function V , a number K > 0 such that ||∂V∂x || ≤ K||x|| , ∀x ∈ B , and a number λ > 0 such that
∇V T f(x) ≤ −λ||x||2 , ∀x ∈ B , according to Theorem 3.5(i) and Theorem 3.5(ii). Then, by using the same
function V but evaluated along the trajectories of system (4.6), we have

DαV (x(t)) ≤ ∂V

∂x

T

Dαx

=
∂V

∂x

T

[f(x) + g(x, t)]

≤ −λ||x||2 +KL(r)||x||2.

Since limr→0 L(r) = 0 , there exists r0 sufficiently small so that λ −KL(r0) > 0 . Hence, there exists a
neighborhood B around the origin, such that DαV (x) ≤ −(λ−KL(r0))V (x) for any x ∈ B . Using a similar
reasoning as in the proof of Theorem 3.3, it follows that the origin of system (4.6) is Mittag-Leffler stable for
||x||2 . 2

We say that a system is robustly stable if its stability is not affected with field perturbation like the one
of Theorem 4.3 (this concept has been used with a slightly different meaning in [21]). The next result is an
important consequence for the control of fractional order systems, which allows employing the variety of control
techniques developed for integer order systems [14, 20]. The control is robust if the controlled system is robustly
stable. The proof is omitted since it is a straightforward consequence from Theorem 4.3.

Corollary 4.4 To robustly control the system

Dαx = f(x, u) (4.7)

where f is a continuously differentiable function, f(0, 0) = 0 and 0 < α < 1 , it is enough to find a control
u = u(x) that exponentially stabilizes the system ẋ = f(x, u) . Similarly, to robustly control the system

Dαx = f(x, t, u) (4.8)

where f is a continuous function and 0 < α < 1 , it is enough to find a control u = u(x, t) such that the system
ẋ = f(x, t, u) is exponentially stable with a Lyapunov function V = V (x) .
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5. Examples

This section presents illustrative examples showing as our results improve recent progresses in the literature.
In the first one, we will see the difficulty in finding Lyapunov functions (even for linear time-invariant systems)
and therefore the necessity of converse theorems to assure their existence.

Example 5.1 Consider the fractional system

Dαx = Ax, (5.1)

where 0 < α ≤ 1 . The eigenvalues of matrix A ∈ Rn×n belong to Λα := {λ ∈ C \ {0} : | arg(λ)| > απ
2 } .

Lyapunov stability of x = 0 at t = 0 has been proved using the explicit solution to system (5.1) (see e.g., [2]).
To find a (fractional) Lyapunov function for (5.1) has proved to be a hard problem and currently, there

is not a general solution available that take into account all cases associated to Λα . In the scalar case, the
function V = x2 is enough, since (5.1) takes the form

Dαx = −λx (5.2)

with λ > 0 and its solution |x(t)| = |x(0)|Eα(−λtα) is known to be decreasing for t > 0 (see e.g. [11, equation
A.30]). Then, d

dtV = d
dtx

2 = 2x d
dtx ≤ 0 for t > 0 . Hence, x = 0 is a Lyapunov stable point of system (5.2).

For the vector case, fractional Lyapunov functions can be obtained. Consider the function V (x) = xTPx ,
where P > 0 is a symmetric constant matrix. Then,

DαV ≤ 2xTPDαx = xTPAx+ xTATPx

where the inequality is due to [22, Theorem 3], since V is convex and differentiable. If

PA+ATP < 0, (5.3)

then V is a fractional Lyapunov function. For α = 1 this condition is also necessary for asymptotic (exponential)
stability [14, Theorem 4.6, p. 136]. Such a matrix P exists if and only if the eigenvalues of A belong to Λ1 .
However, (5.1) is asymptotically stable if the eigenvalues of A belong to Λα (see e.g. [2]). Then, condition
(5.3) is not necessary for α < 1 and it is unclear if functions of type V (x) = xTPx covers all the stable cases.
From Theorem 4.2(ii), condition (5.3) is sufficient for Mittag-Leffler stability of x = 0 for system (5.1). Since
Λ1 ⊊ Λα , the set of stable matrices is enlarged as α decreases and thus, a converse of Theorem 4.2 is not true.
This is intuitive since the stability used for the latter is weaker than stability for integer order systems.

Consider now the nonlinear triangular system

{
Dα1x1 = −x1 + x2

2

Dα2x2 = −x2,
(5.4)

where 0 < α1 < α2 ≤ 1 and x1(t), x2(t) ∈ R for all t ≥ 0 . For a sufficiently close to zero initial condition,
(x1, x2) = (0, 0) is a stable point, since x2 = 0 is asymptotically stable, and then x1 = 0 is also stable (moreover
it is also asymptotically stable).
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There is no known method to get a (fractional) Lyapunov function for system (5.4). The difficulty is
now to find a common order of derivation which must be necessarily different from either α1 or α2 . However,
Caputo fractional derivative has not a semi group property, that is, in general Dα1Dα2f ̸= Dα1+α2f .

Since (5.4) has triangular form, a similar argument as in [1] shows that it is a nonlocal dynamical
system. Hence, V (x, t) := supτ∈[t,∞) ||x(τ ; t, x)|| , where x = (x1, x2) , is a fractional Lyapunov function from
the arguments of the proof of Theorem 3.1(ii).

Example 5.2 Consider the system
Dαx = − x

1 + x2
. (5.5)

When α = 1 , x = 0 is exponentially stable for (5.5), since the linearization at the origin is ẋ = −x [14,
p. 177]. From Theorem 4.2, x = 0 is Mittag-Leffler stable for (5.5) and α ∈ (0, 1] . The alternative method of
seeking a Lyapunov function may be very hard when a quadratic function does not work, as in this case.

Example 5.3 Consider the system

Dαx(t) = −f(t)fT (t)x(t)

where α ∈ (0, 1] and f, x : [0,∞) → Rn . It was proven in [17] that if α = 1 and f is of persistent excitation,
then the Lyapunov function V (x) = xTx decays exponentially. From Theorem 4.2, it follows that for the same f

and α ∈ (0, 1) , x converges in Mittag-Leffler order to zero. This result improves [8] where only the convergence
was established.

Example 5.4 In view of Theorem 4.2 and/or Proposition 4.1, it could be postulated that whenever an integer
order system is asymptotically stable, so is its corresponding fractional system. However, a counterexample can
be shown for time-varying systems. Consider the system

Dαx(t) = −f(t)x(t), (5.6)

where α ∈ (0, 1] and f, x : [0,∞) → R . It can be easily verified that x = 0 is a stable equilibrium point for
α ∈ (0, 1] at t = 0 .

It was proven in [6] that there exists a bounded continuous nonnegative function f , such that Iαf < C <

+∞ and limt→∞
∫ t

0
f(τ)dτ = +∞ . Hence, limt→∞ x(t) = 0 when α = 1 , but limt→∞ x(t) ̸= 0 when α < 1 .

In fact, the condition limt→∞[Iαf ](t) = +∞ is necessary for asymptotic stability of (5.6) (see e.g., [9]).
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