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Abstract: It is well known that the companion sequence of the Fibonacci sequence is Lucas’s sequence. For the
generalized Fibonacci sequences, the companion sequence is not unique. Several authors proposed different definitions,
and they are in a certain sense all good. Our purpose is to introduce a family of companion sequences for some generalized
Fibonacci sequence: the r -Fibonacci sequence. We evaluate the generating functions and give some applications, and
we exhibit convolution relations that generalize some known identities such as Cassini’s. Afterwards, we calculate the
sums of their terms using matrix methods. Next, we propose a q -analogue and extend the definition to negative ns.
Also, we define the incomplete associated sequences using a Euler–Seidel-like approach.

Key words: r -Fibonacci sequence, companion sequences, recurrence relation, convolution, hyper-r -Lucas
polynomial, incomplete r -Lucas polynomial, q-analogues

1. Introduction

This work was intended as an attempt to introduce the family {(V (r,s)
n )n≥0, 1 ≤ s ≤ r} of r companion

sequences associated to the generalized r -Fibonacci polynomial sequence. According to the parameter s , each
sequence of this family satisfies the same recurrence relation of order (r + 1) , with the initial term V0 = s+ 1

(s = 1, . . . , r) . The classical Fibonacci (Un) = (Un(x, y)) and Lucas polynomials (Vn(x, y)) = (Vn) for n ≥ 2

and x, y variables are given respectively by{
U0 = 0, U1 = 1, Un = xUn−1 + yUn−2,
V0 = 2, V1 = x, Vn = xVn−1 + yVn−2.

In what follows, the sequences we deal with are sequences of bivariate polynomials of r -Fibonacci and r -Lucas.
For convenience we will use r -Fibonacci polynomials and r -Lucas polynomials. There are some particular cases
of these sequences and we provide a few of these: Fibonacci (Fn)n , Pell (Pn)n , and Jacobsthal (Jn)n and their
companion sequences Lucas (Ln)n , Pell-Lucas (Qn)n , and Jacobsthal-Lucas (jn)n , respectively, (Fn, Ln) =
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(Un(1, 1), Vn(1, 1)) , (Pn, Qn) = (Un(2, 1), Vn(2, 1)) , and (Jn, jn) = (Un(1, 2), Vn(1, 2)) . For combinatorial and
arithmetic properties see, for instance, [5, 6].

Some well-known generalizations of Fibonacci numbers can be found in the following:
Dickinson [13], Sm = Sm−c+a + Sm−c (a, c are positive integers);
Miles [21], fn = fn−1 + fn−2 + · · ·+ fn−k (k ≥ 2 integer);
Raab [23], Un = aUn−1 + bUn−r−1 (a, b real numbers, r integer ≥ 1).

Definition 1 For any integer r ≥ 1, the bivariate r-Fibonacci polynomial (U
(r)
n (x, y))n , denoted briefly as

(U
(r)
n )n , is defined by the following recurrence relation

{
U

(r)
0 = 0, U

(r)
k = xk−1 (1 ≤ k ≤ r),

U
(r)
n+1 = xU

(r)
n + yU

(r)
n−r (n ≥ r).

For n ≥ 0 , we have (see [23])

U
(r)
n+1 =

⌊n/(r+1)⌋∑
k=0

(
n− rk

k

)
xn−(r+1)kyk. (1.1)

For x = y = 1 , the sequence (U
(r)
n (x, y))n is reduced to the Fibonacci p -numbers. Properties of these numbers

have been studied by several authors; for more details, see [18] and the references therein.

In Section 2, we establish an explicit formulation of V (r,s)
n and we give its companion matrix. Afterwards,

we produce the generating function. Section 3 is devoted to some applications: convolution relations and sums

of their general terms using the matrix method. Section 4 suggests the q -analogue of each V
(r,s)
n , s = 1, . . . , r .

Section 5 is devoted to a combinatorial interpretation for r -Fibonacci numbers and their companion sequences.

In Section 6, we extend V
(r,s)
n to negative ns. Finally, in Section 7, we introduce the incomplete r -Lucas

polynomials and the hyper r -Lucas polynomials.

2. The companion sequences associated to the r -Fibonacci polynomial sequence

In this section, we define the companion sequences family related to the r -Fibonacci sequence, and then we
give an explicit formulation expressing its general term.

Definition 2 For any integers n , r , and s (1 ≤ s ≤ r) , the companion sequence family of (U
(r)
n )n is defined

by the following recurrence: {
V

(r,s)
0 = s+ 1, V

(r,s)
k = xk (1 ≤ k ≤ r),

V
(r,s)
n+1 = xV

(r,s)
n + yV

(r,s)
n−r (n ≥ r).

(2.1)

The sequence (V
(r,s)
n ) is called an r -Lucas polynomial of type s .

Remark 1 Note that when s = 0 , we get the shifted r -Fibonacci polynomial.
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According to [7], for s = 1 , we name (V
(r,1)
n ) the generalized r -Lucas polynomial of the second kind,

and for s = r , we name (V
(r,r)
n ) the generalized r -Lucas polynomial of the first kind.

The following theorem gives us an explicit formulation for V
(r,s)
n in terms of s and U

(r)
n .

Theorem 1 Let r and s be nonnegative integers such that 1 ≤ s ≤ r, and x, y are elements of an unitary ring
A . We suppose that y is reversible in A. We have for n ≥ r the following:

V (r,s)
n = U

(r)
n+1 + syU

(r)
n−r, (2.2)

We also get the explicit form for n ≥ 1 :

V (r,s)
n =

⌊n/(r+1)⌋∑
k=0

n− (r − s)k

n− rk

(
n− rk

k

)
xn−(r+1)kyk. (2.3)

In [4], Belbachir and Bencherif gave a formula expressing the general term of a linear recurrent sequence.

Lemma 1 [4] Let (un)n>−m be a sequence of elements of A, defined by

{
u−j = αj (0 ≤ j ≤ m− 1),
un = a1un−1 + a2un−2 + · · ·+ amun−m (n ≥ 1).

(2.4)

Let (λj)0≤j≤m−1 and (yn)n>−m be the sequences of elements of A defined by

λj = −
m−1−j∑
k=0

akαk+j with a0 = −1 and yn =
∑

k1+2k2+···+mkm=n

(
k1+k2+···+km

k1,k2,...,km

)
ak1
1 ak2

2 · · · akm
m . Then, for

n > −m, we have
un = λ0yn + λ1yn+1 + · · ·+ λm−1yn+m−1. (2.5)

Proof [of Theorem 1] We consider the sequence (V
(r,s)
n )n≥0 given by (2.1), which corresponds in (2.4)

to a1 = x, ar+1 = y and a2 = a3 = · · · = ar = 0. Observing that, for 0 ≤ j ≤ r , u−j = αj =

y−1(Ur−j+1 − xUr−j), we get α0 = s + 1, α1 = α2 = · · · = αr−1 = 0 , and αr = −sxy−1. Consequently,

(λj)0≤j≤r is defined by λ0 = s + 1 and λj = −
r∑

k=j

ak−jαk = −ar−jαr for 1 ≤ j ≤ r , with a0 = −1 ,

and then λ1 = λ2 = · · · = λr−2 = 0, λr−1 = sx2y−1 , and λr = −sxy−1 . Finally, we get for n ≥ 0 ,

yn =
∑

k1+(r+1)kr+1=n

(
k1+kr+1

k1,kr+1

)
xk1ykr+1 =

∑
k≥0

(
n−rk

k

)
xn−(r+1)kyk = U

(r)
n+1 . Applying formula (2.5), we obtain the

expression of V
(r,s)
n in terms of s, x, y, λ0, . . . , λr , and U

(r)
n . We have for any integer n ≥ r the following:

V (r,s)
n = λ0U

(r)
n+1 + λ1U

(r)
n+2 + · · ·+ λrU

(r)
n+r+1 = λ0U

(r)
n+1 + λr−1U

(r)
n+r + λrU

(r)
n+r+1

= (s+ 1)U
(r)
n+1 + sxy−1(xU

(r)
n+r − U

(r)
n+r+1) = (s+ 1)U

(r)
n+1 − sxU (r)

n = syU
(r)
n−r + U

(r)
n+1.

Then

V
(r,s)
n =

⌊n/(r+1)⌋∑
k=0

(1 + s k
n−rk )

(
n−rk

k

)
xn−(r+1)kyk =

⌊n/(r+1)⌋∑
k=0

n−(r−s)k
n−rk

(
n−rk

k

)
xn−(r+1)kyk. 2

In the following theorem we give the generating function of the r -Lucas polynomial of type s .
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Theorem 2 We suppose that A = R or C for z ∈ C , the generating function of the sequence (V
(r,s)
n )n≥0 , is

given by

V (z) =
∑
n≥0

V (r,s)
n zn =

(1 + s)− sxz

1− xz − yzr+1
. (2.6)

Proof We have

V (z) =
∑

n≥0 Vn
(r,s)zn=

∑
n≥0(Un+1

(r) + syUn−r
(r))zn = U(z) + s

∑
n≥0(Un+1 − xUn)z

n

= (1 + s)U(z)− sxzU(z) , where U(z) = 1
1−xz−yzr+1 , then V (z) = (1+s)−sxz

1−xz−yzr+1 . 2

Let α1, α2, . . . , αr+1 be the roots of the characteristic polynomial P (t) = tr+1 − xtr − y associated with

(U
(r)
n )n≥0 and (V

(r,s)
n )n≥0 such that y ̸= (−1/r) (rx/r + 1)

r+1 . Then for integers 1 ≤ s ≤ r , we have the Binet
formulae:

U
(r)
n+1 =

r+1∑
k=1

αn+1
k

(r + 1)αk − rx
and V (r,s)

n =

r+1∑
k=1

αn
k

(s+ 1)αk − sx

(r + 1)αk − rx
.

Remark 2 The companion matrix of order (r + 1) associated to (V
(r,s)
n )n and its n-powers are Ar(x, y) :=

0 0 · · · 0 y
1 0 · · · 0 0

0 1
. . . ...

...
... . . . . . . 0 0
0 · · · 0 1 x

 and An
r (x, y) =


yU

(r)
n−r · · · yU

(r)
n−1 yU

(r)
n

yU
(r)
n−r−1 · · · yU

(r)
n−2 yU

(r)
n−1

...
... . . . ...

yU
(r)
n−2r+1 · · · yU

(r)
n−r yU

(r)
n−r+1

U
(r)
n−r+1 · · · U

(r)
n U

(r)
n+1

 . Also, there is a determi-

nantal representation of the terms of r -Fibonacci sequences of the form U
(r)
(r+1)n+r . Kiliç and Arikan presented

an approach in [19] to evaluate Hessenberg determinants. They evaluated the Hessenberg determinant whose
entries consist of the terms of the sequence

(
n+m−1

m

)
. Setting m = r , the value of this determinant is equal to

n∑
m=0

(
(r+1)n+r(1−k)

k

)
= U

(r)
(r+1)n+r .

3. Applications
3.1. Some convoluted relations
We give some convoluted relations according to r -Fibonacci and r -Lucas polynomials.

Theorem 3 Let (U
(r)
n )n≥0 and (V

(r,s)
n )n≥0 be respectively the r -Fibonacci polynomial and the generalized

r -Lucas polynomials of type s . Then, for integers n,m ≥ r , we have

y
r∑

j=1

U
(r)
n−jU

(r)
m+j = U

(r)
n+m+r − U

(r)
n U

(r)
m+r+1 and y

r∑
j=1

U
(r)
m−r+jV

(r,s)
n−j = V

(r,s)
n+m − U

(r)
m+1V

(r,s)
n .

Proof We have An+m
r (x, y) = An

r (x, y)× Am
r (x, y) . Consequently, an element of An+m

r (x, y) is the product
of a row of An

r (x, y) and a column of Am
r (x, y) . 2
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For example, for (x, y) = (1, 1) and r = 1 , Theorem 3 gives Cassini’s identities
Fn+m = Fn−1Fm + FnFm+1 and Ln+m = FmLn−1 + Fm+1Ln .

Corollary 1 For all integers n ≥ 0 , we have

U
(r)
2n = 2y

⌊r/2⌋∑
j=0

U
(r)
n−jU

(r)
n−r+j + x2(r/2−⌊r/2⌋)U (r)

n U
(r)
n+1−2(r/2−⌊r/2⌋), (3.1)

and

U
(r)
2n+1 = 2y

⌊r/2⌋∑
j=0

U
(r)
n+1−jU

(r)
n−r+j + (U

(r)
n+1)

2 + 2y(r/2− ⌊r/2⌋)(U (r)
n−(r−1)/2)

2. (3.2)

For (x, y) = (1, 1) and r = 1 , we obtain the known identities for Fibonacci sequences given in [20], F2n =

F 2
n+1 − F 2

n−1 and F2n+1 = F 2
n+1 + F 2

n .

3.2. Sums of finite terms of r -Fibonacci polynomials and the related companion sequences

In this part, we give an explicit formula for the sums of the terms of the r -Fibonacci polynomial and its

companion sequences using a matrix approach, which was used by Kiliç in [17]. Let the sums S
(r)
n of r -

Fibonacci polynomials and S
(r,s)
n of r -Lucas polynomials be defined by

S(r)
n :=

n∑
j=1

U
(r)
j and S(r,s)

n :=

n∑
j=1

V
(r,s)
j .

We extend the matrix representation of (U
(r)
n ) and we define the generating matrix of the sum of r -Fibonacci

polynomials.
Let Tr(x, y) and Rn(x, y) be square matrices of order (r + 2) defined by

Tr(x, y) :=



1 0 0 · · · 0 0
1 x 0 · · · 0 y
0 1 0 · · · 0 0
... 0 1

. . . ...
...

...
... . . . . . . 0 0

0 0 · · · 0 1 0


,

and

Rn(x, y) :=



1 0 0 · · · 0 0

Sn U
(r)
n+1 yU

(r)
n−r+1 · · · yU

(r)
n−1 yU

(r)
n

Sn−1 U
(r)
n yU

(r)
n−r · · · yU

(r)
n−2 yU

(r)
n−1

...
...

... . . . ...
...

Sn−r+1 U
(r)
n−r+2

. . . · · · yU
(r)
n−r yU

(r)
n−r+1

Sn−r yU
(r)
n−r+1 yU

(r)
n−2r+1 · · · yU

(r)
n−r−1 yU

(r)
n−r


.

1099



ABBAD et al./Turk J Math

We define an (r + 2)× (r + 2) matrix Gr(x, y) as follows:

Gn(x, y) =



1 0 0 · · · 0 0
1

1−x−y αr
1 αr

2 · · · αr
r αr

r+1
1

1−x−y αr−1
1 αr−1

2 · · · αr−1
r αr−1

r+1

...
...

... . . . ...
...

1
1−x−y α1

. . . ... αr αr+1
1

1−x−y 1 1 · · · 1 1


, (3.3)

where 1, α1, α2, . . . , αr+1 are the eigenvalues of Tr(x, y) , which are all distinct when we suppose that the
discriminant of the corresponding characteristic polynomial of the matrix Ar(x, y) is different from zero.

Theorem 4 Let S
(r)
n be the sum of the terms of r -Fibonacci polynomials from 1 to n , and P (t) = tr+1−xtr−y

the characteristic polynomial such that P (1) ̸= 0 . Then

S(r)
n =

1

1− x− y
(1− U

(r)
n+1 − y

r∑
j=1

U
(r)
n−r+j). (3.4)

Proof We have
Tr(x, y)×Gr(x, y) = Gr(x, y)×M, (3.5)

where M = Diag(1, α1, α2, . . . , αr+1) , and by the definition of the Vandermonde matrix det(Gr(x, y)) =∏
j,k(αj − αk) ̸= 0 for j ̸= k (so Gr(x, y) is invertible), so we can write identity (3.5) as follows: G−1

r (x, y)×

Tr(x, y)×Gr(x, y) = M . Then G−1
r (x, y)×Tn

r (x, y)×Gr(x, y) = Mn , since Tn
r (x, y) = Rn(x, y) , and equating

the corresponding entries, the identity is realized. 2

Now, we deduce the expression for the sum of the terms of (V
(r,s)
n ).

Theorem 5 Let S
(r,s)
n be the sum of the terms of (V

(r,s)
n ) from 1 to n , and P (t) = tr+1 − xtr − y the

corresponding characteristic polynomial such that P (1) ̸= 0 . Then

S(r,s)
n =

1

1− x− y
(1 + sy − V

(r,s)
n+1 − y

∑r

j=1
V

(r,s)
n−r+j)− 1. (3.6)

Proof First, we calculate
∑n

j=r V
(r,s)
j , and using relation (3.4) and characterization (2.2) of the sequence

(V
(r,s)
n ) , we have

∑n
j=r V

(r,s)
j =

∑n
j=r(U

(r)
j+1 + syU

(r)
j−r) =

∑n+1
j=r+1 U

(r)
j + sy

∑n−r
j=1 U

(r)
j = S

(r)
n+1 −

∑r
j=1 U

(r)
j +

syS
(r)
n−r , since

∑r
j=1 U

(r)
j =

∑r
j=1 x

j−1 =
∑r−1

j=0 x
j = 1+

∑r−1
j=1 V

(r,s)
j , and then the complete sum is evaluated.

2

4. The q -analogue of the sequence (V
(r,s)
n )

In this section, we propose a q -analogue of the r -Lucas polynomials of type s , inspired by the explicit formula

of the sequence (V
(r,s)
n )n≥0 given by relation (2.2) in Theorem 1. First, we give some notations. Let q ∈ R ,

[n]q := 1 + q + · · ·+ qn−1 and [n]q! := [1]q[2]q · · · [n]q . We have [n]q = [k]q + qk[n− k]q = qn−k[k]q + [n− k]q ,[
n
k

]
q
=

[n]q !
[k]q ![n−k]q !

, and
[
n
k

]
q
=

[
n−1
k

]
q
+ qn−k

[
n−1
k−1

]
q
= qk

[
n−1
k

]
q
+

[
n−1
k−1

]
q
.
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In an unpublished work, Belbachir et al. gave a generalized q -analogue of r -Fibonacci polynomial

U
(r)
n+1(z,m) , which is a unified approach of Carlitz and Cigler [12]. They defined

U
(r)
n+1(z,m) :=

⌊n/(r+1)⌋∑
k=0

q(
k+1
2 )+m(k2)

[
n− rk

k

]
q

zk, (4.1)

with U
(r)
0 (z,m) = 0. These polynomials satisfy the following recurrences:

U
(r)
n+1(z,m) = U(r)

n (qz,m) + qzU
(r)
n−r(zq

m+1,m), (4.2)

and
U

(r)
n+1(z,m) = U(r)

n (z,m) + qn−rzU
(r)
n−r(zq

m−r,m). (4.3)

Definition 3 For nonnegative integers r, s such that 1 ≤ s ≤ r , the q-analogue of the r -Lucas polynomials of

type s of the first kind and second kind, respectively, are defined, for n ≥ 0 , by V
(r,s)
0 (z,m) = V(r,s)

0 (z,m) = s+1

and

V(r,s)
n (z,m) :=

⌊n/(r+1)⌋∑
k=0

q(m+1)(k2)
[
n− rk

k

]
q

(1 + s
[k]q

[n− rk]q
)zk, (4.4)

and

V(r,s)
n (z,m) :=

⌊n/(r+1)⌋∑
k=0

q(
k+1
2 )+m(k2)

[
n− rk

k

]
q

(1 + sq(n−(r+1)k) [k]q
[n− rk]q

)zk. (4.5)

Some specializations follow.

For s = r = 1 , we obtain the q -Lucas polynomials of the first kind and the q -Lucas polynomials of the second
kind given in [7].

For s = 1 , we obtain the q -analogue of the r -Lucas polynomials of the first kind and the q -analogue of the
r -Lucas polynomials of the second kind defined in an unpublished work.

Now we establish some links with the initial r -Fibonacci polynomial.

Theorem 6 For nonnegative integers r, s , the polynomials V
(r,s)
n (z,m) and V(r,s)

n (z,m) satisfy the following
recurrences:

1. Expression of V
(r,s)
n s in terms of U

(r)
n+1 and U

(r)
n−r without weight:

V(r,s)
n (z,m) = U

(r)
n+1(z/q,m) + szU

(r)
n−r(zq

m,m), (4.6)

and
V(r,s)

n (z,m) = U
(r)
n+1(z,m) + sqn−rzU

(r)
n−r(zq

m−r,m). (4.7)
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2. Expression of V
(r,s)
n s in terms of U

(r)
n+1 and U

(r)
n weighted by (s+ 1) :

V(r,s)
n (z,m) = (1 + s)U

(r)
n+1(z/q,m)− sU(r)

n (z,m), (4.8)

and
V(r,s)

n (z,m) = (1 + s)U
(r)
n+1(z,m)− sU(r)

n (z,m). (4.9)

3. Expression of V
(r,s)
n s in terms of U

(r)
n and U

(r)
n−r :

V(r,s)
n (z,m) = Un(z,m) + (1 + s)zUn−r(zq

m,m), (4.10)

and
V(r,s)

n (z,m) = U(r)
n (z,m) + (1 + s)qn−rzU

(r)
n−r(zq

m−r,m). (4.11)

Proof
We give the proof of the two first relations. The approach is similar for the others.

V(r,s)
n (z,m) =

∑⌊n/(r+1)⌋
k=0 q(

k
2)(m+1)

[
n−rk

k

]
q
zk + s

∑⌊n/(r+1)⌋
k=0 q(

k
2)(m+1)

[
n−rk

k

]
q

[k]q
[n−rk]q

zk

= U
(r)
n+1(z/q,m) + szU

(r)
n−r(zq

m,m),

and

V(r,s)
n (z,m) =

∑⌊n/(r+1)⌋
k=0 q(

k+1
2 )+m(k2)

[
n−rk

k

]
zk + s

∑⌊n/(r+1)⌋
k=0 q(

k+1
2 )+m(k2)

[
n−rk

k

]
q(n−(r+1)k) [k]q

[n−rk]q
zk

= U
(r)
n+1(z,m) + s

∑⌊n/(r+1)⌋
k=0 q(

k+1
2 )+m(k2)+n−(r+1)k

[
n−rk−1

k−1

]
q
zk

= U
(r)
n+1(z,m) + szqn−r ∑⌊n/(r+1)⌋

k=0 q(
k+1
2 )+m(k2)

[
n−r(k+1)−1

k

]
q
(qm−rz)

k

= U
(r)
n+1(z,m) + szqn−rU

(r)
n−r(zq

m−r,m).

2

Corollary 2 For nonnegative integers r, s such that 1 ≤ s ≤ r , the polynomials V
(r,s)
n and V(r,s)

n satisfy the
following recurrences:

V
(r,s)
n+1 (z,m) = V(r,s)

n (qz,m) + qzV
(r,s)
n−r (zq

m+1,m), (4.12)

and
V(r,s)

n+1 (z,m) = V(r,s)
n (z,m) + qn−rzV(r,s)

n−r (zq
m−r,m). (4.13)

5. Combinatorial interpretation of sequences (U
(r)
n ) and (V

(r,s)
n )

In this section, we propose a combinatorial interpretation for the r -Fibonacci numbers and their companion
sequences by using linear tiling via ”square and (r + 1) -omino”; see, for instance, Benjamin and Quinn [8] for
r = 1 .
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For nonnegative integers, the generalized Fibonacci number Un+1 counts the number of ways to tile an
n -board with colored squares and colored dominos where there are x different colors for squares and y different
colors for dominos.

Our purpose is to deal with circular tiling of length n (also called an n -bracelet) by squares or (r + 1) -
ominos (see Figure 1). An n -bracelet is in-phase if the zero position of the n -bracelet is bordered either by
squares or the position 0 or (r+1) of the (r+1) -omino. It is out of phase if the (r+1) -omino covers position
zero at level t for 1 ≤ t ≤ r of the corresponding (r+1) -omino. In our case, the only possible positions able to
be out of phase are 1, . . . , s (without losing the generality, we can accept any chosen s positions from 1 to r ).
For example, as illustrated in Figures 2 , 3 , and 4 , when n = 5 and r = 3 , the first 3 bracelets are in-phase
and the others correspond to an unphased bracelet where the 4 -omino is covering cells 1 and 5 at the first s

authorized positions, for 1 ≤ s ≤ 3 .

0

0 1 2 30 r r + 1

Figure 1. n -bracelet and (r + 1) -omino.

00 0

0

Figure 2. Circular tiling of length 5 for s = 1 .

We have by relation (1.1) and Theorem 1 the following:

U
(r)
n+1 =

⌊n/(r+1)⌋∑
k=0

U(n, k) with U(n, k) :=

(
n− rk

k

)
xn−(r+1)kyk, (5.1)

and

V (r,s)
n =

⌊n/(r+1)⌋∑
k=0

V (n, k) with V (n, k) :=
n− (r − s)k

n− rk

(
n− rk

k

)
xn−(r+1)kyk. (5.2)
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00 0

0 0

Figure 3. Circular tiling of length 5 for s = 2 .

00 0

000

Figure 4. Circular tiling of length 5 for s = 3 .

Proposition 1 Let x, y and n be nonnegative integers. The r -Fibonacci numbers U
(r)
n+1 are interpreted as the

number of ways to tile an n-board with colored squares and colored (r+ 1)-ominos, where there are x different
colors for squares and y different colors for (r + 1)-ominos.

Proof For n ≥ r and (k = 0, . . . , ⌊n/(r + 1)⌋) , if there are k (r + 1) -ominos to tile, then there must be
n − (r + 1)k squares. Hence, there are

(
n−rk

k

)
ways to choose k (r + 1) -ominos from the tiles of weight yk

and the rest of the tiles of squares are of weight xn−(r+1)k . Thus, the number of ways to cover the n -board is(
n−rk

k

)
xn−(r+1)kyk . 2

Now we give a combinatorial interpretation of V
(r,s)
n (1 ≤ s ≤ r) being a nonnegative integer.

Theorem 7 Let n, r , and s be nonnegative integers, and let V
(r,s)
n count the number of ways to tile an n-

bracelet with colored squares of parameter color x and (r + 1)-ominos of parameter color y , with the first s

authorized positions in the zero fixed point of the bracelet.

Proof We have V
(r,s)
n =

∑⌊n/(r+1)⌋
k=0 V (n, k) , where V (n, k) counts the number of ways to tile an n -

bracelet with squares of parameter color x and exactly k (r + 1) -ominos of parameter color y , with the
first s authorized positions in the zero fixed point of the bracelet. Note that the number V (n, k) is given by

V (n, k) = n−(r−s)k
n−rk

(
n−rk

k

)
xn−(r+1)kyk . First, if there is no (r + 1) -omino covering cells 1 and n , the bracelet

is in-phase, and then the number of ways to tile the n -bracelet is the same as the number of ways to tile an
n -board, which is given by

(
n−rk

k

)
xn−(r+1)kyk possibilities. Second, if there is an (r+1) -omino occupying cells
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1 and n , without losing the generality, we accept only the first s alternate positions of the (r + 1) -ominos to
cover cells 1 and n . Thus, there are s possibilities, 1 ≤ s ≤ r . Then we have to tile n − (r + 1) cells with
(k − 1) (r + 1) -ominos, which gives exactly

(
n−rk−1

k−1

)
xn−(r+1)kyk possibilities. Finally, we have

(
n−rk

k

)
xn−(r+1)kyk + s

(
n−rk−1

k−1

)
xn−(r+1)kyk = V (n, k),

which produces the result by summing these numbers. 2

6. Extension of (U
(r)
n )n and (V

(r,s)
n )n to negative indices

Note that the Binet formula permits us to extend the definitions of U
(r)
n and V

(r,s)
n to negative ns.

Proposition 2 Let x, y be reversible elements of a unitary ring A . For integers n ≥ 0 and r ≥ 1 , the terms

of the sequence (U
(r)
−n)n satisfy the following recurrence relation:

U
(r)
−n = y−1U

(r)
−n+r+1 − xy−1U

(r)
−n+r (n ≥ r + 1). (6.1)

Proof We replace n → −n+ r in the Binet formula. 2

Lemma 2 For any integers m, r , we have

r∑
j=1

(−1)j+1

(
k

m+ j

)
= (−1)(r+1)

(
k − 1

m+ r

)
+

(
k − 1

m

)
. (6.2)

Proof The proof is easy by induction and Pascal’s rule. 2

Theorem 8 For n ∈ N , (U
(r)
−n)n≥1 satisfy the two following equivalent identities:

U
(r)
−n =

∑
k

(
k − 1

n− rk

)
(−x)−n−1+(r+1)ky−k, with U0 = 0, (6.3)

U
(r)
−n =

∑
k

(
(n− k − r)/r

k

)
(−x)(n−r−(r+1)k)/ry(−n+k)/r, (6.4)

and we may restrict the first sum to integers k ≥ 1 ranging between ⌊(n + 1)/(r + 1)⌋ and ⌊(n − 1)/r⌋ ; the
second summation is limited to those integers k lying between 0 and ⌊(n− r)/(r+ 1)⌋ , which satisfy r divides
(n− k) .

Proof Using Lemma 1, we consider the sequence Wn defined by Wn = U
(r)
−n . Thus Wn = y−1W

(r)
n−r−1 −

xy−1W
(r)
n−r, with a1 = a2 = · · · = ar−1 = 0 , ar = −xy−1 , and ar+1 = y−1 . Notice also that for 1 ≤ j ≤ r

we have W−j = U
(r)
j = xj−1 . Consequently, the sequence (λj)0≤j≤r is defined by λj = −

r−j∑
k=0

akU
(r)
k+j for
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0 ≤ j ≤ r , with a0 = −1 , so λ0 = xry−1 and λj = xj−1 for 1 ≤ j ≤ r . Finally, the sequence (yn)n is given by
the expression

yn =
∑

rkr+(r+1)kr+1=n

(
kr+kr+1

kr,kr+1

)
akr
r a

kr+1

r+1 =
∑
k

(
k

n−rk

)
(−x)(r+1)k−ny−k.

Now, applying Lemma 1, we get the expression of (Wn)n in terms of (λn) and (yn) for n ≥ 0 :

Wn = λ0yn + λ1yn+1 + · · ·+ λryn+r,

= xry−1yn +
∑r

j=1 x
j−1yn+j ,

= xry−1 ∑
k

(
k

n−rk

)
(−x)(r+1)k−ny−k + xj−1

∑r
j=1

∑
k

(
k

n+j−rk

)
(−x)(r+1)k−n−jy−k

=
∑
k

(−x)rk+k−n−1y−k(
∑r

j=1(−1)j+1
(

k
n+j−rk

)
+ (−1)(r)

(
k−1

n+r−rk

)
)

=
∑
k

(
k−1
n−rk

)
(−x)−n−1+(r+1)ky−k(using Lemma 2)

=
∑

k; r|(n−k)

(
(n−k−r)/r

k

)
(−x)(n−r−(r+1)k)/ry(−n+k)/r.

2

The positiveness of r s corresponds to the fact that elements
(−n+rk

k

)
are lying over traversals of finite

support as nonvanishing values. Now we give an expression similar to relation (2.2) for the sequences (V
(r,s)
−n )n≥1

in terms of s and U
(r)
−n using the corresponding Binet formula.

Theorem 9 Letting r and s be nonnegative integers such that 1 ≤ s ≤ r , we have for n ≥ 1

V
(r,s)
−n = U

(r)
−n+1 + syU

(r)
−n−r, (6.5)

and also, we get the explicit form for n ≥ 1 :

V
(r,s)
−n =

⌊(n−1)/r⌋∑
k

n− (r − s)k

n− rk

(
k − 1

n− 1− rk

)
(−x)−n+(r+1)ky−k + s(−x)n/ry−n/r[r | n]. (6.6)

Equivalently,

V
(r,s)
−n =

∑
k, r|(n−k)

sn+ (r − s)k

rk

(
(n− k − r)/r

k − 1

)
(−x)(n−(r+1)k)/ry(−n+k)/r + s(−x)n/ry−n/r[r | n], (6.7)

with V
(r,s)
0 = s+ 1, and [r | n] = 1 for r dividing n and 0 otherwise; for the notation, see [16].
We may restrict the first sum to integers k ranging between ⌊n/(r + 1)⌋ and ⌊(n − 1)/r⌋ ; the second

summation is limited to those integers k lying between 1 and ⌊n/(r + 1)⌋ , which satisfy r divides (n− k) .

Proof We give the proof of the first identity given by relation (6.6). The proof of the second one, (6.7), can

1106



ABBAD et al./Turk J Math

be obtained easily using the same approach. Then, applying relations (6.5) and (6.3), we obtain

V
(r,s)
−n = U

(r)
−n+1 + syU

(r)
−n−r

=
⌊(n−1)/r⌋∑

k

(
k−1

n−1−rk

)
(−x)−n+(r+1)ky−k + s

⌊(n−1)/r⌋∑
k

(
k−1

n+r−rk

)
(−x)−n−r−1+(r+1)ky−k+1

=
⌊(n−1)/r⌋∑

k

(
k−1

n−1−rk

)
(−x)−n+(r+1)ky−k + s

⌊n/r⌋∑
k

(
k

n−rk

)
(−x)−n+(r+1)ky−k

=
⌊(n−1)/r⌋∑

k

(1 + s k
n−rk )

(
k−1

n−1−rk

)
(−x)−n+(r+1)ky−k + s

( ⌊n/r⌋
n−r⌊n/r⌋

)
(−x)−n+(r+1)⌊n/r⌋y−⌊n/r⌋,

which gives the result. 2

We deduce that characterization (2.2) of sequences (V
(r,s)
n ) given in Theorem 1 is satisfied for n ∈ Z .

Theorems 8 and 9 given previously allow us to produce some applications. For instance, we have the
following:

Application Let us take the 2 -Fibonacci numbers (U
(2)
n )n for n ≥ 1 . We have

U
(2)
−n =

∑
k

(
k − 1

n− 2k

)
(−1)−n−1+3k.

Its companion sequences at negative indices for s = 1, 2 are given by the following identities:

V
(2,1)
−n =

⌊(n−1)/2⌋∑
k

n− k

n− 2k

(
k − 1

n− 1− 2k

)
(−1)−n+3k +

1

2
(1 + (−1)n)(−1)⌊n/2⌋,

and

V
(2,2)
−n =

⌊(n−1)/2⌋∑
k

n

n− 2k

(
k − 1

n− 1− 2k

)
(−1)−n+3k + (1 + (−1)n)(−1)⌊n/2⌋.

7. Incomplete r -Lucas and hyper r -Lucas polynomials of type s
In this section, we define the incomplete r -Lucas and hyper-r -Lucas polynomials of type s. For simplicity of
notation, we introduce:
Un, Vn for the r -Fibonacci and r -Lucas polynomials,
Un(k), Vn(k) for the incomplete r -Fibonacci and r -Lucas polynomials,

U
[m]
n , V

[m]
n for the hyper-r -Fibonacci and hyper-r -Lucas polynomials.

7.1. Incomplete r -Lucas polynomials of type s

In [25], the incomplete r -Fibonacci polynomials are given by

Un+1(k) =

k∑
j=0

(
n− rj

j

)
xn−(r+1)jyj , 0 ≤ k ≤ ⌊n/(r + 1)⌋ . (7.1)
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In this subsection, we give a unifying expression of the incomplete r -Lucas polynomials of type s , which
generalizes identity (1.2) given by Tasci et al. in [25].

Definition 4 For r, s nonnegative integers such that 1 ≤ s ≤ r , the incomplete r -Lucas polynomials of type s

is defined as

Vn(k) =

k∑
j=0

n− (r − s)j

n− rj

(
n− rj

j

)
xn−(r+1)jyj , 0 ≤ k ≤ ⌊n/(r + 1)⌋. (7.2)

For k = ⌊n/(r + 1)⌋ Vn(k) = Vn , we obtain the r -Lucas polynomials of type s .
For x = y = 1 , s = r = 1 , we get the incomplete Lucas numbers [15].
For x = 2 , y = 1 , and s = r = 1 , we get the incomplete Jacobsthal–Lucas numbers [14]

.

In the following, we give a recurrence relation for the incomplete r -Lucas polynomials of type s .

Theorem 10 The incomplete r -Lucas polynomials of type s satisfy the following recurrence:

Vn(k + 1) = xVn−1(k + 1) + yVn−r−1(k). (7.3)

The following theorem gives a relationship between the incomplete r -Lucas polynomials of type s and
the incomplete r -Fibonacci polynomials.

Theorem 11 Let r, s be nonnegative integers, such that 1 ≤ s ≤ r . The incomplete r -Lucas polynomials of
type s satisfy the following recurrence relation:

Vn(k) = Un+1(k) + syUn−r(k − 1). (7.4)

Proof Using relation (7.2), we have

Vn(k) =
∑k

j=0

(
n−rj

j

)
xn−(r+1)jyj + s

∑k
j=0

(
n−rj−1

j−1

)
xn−(r+1)jyj = Un+1(k) + syUn−r(k − 1) . 2

The following theorem provides a nonhomogeneous relation for the incomplete r -Lucas polynomials of
type s .

Theorem 12 Let r, s be nonnegative integers, such that 1 ≤ s ≤ r . The incomplete r -Lucas polynomials of
type s satisfy the following nonhomogeneous relation:

Vn+1(k) = xVn(k) + yVn−r(k)−
n− r − (r − s)k

n− r(k + 1)

(
n− r(k + 1)

k

)
xn−k−(r+1)kyk+1. (7.5)

Proof The proof is done using relations (7.2) and (7.3). 2

7.1.1. Generating function of the incomplete r -Lucas polynomials of type s

The lemma given below allows us to introduce the generating function of the incomplete r -Lucas polynomials
of type s .
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Lemma 3 ([22]) Let (sn)n≥0 be a complex sequence satisfying the following nonhomogeneous recurrence relation
sn = xsn−1 + ysn−r−1 + αn, n > r , where (αn) is a given complex sequence. Then the generating function
Sk
r (x, y; t) of the sequence (sn) is

Sk
r (x, y; t) =

(s0 − α0 +
∑r

i=1(si − xsi−1 − αi)t
i +G(t))

(1− xt− ytr+1)
, (7.6)

where G(t) is the generating function of (αn) .

Theorem 13 The generating function of the incomplete r -Lucas polynomials of type s is

∑
n⩾0

Vn(k)t
n =

tk(r+1)

(1− xt− ytr+1)

[
Vk(r+1) +

r∑
i=1

(Vk(r+1)+i − xVk(r+1)+i−1)t
i − yk+1tr+1[s(1− xt) + 1]

(1− xt)k+1

]
.

Proof From (7.2), we have Vn(k) = 0 for 0 ⩽ n < k(r + 1) , and then for n ⩾ k(r + 1) we have
s0 = Vk(r+1)(k) = Vk(r+1), s1 = Vk(r+1)+1(k) = Vk(r+1)+1, and sr = Vk(r+1)+r(k) = Vk(r+1)+r .

Also let α0 = α1 = · · · = αr = 0 and αn = n−r−1−(r−s)k
n−1−r(k+1)

(
n−1−r(k+1)

k

)
xn−(r+1)(k+1)yk+1. The generating

function of the sequence (αn) is given by G(t) = yk+1tr+1[s(1−xt)+1]
(1−xt)k+1 (see [24], page 355). Thus, from Lemma 3,

we find the generating function of sequences (Vn(k)) for 1 ⩽ s ⩽ r . 2

7.2. Hyper-r -Fibonacci polynomials

Let (an) and (a(n)) be two real sequences. Bahsi et al. [2] defined the symmetric infinite matrix associated to
these sequences by the following recursive formula:{

a
(0)
n = an, a

(n)
0 = a(n), (n ≥ 0),

a
(k)
n = xa

(k)
n−1 + ya

(k−1)
n , (n ≥ 1, k ≥ 1),

(7.7)

where a
(k)
n represents the k th row and the nth column entry,



. . . . . .

. . . . . .

. . . ya
(k−1)
n . .

. . . ↓ . .

xa
(k)
n−1 → a

(k)
n . .

. . . . . . .

. . . . . . .


.

The entry a
(k)
n has the following expression:

akn = xn
k∑

i=1

yk−i

(
n+ k − i− 1

n− 1

)
ai0 + yk

n∑
s=1

xn−s

(
n+ k − s− 1

k − 1

)
a0s. (7.8)

As an application, we define the bivariate hyper r -Fibonacci polynomials as follows:
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Definition 5 For m ⩾ 0 , the bivariate hyper r -Fibonacci polynomials are defined by the following recurrence
relation:  U

[0]
n = U

(r)
n , U

[m]
0 = ym,

U
[m]
n+1 = xU

[m]
n + yU

[m−1]
n+1 .

(7.9)

Relation (7.9) can be written as follows:

U [m]
n =

n∑
j=0

yxn−jU
[m−1]
j . (7.10)

Some particular cases of hyper-r -Fibonacci polynomials are:
For r = 1 , x = 1 , and y = 1 , U

[m]
n (1, 1) = F

[m]
n , we get hyper-Fibonacci numbers [2].

For r = 1 , x = 2 , and y = 1 , U
[m]
n (2, 1) = p

[m]
n , we get hyper-Pell numbers [1].

For r = 1 , x = 1 , and y = 2 , U
[m]
n (1, 2) = j

[m]
n , we get hyper-Jacobsthal numbers.

As a result of (7.8), the bivariate hyper-r -Fibonacci polynomial can be expressed as a sum of binomial coefficients
and r -Fibonacci polynomial:

U
[m]
n+1 =

n+1∑
k=1

(
n+m− k

m− 1

)
xn+1−kymUk. (7.11)

7.2.1. Combinatorial interpretation

This section deals with a combinatorial interpretation of relation (7.9) and the explicit formula of the bivariate
hyper-r -Fibonacci. polynomials

Theorem 14 The hyper-r -Fibonacci polynomial U [m]
n is interpreted as the number of ways to tile an [n+(r+

1)m]-board with at least m (r + 1)-ominos, such that we distribute a weight x for each square and weight y

for each (r + 1)-omino.

Proof Let Tn,m count the number of ways to tile an [n + (r + 1)m] -board using squares of weight x and at
least m (r + 1) -ominos of weighty .

For m = 0 , Tn,0 corresponds to the number of ways to tile an n -board without condition on number
of ominos, which gives U(n, k) . For n = 0 , the number of ways to tile (r + 1)m with at least m (r + 1) -
ominos of weight y is given by ym . Now let Tn,m be a tiling of an [n + (r + 1)m] -board with at least m

(r + 1) -ominos. If the first tile is a square of weight x , then the weight of the n+ (r + 1)m− 1 tiling with at
least m (r + 1) -ominos is T(n−1),m , whereas if the first tile is a (r + 1) -omino of weight y , then the weight of
n+ (r + 1)m− (r + 1) = n+ (r + 1)(m− 1) is Tn,m−1 . 2

The following establishes the explicit formula of the hyper-r -Fibonacci polynomial U
[m]
n .

Theorem 15 For any n ⩾ 0 , m ⩾ 0 , and k = 0, . . . , ⌊n/(r + 1)⌋ , we have

U
[m]
n+1 =

⌊n/(r+1)⌋∑
k=0

(
n+m− rk

m+ k

)
xn−(r+1)kyk+m, (7.12)
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where the number
(
n+m−rk

m+k

)
xn−(r+1)kyk+m represents the weight of a linear n + (r + 1)m-tiling with at least

(k +m) (r + 1)-ominos.

Proof An n+ (r+ 1)m tiling with at least (k+m) (r+ 1) -ominos must use n− (r+ 1)k squares, and then
there are

(
n+m−rk

m+k

)
ways to choose (k +m) (r + 1) -ominos of weight yk+m and xn−(r+1)k for the rest of the

tiles (squares). The proof of relation (7.12) is done using Theorem 14. 2

Corollary 3 The first terms of the hyper-r -Fibonacci numbers are given by

U
[m]
k =

(
m+ k − 1

k − 1

)
xk−1ym, (1 ≤ k ≤ r),

Theorem 16 The hyper-r -Fibonacci polynomial U
[m]
n satisfies the following nonhomogeneous recurrence rela-

tion:

U
[m]
n+1 = xU [m]

n + yU
[m]
n−r +

(
n+m− 1

m− 1

)
xnym. (7.13)

Proof Using relations (7.9) and (7.12), we have

U
[m]
n+1 = xU [m]

n + yU
[m−1]
n+1

= xU [m]
n + y

⌊n/(r+1)⌋∑
k=0

(
n+m−1−rk

m−1+k

)
xn−(r+1)kyk+m−1

= xU [m]
n + y

⌊n/(r+1)⌋∑
k=1

(
n+m−1−rk

m−1+k

)
xn−(r+1)kyk+m−1 +

(
n+m−1
m−1

)
xnym

= xU [m]
n + y

⌊(n−r−1)/(r+1)⌋∑
k=0

(
n+m−1−r(k+1)

m+k

)
xn−(r+1)(k+1)yk+m +

(
n+m−1
m−1

)
xnym

= xU [m]
n + xU

[m]
n−r +

(
n+m−1
m−1

)
xnym.

2

The following result implies that every r -Fibonacci polynomial can be written as a sum of hyper-r -
Fibonacci polynomials and incomplete r -Fibonacci polynomials.

Theorem 17 For m ⩾ 1 and n ⩾ 0 , we have

Un+(r+1)m = U [m]
n + Un+(r+1)m(m− 1). (7.14)

Proof It follows by equations (7.1) and (7.12). 2

7.3. Hyper-r -Lucas polynomials

Now we start by giving the definition of the hyper-r -Lucas polynomials of type s . Then we give an explicit
formula in terms of s and the hyper-r -Fibonacci polynomials.
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Definition 6 For m ⩾ 0 , the bivariate hyper-r -Lucas polynomials are defined by the following recurrence
relation:  V

[0]
n = V

(r,s)
n , V

[m]
0 = (s+ 1)ym,

V
[m]
n = xV

[m]
n−1 + yV

[m−1]
n .

(7.15)

Some particular cases of hyper-r -Lucas polynomials of type s are:

For r = s = 1 , x = 1 , and y = 1 , V
[m]
n (1, 1) = L

[m]
n , we get hyper-Lucas numbers [2].

For r = s = 1 , x = 2 , and y = 1 , V
[m]
n (2, 1) = P

[m]
n , we get hyper-Pell–Lucas numbers [1].

For r = s = 1 , x = 1 , and y = 2 , V
[m]
n (1, 2) = J

[m]
n , we get hyper-Jacobsthal–Lucas numbers.

Theorem 18 Let r and s be nonnegative integers such that 1 ≤ s ≤ r . For any n ≥ 0 and m ≥ 1 , we have

V [m]
n =

⌊n/(r+1)⌋∑
k=0

n+ (s+ 1)m− (r − s)k

n+m− rk

(
n+m− rk

m+ k

)
xn−(r+1)kyk+m. (7.16)

Proof We prove the Theorem by double induction on n and m . The idea of this proof was already used by
Belbachir and Belkhir in [3].

Let Vn+m = V
[m]
n . Relation (7.16) is clearly satisfied for n +m = 0 and n +m = 1 . Then we suppose

that it is satisfied for all p < n+m+ 1 , and we prove it for p = n+m+ 1 . Using (7.15), we have

V
[m]
n+1 =

⌊n/(r+1)⌋∑
k=0

n+(s+1)m−(r−s)k
n+m−rk

(
n+m−rk
m−1+k

)
xn+1−(r+1)kyk+m

+
⌊(n+1)/(r+1)⌋∑

k=0

n+1+(s+1)(m−1)−(r−s)k
n+m−rk

(
n+m−rk
m−1+k

)
xn+1−(r+1)kyk+m−1

=
⌊n/(r+1)⌋∑

k=0

(
n+m−rk

m+k

)
xn+1−(r+1)kyk+m + s

⌊n/(r+1)⌋∑
k=0

(
n+m−rk−1

m+k−1

)
xn+1−(r+1)kyk+m

+
⌊(n+1)/(r+1)⌋∑

k=0

(
n+m−rk
m+k−1

)
xn+1−(r+1)kyk+m + s

⌊(n+1)/(r+1)⌋∑
k=0

(
n+m−rk−1

m+k−2

)
xn+1−(r+1)kyk+m

=
⌊n/(r+1)⌋∑

k=0

[(
n+m−rk+1

m+k

)
+ s

(
n+m−rk
m+k−1

)]
xn+1−(r+1)kyk+m

=
⌊n/(r+1)⌋∑

k=0

n+1+(s+1)m−(r−s)k
n+m−rk+1

(
n+m−rk+1

m+k

)
xn−(r+1)kyk+m.

2

As a consequence of (7.15) and (7.16), a nonhomogeneous relation of the hyper-r -Lucas polynomials of
type s is given as follows:

V [m]
n = xV

[m]
n−1 + yV

[m]
n−r−1 +

n+ (s+ 1)(m− 1)

n+m− 1

(
n+m− 1

m− 1

)
xnym. (7.17)

In the following theorem, we establish an expression of the hyper-r -Lucas polynomials in terms of s and the
hyper-r -Fibonacci polynomials.
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Theorem 19 For any integers n ,m , r , and s (1 ≤ s ≤ r) , we have

V [m]
n = U

[m]
n+1 + syU

[m−1]
n+1 , (7.18)

which also gives the following for all n ⩾ r and m ⩾ 1 :

V [m]
n = U

[m]
n+1 + syU

[m]
n−r + s

(
n+m− 1

m− 1

)
xnym. (7.19)

Proof We obtain the proof using relations (7.12) and (7.16). 2

Corollary 4 For given nonnegative integers m,n with x = y = 1 and r = s = 1 , we have

V [m]
n + U [m]

n = 2U
[m]
n+1 and V [m]

n − U [m]
n = 2U

[m−1]
n+1 .

Now we present the connection between the incomplete r -Lucas polynomials, hyper-r -Lucas polynomials,
and r -Lucas polynomials.

Theorem 20 For m ⩾ 1 and n ⩾ 0 , we have

Vn+(r+1)m = V [m]
n + Vn+(r+1)m(m− 1). (7.20)

Proof The proof is obtained using relations (7.14) and (7.18). 2

Acknowledgments
We are grateful to the anonymous referees for their suggestions and remarks, which improved the quality of the
present paper. We would also like to thank Athmane Benmezai and Amine Belkhir for several suggestions.

References

[1] Ahmia M, Belbachir H, Belkhir A. The log-concavity and log-convexity properties associated to hyperPell and
hyperPell-Lucas sequences. Annales Mathematicae et Informaticae 2014; 43: 3-12.

[2] Bashi MM, Mezo I, Solak S. A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers. Annales
Mathematicae et Informaticae 2014; 43: 19-27.

[3] Belbachir H, Belkhir A. On some generalizations of Horadam’s numbers. Filomat 2018; 32 (14): 5037-5052. doi:
10.2298/FIL1814037B

[4] Belbachir H, Bencherif F. Linear recurrent sequences and powers of a square matrix. Integers 2006; 6: A12.

[5] Belbachir H, Bencherif F. On some properties of bivariate Fibonacci and Lucas polynomials. Journal of Integer
Sequences 2008; 11: 08.2.6.

[6] Belbachir H, Bencherif F. Sums of product of generalized Fibonacci and Lucas numbers. Ars Combinatoria 2013;
110: 33-43.

[7] Belbachir H, Benmezai A. An alternative approach to Cigler’s q-Lucas polynomials. Applied Mathematics and
Computation 2014; 226: 691-698. doi.org/10.1016/j.amc.2013.10.009

[8] Benjamin A, Quinn JJ, Su FED. Phased tilings and generalized Fibonacci identities. Fibonacci Quarterly 2000; 38:
282-288.

1113



ABBAD et al./Turk J Math

[9] Carlitz L. Fibonacci notes, 4: q -Fibonacci polynomials. Fibonacci Quarterly 1975; 13: 97-102.

[10] Cerlienco L, Mignotte M, Piras F. Suites récurrentes linéaires, propriétés algébriques et arithmétiques. Enseigne-
ments Mathématiques 1987; 33: 67-108 (in French).

[11] Cigler J. A new class of q-Fibonacci polynomials. Electronic Journal of Combinatorics 2003; 10: 19.

[12] Cigler J. Some beautiful q-analogues of Fibonacci and Lucas polynomials. ArXiv 2011; 1104.2699.

[13] Dickinson D. On sums involving binomial coefficients. American Mathematical Monthly 1950; 57: 82-86.

[14] Djordjevic GB, Srivastava HM. Incomplete generalized Jaccobsthal and Jacobsthal-Lucas numbers. Mathematical
and Computer Modelling 2005; 42: 1049-1056. doi: 10.1016/j.mcm.2004.10.026

[15] Filpponi P. Incomplete Fibonacci and Lucas numbers. Rendiconti del Circolo Matematico di Palermo 1996; 45 (1):
37-56. doi: 10.1007/BF02845088

[16] Graham RL, Knuth DE, Patashnik O. Concrete Mathematics - A Foundation for Computer Science. Advanced
Book Program (1st ed.). Reading, MA, USA: Addison-Wesley Publishing Company, 1989.

[17] Kilic E. The generalized order-k Fibonacci-Pell sequence by matrix methods. Journal of Computational and Applied
Mathematics 2007; 209: 133-145. doi: 10.1016/j.cam.2006.10.071

[18] Kilic E. The Binet formula, sums and representations of generalized Fibonacci p -numbers. European Journal of
Combinatorics 2008; 29: 701-711. doi: 10.1016/j.ejc.2007.03.004

[19] Kilic E. Evaluation of Hessenberg determinants via generating function approach. Filomat 2017; 31 (15): 4945-4962.
doi: 12298/FIL1715945K

[20] Koshy T. Fibonacci and Lucas Numbers with Application. New York, NY, USA: Wiley, 2001.

[21] Miles EP. Generalized Fibonacci numbers and associated matrices. American Mathematical Monthly 1960; 67 (10):
745-752. doi: 10.2307/2308649

[22] Pinter A, Srivastava M. Generating functions of the incomplete Fibonacci and Lucas numbers. Rendiconti del
Circolo mathematico di Palmero 1999; 48 (3): 591-596. doi: 10.1007/BF02844348

[23] Raab JA. A generalization of the connection between the Fibonacci sequence and Pascal’s triangle. Fibonacci
Quarterly 1963; 1 (3): 21-31.

[24] Srivastava HM, Manocha HL. A Treatise on Generating Functions. Chichester, UK: John Wiley and Sons, 1984.

[25] Tasci D, Firengiz MC, Tuglu N. Incomplete bivariate Fibonacci and Lucas p -polynomials. Discrete Dynamics in
Nature and Society 2012; 2012: 840345. doi: 10.1155/2012/840345

1114


	Introduction
	The companion sequences associated to the r-Fibonacci polynomial sequence
	Applications
	Some convoluted relations
	Sums of finite terms of r-Fibonacci polynomials and the related companion sequences

	The q-analogue of the sequence (Vn(r,s))
	Combinatorial interpretation of sequences (Un(r)) and (Vn(r,s))
	Extension of (Un(r))n and (Vn(r,s))n to negative indices
	Incomplete r-Lucas and hyper r-Lucas polynomials of type s
	Incomplete r-Lucas polynomials of type s
	Generating function of the incomplete r-Lucas polynomials of type s

	Hyper-r-Fibonacci polynomials
	Combinatorial interpretation

	Hyper-r-Lucas polynomials


