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Abstract: In this paper, we find all the solutions of the title Diophantine equation in nonnegative integer variables
(m,n, x) , where Pk is the k th term of the Pell sequence.
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1. Introduction
Let (Pn)n≥0 be the Pell sequence given by

P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn, for all n ≥ 0.

It is well known that
P 2
n + P 2

n+1 = P2n+1, for all n ≥ 0.

In particular, this identity tells us that the sum of the squares of two consecutive Pell numbers is still a Pell
number. This raises the following natural question: can we find all triples of nonnegative integers (m,n, x) such
that

P x
n + P x

n+1 = Pm? (1.1)

We prove the following theorem:

Theorem 1.1 All the solutions of the Diophantine equation (1.1) in nonnegative integers (m,n, x) are

(m,n, x) ∈ {(1, 0, x), (2n+ 1, n, 2), (2, n, 0)}. (1.2)

Namely, we have
P x
0 + P x

1 = P1, P 2
n + P 2

n+1 = P2n+1, P 0
n + P 0

n+1 = P2.

The Diophantine equation (1.1) was studied when we replace the Pell numbers by the Fibonacci numbers in [5]
and [6] and when we replace the Pell numbers by k -generalized Fibonacci numbers in [8].
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2. Auxiliary results
2.1. Pell sequence

Let (α, β) = (1 +
√
2, 1−

√
2) be the roots of the characteristic equation x2 − 2x− 1 = 0 of the Pell sequence

(Pn)n≥0 . The Binet formula for Pn ,

Pn =
αn − βn

2
√
2

, holds for all n ≥ 0. (2.1)

This implies easily that the inequality
αn−2 ≤ Pn ≤ αn−1 (2.2)

holds for all positive integers n. It is easy to prove that

Pn

Pn+1
≤ 3

7
(2.3)

holds for all n ≥ 2 .

2.2. Linear forms in logarithms
The proof of our main theorem uses lower bounds for linear forms in logarithms of algebraic numbers and a
version of the Baker–Davenport reduction method. Let us recall some results.

For any nonzero algebraic number γ of degree d over Q , whose minimal polynomial over Z is a
∏d

i=1

(
X − γ(i)

)
(with a > 0), we denote by

h(γ) =
1

d

(
log a+

d∑
i=1

log max
(
1,
∣∣∣γ(i)

∣∣∣))

the usual absolute logarithmic height of γ .
With this notation, Matveev proved the following theorem (see [7]):

Theorem 2.1 Let γ1, . . . , γs be real algebraic numbers and let b1, . . . , bs be nonzero rational integer numbers.
Let D be the degree of the number field Q(γ1, . . . , γs) over Q and let Aj be a positive real number satisfying

Aj = max{Dh(γj), | log γj |, 0.16} for j = 1, . . . , s.

Assume that
B ≥ max{|b1|, . . . , |bs|}.

If γb1
1 · · · γbs

s − 1 ̸= 0 , then

|γb1
1 · · · γbs

s − 1| ≥ exp(−1.4 · 30s+3 · s4.5 ·D2(1 + logD)(1 + logB)A1 · · ·As).

2.3. Reduction method
In 1998, Dujella and Pethő in [4, Lemma 5(a)] gave a version of the reduction method based on the Baker–
Davenport lemma [1]. We next present the following lemma from [3], which is an immediate variation of the
result due to Dujella and Pethő from [4] and will be one of the key tools used in this paper to reduce the upper
bounds on n of the Diophantine equation (1.1).
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Lemma 2.2 Let M be a positive integer, let p/q be a convergent of the continued fraction of the irrational γ

such that q > 6M , and let A,B, µ be some real numbers with A > 0 and B > 1 . Let

ε = ||µq|| −M · ||γq||,

where || · || denotes the distance from the nearest integer. If ε > 0 , then there is no solution of the inequality

0 < rγ − s+ µ < AB−k

in positive integers r, s , and k with

r ≤ M and k ≥ log(Aq/ε)

logB .

3. The proof of Theorem 1.1
3.1. An inequality for x in terms of m and n

We assume that n ≥ 1 , as the solution with n = 0 is obvious. Observe that when x = 0 , then Pm = 2 = P2 .
Since Pn+1 < Pn+1 + Pn < Pn+2 , the Diophantine equation (1.1) has no solution when x = 1 . Furthermore,
when n = 1 we get Pm = 1 + 2x and all solutions of this Diophantine equation are (m,x) = (2, 0) or (3, 2)

(see [2, Theorem 2.2]). We can assume that n ≥ 2 and x ≥ 3 . Therefore, we have

Pm ≥ P 3
2 + P 3

3 = 133,

which implies that m ≥ 7 .
Using inequality (2.2), we get

αm−1 > Pm = P x
n + P x

n+1 ≥ P x
n+1 > α(n−1)x,

and
αm−2 < Pm = P x

n + P x
n+1 < (Pn + Pn+1)

x < P x
n+2 < α(n+1)x.

Thus, we have
(n− 1)x+ 1 < m < (n+ 1)x+ 2. (3.1)

Estimate (3.1) is essential for our purpose.
Now, we rewrite the equation (1.1) as

αm

2
√
2
− P x

n+1 = P x
n +

βm

2
√
2
. (3.2)

Dividing both sides of equation (3.2) by P x
n+1 and using the inequality (2.3), we obtain

∣∣∣αm(2
√
2)−1P−x

n+1 − 1
∣∣∣ < 2

(
Pn

Pn+1

)x

<
2

2.3x
. (3.3)

Put
Λ1 := αm(2

√
2)−1P−x

n+1 − 1. (3.4)
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If Λ1 = 0 , then αm = 2
√
2P x

n+1 , so α2m ∈ Z , which is false for all positive integers m . Therefore, one sees
that Λ1 ̸= 0 .

We will use Matveev’s theorem to get a lower bound for Λ1 . Put

s := 3, γ1 := α, γ2 := 2
√
2, γ3 := Pn+1, b1 := m, b2 := −1, b3 := −x.

Note that γ1, γ2, γ3 ∈ Q(
√
2) . Thus, we take D := 2 . Since

h(γ1) = (logα)/2, h(γ2) = (log 8)/2 and h(γ3) = logPn+1 < n logα,

we take
A1 := logα, A2 := log 8, A3 := 2n logα.

Finally, inequality (3.1) implies that m > (n − 1)x ≥ x , so we take B := m . It is also the case that
B := m ≤ (n+ 1)x+ 2 < (n+ 2)x. Hence, Matveev’s theorem implies that

log |Λ1| ≥ −1.4× 306 × 34.5 × 22 × (1 + log 2)(logα)(log 8)(2n logα)(1 + logm)

≥ −3.14× 1012n(1 + logm). (3.5)

Thus, inequalities (3.3) and (3.5) together with (3.4) imply that

x < 3.8× 1012n(1 + logm) < 6.1× 1012n logm,

where we used the fact that 1 + logm < 1.6 logm for m ≥ 7 . Together with the fact that m < (n + 2)x, we
get that

x < 6.1× 1012n log((n+ 2)x). (3.6)

3.2. The case when 2 ≤ n ≤ 85

In this case
x < 6.1× 1012n log((n+ 2)x) < 5× 1014 log(87x),

giving x < 2.2× 1016 . Thus,
m < (n+ 2)x ≤ 87x ≤ 2× 1018.

We consider again Λ1 given by expression (3.4). Put

Γ1 := m logα− log(2
√
2)− x logPn+1.

Thus, Λ1 = eΓ1 −1 . It is easy to see that the right-hand side of (3.2) is a number in the interval [P x
n −1, P x

n +1] .
In particular, Λ1 is positive, which implies that Γ1 is positive. Thus,

0 < Γ1 < eΓ1 − 1 = Λ1 <
2

2.3x
,

so

0 < m

(
logα

logPn+1

)
− x−

(
log(2

√
2

logPn+1

)
<

2

2.3x logPn+1
<

2

2.3x
<

2

(2.31/87)m
. (3.7)
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For us, inequality (3.7) is
0 < mγ − x+ µ < AB−m,

where

γ :=
logα

logPn+1
, µ = − log(2

√
2)

logPn+1
, A = 2, B = 1.009 < 2.31/87.

We take M := 2× 1018 .
For each n in the interval [2, 85] , we take q = q89 to be the denominator of the 89th convergent to γ .

For all n ∈ [2, 85] , we have q > 6M and ε > 0 , so we may apply Lemma 2.2. Furthermore, since the minimal
value of ε is at least 3 × 10−25 and the maximal value of q is 8 × 1051 , Lemma 2.2 tells us that all solutions
(m,x) of inequality (3.7) have

m <
log(8× 1051/(3× 10−25))

log 1.009 < 19650.

For example, if n = 85 , then the terms of the continued fraction of γ are

[0, 84, 1, 4, 1, 1, 3, 3, 1, 1, 7, 3, 1, 1, 2, 12, 1, 1, 4, 2, 1, 11, 2, 1, 1, 1, 1, 2, 17, 4, 1, 66, . . .],

its 89th convergent is

q89 = 412194793035675611609896044432973084247842075719,

and the corresponding ε is

ε = 8.0172343856806690497663453758579692502637207189220 · 10−25.

Therefore, the corresponding bound is 18430 .
Next, since (n− 1)x ≤ m , we have

x ≤ m/(n− 1) < 19650/(n− 1).

A computer search with Maple revealed that there are no solutions to the equation (1.1) in the range n ∈ [2, 85] ,
m ∈ [7, 19650] , and x ∈ [3, 19650/(n− 1)] . A few minutes of computations confirm the result contained in the
main theorem.

From now on, we assume that n ≥ 86 .

3.3. An upper bound on x in terms of n

Recall that, by (3.6), we have
x < 6.1× 1012n log((n+ 2)x).

Next we give an upper bound on x depending only on n . If

x ≤ n+ 2, (3.8)

then we are through. Otherwise, i.e. if n+ 2 < x , we then have

x < 6.1× 1012n logx2 = 1.22× 1013n logx,
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which can be rewritten as
x

logx < 1.22× 1013n. (3.9)

Using the fact that for all A ≥ 3
x

logx < A yields x < 2A logA,

and the fact that log(1.22× 1013n) < 8 logn holds for all n ≥ 86 , we get that

x < 2(1.22× 1013n) log(1.22× 1013n)

< 2.44× 1013n(8 logn)

< 2× 1014n logn.

From (3.8) and the last inequality above we conclude that

x < 2× 1014n logn (3.10)

holds for all n ≥ 86.

3.4. An absolute upper bound on x

Let us look at the element
y :=

x

α2n
.

The inequality (3.10) implies that

y <
2× 1014n logn

α2n
<

1

αn
, (3.11)

where the last inequality holds for all n ≥ 44 . In particular, y < α−86 < 10−32 . We now write

P x
n =

αnx

8x/2

(
1− (−1)n

α2n

)x

,

and

P x
n+1 =

α(n+1)x

8x/2

(
1− (−1)n+1

α2(n+1)

)x

.

If n is odd, then

1 <

(
1− (−1)n

α2n

)x

=

(
1 +

1

α2n

)x

< ey < 1 + 2y,

because y < 10−32 is very small, while if n is even, then

1 >

(
1− (−1)n

α2n

)x

= exp
(
x log

(
1− 1

α2n

))
> e−2y > 1− 2y,

again because y < 10−32 is very small. Thus,∣∣∣∣P x
n − αnx

8x/2

∣∣∣∣ < 2yαnx

8x/2
,
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and of course, a similar inequality holds if we replace n by n + 1 . We now return to our equation (1.1) and
rewrite it as

αm − βm

2
√
2

= Pm = P x
n + P x

n+1 =
αnx

8x/2
+

α(n+1)x

8x/2
+

(
P x
n − αnx

8x/2

)
+

(
P x
n+1 −

α(n+1)x

8x/2

)
,

or ∣∣∣∣ αm

81/2
− αnx

8x/2
(1 + αx)

∣∣∣∣ =

∣∣∣∣ βm

81/2
+

(
P x
n − αnx

8x/2

)
+

(
P x
n+1 −

α(n+1)x

8x/2

)∣∣∣∣
<

1

αm
+

∣∣∣∣P x
n − αnx

8x/2

∣∣∣∣+ ∣∣∣∣P x
n+1 −

α(n+1)x

8x/2

∣∣∣∣
<

1

αm
+ 2y

(
αnx(1 + αx)

8x/2

)
.

Multiplying both sides of it by α−(n+1)x8x/2 , we obtain that

∣∣∣αm−(n+1)x8(x−1)/2 − (1 + α−x)
∣∣∣ < 8x/2

αm+(n+1)x
+ 2y(1 + α−x) <

1

2αn
+

15y

7
<

3

αn
, (3.12)

where we used the fact that 8x/2/(α(n+1)x) ≤ (2
√
2/α86)x < 1/2 , m ≥ (n − 1)x ≥ n and αx ≥ α3 > 14 , as

well as inequality (3.11). Hence, we conclude that

∣∣∣αm−(n+1)x8(x−1)/2 − 1
∣∣∣ < 1

αx
+

3

αn
≤ 4

αl
, (3.13)

where l := min{n, x} . We now set

Λ2 := αm−(n+1)x8(x−1)/2 − 1 (3.14)

and observe that Λ2 ̸= 0 . Indeed, if Λ2 = 0 , then α2((n+1)x−m) = 8x−1 ∈ Z , which is possible only when
(n+1)x = m . However, if this were so, then we would get 0 = Λ2 = 8(x−1)/2− 1 , which leads to the conclusion
that x = 1 , which is not possible. Hence, Λ2 ̸= 0 . Next, let us notice that since x ≥ 3 and n ≥ 86 , we have
that

|Λ2| ≤
1

α3
+

3

α86
<

1

2
, (3.15)

so that αm−(n+1)x8(x−1)/2 ∈ [1/2, 3/2] . In particular,

(n+ 1)x−m <
1

logα

(
(x− 1) log 8

2
+ log 2

)
< x

(
log 8
2 logα

)
< 1.2x, (3.16)

and

(n+ 1)x−m >
1

logα

(
(x− 1) log 8

2
− log 2

)
> 1.1x− 2 > 0. (3.17)

We lower-bound the left-hand side of inequality (3.13) using again Matveev’s theorem. We take

s := 2, γ1 := α, γ2 := 2
√
2, b1 := m− (n+ 1)x, b2 := x− 1.
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As in the previous application of Matveev’s result, we can take

D := 2, A1 := logα, A2 := log 8.

Also, we can take B := 1.2x . We thus get that

log |Λ2| > −1.4× 305 × 24.5 × 22(1 + log 2)(logα)(log 8)(1 + log(1.2x)). (3.18)

Then inequalities (3.13) and (3.18) lead to

l <
log 4
logα + 1.4× 305 × 24.5 × 22(1 + log 2)(log 8)(1 + log(1.2x))

< 1.1× 1010(1 + log(1.2x))
< 1.1× 1010(2.2 logx)
< 2.5× 1010 logx.

Here, we used the fact that 1 + log(1.2x) < 2.2 logx for all x ≥ 3 .
We next distinguish two cases.

Case 1. If l = x , we then obtain that x < 2.5× 1010 logx , so

x < 1012.

Case 2. If l = n , then using (3.10), we obtain that

n < 2.5× 1010 log(2× 1014n logn).

This last inequality above leads to n < 1.7× 1012 , so, by (3.10) once again, we obtain that

x < 2× 1014 × (1.7× 1012) log(1.7× 1012) < 1028.

In conclusion, we have that
x < 1028. (3.19)

3.5. A better upper bound on x

Next, we take

Γ2 := (x− 1) log(2
√
2)− ((n+ 1)x−m) logα.

Observe that Λ2 = eΓ2 − 1 , where Λ2 is given by (3.14). Since |Λ2| <
1

2
, we have that e|Γ2| < 2 , and using

inequality (3.13) we obtain

|Γ2| ≤ e|Γ2|
∣∣eΓ2 − 1

∣∣ < 2 |Λ2| <
2

αx
+

6

αn
.

This leads to ∣∣∣∣∣ log(2
√
2)

logα − (n+ 1)x−m

x− 1

∣∣∣∣∣ < 1

(x− 1) logα

(
2

αx
+

6

αn

)
. (3.20)
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Note first that αn ≥ α86 > 1032 > 104x by estimate (3.19). Assume next that x > 100 . Then αx > 104x .
Hence, we obtain

1

(x− 1) logα

(
2

αx
+

6

αn

)
<

8

(x− 1)104x logα <
1

1100(x− 1)2
. (3.21)

Estimates (3.20) and (3.21) lead to∣∣∣∣∣ log(2
√
2)

logα − (n+ 1)x−m

x− 1

∣∣∣∣∣ < 1

1100(x− 1)2
. (3.22)

By a criterion of Legendre, inequality (3.22) implies that the rational number

(n+ 1)x−m

x− 1

is a convergent to γ := log(2
√
2)/ logα . Let

[a0, a1, a2, a3, a4, a5, a6, . . .] = [1, 5, 1, 1, 3, 3, . . .]

be the continued fraction of γ , and let pk/qk be its k th convergent. Assume that ((n+1)x−m)/(x−1) = pk/qk

for some k . Then x − 1 = dqk for some positive integer d , which in fact is the greatest common divisor of
(n+ 1)x−m and x− 1 . We have the inequality

q54 > 1.08× 1028 > x− 1.

Thus, k ∈ {0, . . . , 53} . Furthermore, ak ≤ 66 for all k = 0, 1, . . . , 53 . From the known properties of the
continued fraction, we have that∣∣∣∣γ − (n+ 1)x−m

x− 1

∣∣∣∣ = ∣∣∣∣γ − pk
qk

∣∣∣∣ > 1

(ak + 2)q2k
≥ d2

68(x− 1)2
≥ 1

68(x− 1)2
,

which contradicts inequality (3.22). Hence, x ≤ 100 .

3.6. The final step

To finish, we go back to inequality (3.12) and rewrite it as

∣∣∣αm−(n+1)x8(x−1)/2(1 + α−x)−1 − 1
∣∣∣ < 3

αn(1 + α−x)
<

3

αn
.

Recall that x ∈ [3, 100] , and using (3.16) and (3.17) we have

1.1x− 2 < (n+ 1)x−m < 1.2x.

Put t := (n+1)x−m . We computed all the numbers
∣∣α−t8(x−1)/2(1 + α−x)−1 − 1

∣∣ for all x ∈ [3, 100] and all
t ∈ [⌊1.1x− 2⌋, ⌊1.2x⌋] . None of them ended up being zero and the smallest of these numbers is > 10−2 . Thus,
1/102 < 3/αn , or αn < 3× 102 , so n ≤ 7 , which is false.
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