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Abstract: We consider the singular Hahn—Dirac system defined by

1
75D7wq*1,q*1y2 +p(fL’) Y1 = >\y17

De gy + 7 () y2 = Ay,

where A is a complex spectral parameter and p and r are real-valued functions defined on (—o0,c0) and continuous
at wo. We prove the existence of a spectral function for such a system. We also prove the Parseval equality and the

spectral expansion formula in terms of the spectral function for this system on the whole line.
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1. Introduction
The theory of Hahn difference operators D,, , (see [13,14]), defined by

[(wtaz) ()
Dw,qf($):{ wrgDa 0 T7 o

I (wo), T = wo

(where ¢ € (0,1) and w > 0), is undergoing rapid development since it provides a unifying structure for the

study of the forward difference operator defined by

flwta) - f(x)

A, = , R
/(@) (w+z)—= ve
and the quantum g-difference operator [19] defined by
qr) — f(x
D,f (z) := 7f( ) = f{ ), x #£ 0.
qr —x

Hahn difference operators are also receiving increased interest due to their applications in the construction of
families of orthogonal polynomials and approximation problems (see, e.g., [7,10,21-22,25] and the references

therein).
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In the literature there exist some papers studying Hahn difference equations. In [16], the authors studied
the theory of linear Hahn difference equations. They also studied the existence and uniqueness of the solutions of
initial value problems defined via Hahn difference equations. In 2016, Hamza and Makharesh [17] investigated
Leibniz’s rule and Fubini’s theorem in association with the Hahn difference operator. Sitthiwirattham [26]
investigated the nonlocal boundary value problem for nonlinear Hahn difference equations. Recently, in [9], the
regular Hahn—Sturm-Liouville problem was studied. Annaby et al. [9] defined a Hilbert space of w,g-square
summable functions. They also discussed the formulation of the self-adjoint operator and investigated the
properties of the eigenvalues and the eigenfunctions. Furthermore, they constructed Green’s function and gave
an eigenfunction expansion theorem. In [18], the author introduced the w, g-analogy of the Dirac system. Hira
also investigated the existence and uniqueness of the solutions of this problem and gave its spectral properties.
In general, when we solve a partial differential equation by the method of separation of variables, we match
the problem with expanding an arbitrary function as a series of eigenfunctions. Thus, spectral expansion
theorems are essential for solving various problems in mathematics. The eigenfunction expansion is obtained
by several methods, such as the methods of integral equations, contour integration, and finite difference (see
[2-6,11-12,23,27]).

In this work, we obtain the Parseval equality and a spectral expansion formula in terms of the spectral

function for a singular one-dimensional Hahn—Dirac system defined by

1
Lly = 75D7wq*1,q*1y2 +p (l’) Y1 = )\yh (1)
Loy := Dy, gy + 7 () y2 = Ay2, (2)

where A is a complex spectral parameter and p and r are real-valued functions defined on R := (—00,00) and

continuous at wy.

2. Preliminaries
In this section, we provide some preliminary material related to Hahn calculus. For more details, the reader

may refer to [8,9,13,14]. For our purposes, we shall assume that ¢ € (0,1) and w > 0.

Let us define wy :=w/ (1 — ¢) and let I be a real interval containing wy.

Definition 1 ([13,14 )/Let f: I — R be a function. The Hahn difference operator is defined by

flwtgz)—f(z)
Dyyqf (x) = { wt(g-Dz > 7 # wo,

f/(wo)a T = Wwo,

provided that f is differentiable at wo. In this case, we call D, 4f the w,q-derivative of f.

Remark 2 The Hahn difference operator unifies two well-known operators. When g — 1, we get the forward

difference operator, which is defined by

flwta) - f(x)
(wHa)—=

Awf (:L') = , T E R.

When w — 0, we get the Jackson q-difference operator, which is defined by

f(gz) — f(z)

qu(l’) = (qx)—m

, x #0.
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Furthermore, under appropriate conditions, we have

m D,y f (2) = f ().

w—0

Now we will present some properties of the w, g-derivative.
Theorem 3 ([8]) Let f,g: I — R be w,q-differentiable at x € I and h(x) :=w + qx. Then we have:
i) Dy.q (af +bg) () = aDy o f (x) +bDy 49 (x) ,a,b € I,

it) Dyq (£9) (2) = Dug (f () g (2) + f (w + 2q) De 49 (2) ,

1) (g) = Dealf@)o@)~f @)D gole)
i) DM(Q)(”“")_ R T —

i) Dy of (h_1 (sc)) =D_yg-141f(2), h=t(z) =q Yz —w)

for all x € I.
The w, g-integral of function f can be defined as follows.

Definition 4 (Jackson-Norlund integral [8]) Let f: I — R be a function and a,b,wy € I. We define the

w, q-integral of the function f from a to b by

/abf(f) du,q (7) = /u: () dy,q(x) — /w:f(x) g (),
>,x6[,

provided that the series converges at x = a and x =b. In this case, [ is called w,q-integrable on [a,b].

where

[ 1oy = (-2 - Zq”f(

0

Similarly, one can define the w, g-integral of the function f over R by

0o wo b
[ 1@y @)=t [ f @y @)+ Jim [ F @) d (o).

——cc /,

The following properties of w, g-integration can be found in [8].

Theorem 5 ([8]) Let f,g : I — R be w,q-integrable on I. Moreover, let a,b,c € I, a < ¢ < b , an

6,0 € R. Then the following formulae hold:
i) [ A0S (@) + 09 (0)} dug () = 8 [} f (2) durg (2) + 6 [ g (&) dug (@),
i) [ f(2)du,q(z) =0,
iii) [} f (%) duq () =[5 (2) dug (2) + [ f (@) durg (@),
i) [0 F(2)dug (@) =~ [ £ (2)dug (2).
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Now we present the w, g-integration by parts.

Lemma 6 ([8]) Let f,g : I — R be w,q-integrable on I and let a,b € I with a < b. Then the following
formula holds:
b

b
[ 10 Do @) @)+ [ 90+ 00) Do () sy (0
=f(b)g(®)—f(a)g(a).
The next result is the fundamental theorem of Hahn calculus.

Theorem 7 ([8]) Let f: 1 — R be continuous at wg. Define

Fz) = /zf(t)dw,q(t), vel

0

Then F is continuous at wy. Moreover, D, (F (z) exists for every x € I and D, (F (z) = f (x). Conversely,

b
/ Doy F (2) duv g () = £ (b) — f (a) .

Let Li ¢ (R) be the space of all complex-valued functions defined on R such that
1/2

1= ([ 1@ duge) <.

The space Li,q (R) is a separable Hilbert space with the inner product

o= [ (@) 3@ gz, fig € 12, (R)

(see [8)]).
We introduce a convenient Hilbert space H :Li,q(]R; E) (E := C?) of vector-valued functions, by using

the inner product

)= | T (F@). g(@)) pdu g

—0o0

where (.,.)5 denotes the standard inner product in C? :

2
&g = Z&jij'
j=1

vor- (1) r0-(280)

Then we define the Wronskian of y (z) and z (z) by the formula

Let

W (y,2) (z) =y (x) 22 (h™" (2)) = 21 () 2 (R (2)) (z €R).
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3. Main results
First we will prove that the regular Hahn—Dirac problem defined by (1)—(2) has a compact resolvent operator;
thus, it has a purely discrete spectrum.

Let [wo—q~ ", wo+q~ "] be an arbitrary finite interval, where k € N := {1,2, 3, ...}. Consider the boundary
value problem defined by (1)—(2), with the boundary conditions

s (wo — g") cosar -+ (wo — g ) sina = 0, 5
ya (wo+ ¢ ") cosB+y1 (wo+q *)sinf=0, o, €ER, K €N.

We will denote by

A= (G308 ) mamen = (263

the solution of the system (1)—(2), which satisfies the initial conditions
p11 (wo, A) =1, p12 (wo, A) =0, @21 (wo, A) =0, 22 (wo, A) = 1. (4)

Let us define Green’s matrix by the formula

T
Gt N = oz | e ), rr o)

We will show that the function

wo+q
y () = / G (2,1 0) (1) du gt (6)

wo—q—"

is the solution of the nonhomogeneous system

7q71D7wq*1,q*1y2 + {p (:17) - )‘} Y1 = fl (I) ) (7)

Dy gy +{r () = Ay y2 = f2 (), (8)
where

ro=( 1) e uln - w+ B,

which satisfies the boundary conditions (3).

It follows from (6) that

_ 1 " ! 1 (8, A) f1(t)
B W(%@Lﬁpz)(pm( ’/\)»/w ( +p12 (8, A) f2 (1) >dw’qt
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Y2 (xv )‘)
_ 1 - ’ e11 (6, A) f1 ()
N W(QO1,<,02)9022( X /wo_q—n ( +p12 (t,A) fa (2) )dw’qt
1 wota™" @21 (£, A) f1 (1)
e @Y / ( LA )dw,qt. (10)
From (9), we have
Dy qy1 (2, A)
I . ! e11 (t,A) f1(t)
B W(901,¢2)Dw’q<p21( N /woqn ( +p12 (t,A) fa (2) )dw’qt
1 Lot oo (5,0) f1 (1)
W (¢1,¢ )D P (x,)\)/x ( +p22 (8, ) f2 (t) )dw’qt
W (p1p2) fa ()
Wipnea) P

1
- m {r (@) = A} ez (CIU»)\)/QE

+fa(2) = = {r(x) = Az (2) + f2 (2).

The validity of (7) is proved similarly. Hence, the function y (z,\) in (6) is the solution of the system (7)—(8).
We check at once that (6) satisfies the boundary conditions (3).

Now we need the following.

Definition 8 A matriz-valued function M (x,t) of two variables with wo — ¢~ " < x,t <wp+ ¢~ " is called the
w, q-Hilbert-Schmidt kernel if

K

wo+q~ " pwotq” )
/‘ / 1M (2, 6)|1% d g gt < +00,
W

wo—q~" o—q— "

where the norm ||.||; denotes the standard norm in E.
Theorem 9 ([24]) If

> lag* < +o0, (11)

ij=1
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then the operator A, defined by the formula
Afzit ={y;} (i eN),
where {x;};cn > {¥itien € 12 and

oo
vi =Y ayz; (i €N), (12)
j=1

is compact in the sequence space 2.

Without loss of generality, we can assume that A = 0 is not an eigenvalue. Then we have

T
G (2,1) = G (2,,0) = m { R T (13)

Theorem 10 The function G (x,t) defined by (13) is a w, q-Hilbert—Schmidt kernel.
Proof By the upper half of formula (13), we have
wo+q~ " x )
[ e [ 6@ dut < 40,
wo—q ™" wo—q "
and by the lower half of (13), we have

K K

wo+q wotq 5
[ e [ 16 @O gt < o0
wo—q— " x

since the inner integral exists and is a linear combination of the products ¢;; (z) s () (4,7,8,1 = 1,2), and
these products belong to Li,q((wo — ¢ ",wo + ¢ "); E) because each of the factors belongs to Li’q((wo —
q ", wo+ ¢ *); E). Then we obtain

wo+q~ wo+q~ " 9
/ / 1G (@, D2 do g gt < +00. (14)

0o—q~ " 0—q~

Theorem 11 The operator K defined by the formula

K

wo+q

(K f) () = / G (1) [ (1) du ot

wo—q~"
is compact in Liq((wo —q " wo+q ") E).
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Proof Let ¢; = ¢;(t) (i € N) be a complete, orthonormal basis of L2 ,((wo — ¢~ ",wo + ¢~*); E). Since
G (z,1) is a w, g-Hilbert—Schmidt kernel, we can define

wotq™ "
zi = (foi) = / (F (8) 2 (8) i,

0—q~— "

wo+q ™"

yi = (g,01) = / (9 (&) () pd gt

o—q— "

K

wo+q~ wo+q~
Aij = / / (G (CE, t) 1;[}1' (t) 71/1;' (t))Edw,qzdw,qt (Z,j S N)

Then Li’q((wo — ¢ ", wo + ¢ "); E) is mapped isometrically into [2. Consequently, our integral operator

transforms to the operator defined by formula (12) in the space [? by this mapping, and condition (14) is
translated into condition (11). It follows from Theorem 9 that this operator is compact. Therefore, the original

operator is compact and it has a purely discrete spectrum. O

Let po , 441 , f4+2 , ... be the eigenvalues and &y , P11 ,Pis ... be the corresponding eigenfunctions of
the problem defined by (1)—(3), where

_( Pu(z) —
®, (z) = ( s () ) (neZ:=(0,£1,+£2,...).

Since the solutions of this problem are linearly independent, we get

P, () = pn1 (%, o) + onp2 (T, ) (n € Z).

There is no loss of generality in assuming that |p,| <1 and |o,| < 1. Now let us set
) wotq™ " 9
B[ e @ duge
wo—q~"

Let

Q)= < jﬁ; 8 > € Ly ((wo — ¢ " wo+q7"):R?).

If we apply the Parseval equality to the vector-valued function f (.), then we obtain

wot+q~ " )
/ 1 @I doge

wo—q~"
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e 1 wo+q~ " 2
=3 7{/ o (f(x)mbn(x))Edw,qx}
| wotq™ " 2
= Z 2 {/ (f (I) y PnP1 (l‘,/,bn) + onp2 (l‘vﬂn))E dw,qx}
n=-—o0o T wo—q~"
Sl p2 wo+q~ " 2
= — L), T, tn dw, x
PIg- {/ (@), 01 (@, ) g }

—K

wo+q

+2 i p”‘;"f[{/w

ne—oo Tn j=1

(f (Z‘) ) Py (Z‘, /J’n))E dwﬂ‘x}

o—q— "

K

(e’ 0_2 wo+q~ 9
+ Z 7727: {/woqﬁ (f (I),@Q (‘T’H’”))E dqu:p} .

n=-—o0
Now we will define the nondecreasing step function €;; ,—~ (4,5 =1,2) on (wo — ¢~ ", wo + ¢~ ") by

2
P
= 2 p<pn <0 5, forp<0

Qll,q**" (1) =
D 0<in<n 5—% for p > 0,

Pnon
Eu<un<0 T, for 4 <0

912,(17,1 (/J/) = { PnOn

0<pn<p 52 for u > 0,

Ql?,q"‘ (N) = 921,1;—“ (1)

SN

g

-] “Zucmaf foru<o

0_2

ZOSH1L<MT§ for p > 0.
It follows from (15) that

K

wo+q 5 o 2
W@ dage = [ 3T R B )i (),

wo—4q %04 ,j=1

where

—K

wo+q
F (1) / (F (@) 01 1) s g (= 1,2).

Now we recall some definitions.
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Definition 12 A function [ defined on an interval [a,b] is said to be of bounded variation if there is a constant
C > 0 such that

SOIf (@) = flar-)| < C

k=1

for every partition
a=20<x1 < ..<xp=0> (17)

of [a,b] by points of subdivision xg,21,...,Tn. see ([20]).
Definition 13 Let [ be a function of bounded variation. Then, by the total variation of f on [a,b], denoted

b
by V (f), we mean the quantity
b n
Vi(f):= sup » | (z) = f (zr-1)],
k=1
where the least upper bound is taken over all (finite) partitions (17) of the interval [a,b] (see [20]).

Lemma 14 There exists a positive constant A = A (€), € > 0, such that

3
Yg {Qij,q_" (/u‘)} <A (Zvj = 172) ) (18)

where A does not depend on ¢~ *.

Proof By equality (4), we deduce that

Pij (w07ﬂ) = 6ij (27] = 172)7

where d;; is the Kronecker delta. Thus, there exists a £ > 0 such that

pis (wo, ) — 0i5] <&, >0, |u| <& z € [wo—q ", wo+q"]. (19)

Let fi (x) = < Jia () ) be a nonnegative vector-valued function such that fi1 (z) vanishes outside the interval

Jr2 ()
[wo — ¢~ ", wo + ¢ ] with

3

wo+q~
/ fkl (SC) dw,qx = ]-7 (20)

wo—q~"
and fro () = 0. Set

—K

wo+q
Fir (p) = / (fi (@), 0i) p dw g

wo—q~"

= ” Jir (@) i1 (z,p) dy gz (i =1,2).

wo—q~"
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By using (19) and (20), we obtain
|Fik (p) — 1] <&, |[Fax (W] <&, [p| <& (21)

Applying the Parseval equality to fi (z), we obtain

wo+q~ ) 3 ,
/ Jia (@) dy g > /5 F. () Qg (1)
wo—q~" —

¢ ¢
+2/5 Fuy, () Far (1) d2,4-= (1) +/6 Fop, (1) d2,4-+ (1)

13 13
> /E Fo, (1) dq g—n (1) — 2/5 |Fu (10)] [ For ()] |d€2,g—n (10)] -

By virtue of (21), we get

wo+q™ " )
/ Jia () duw g

o—q—"

13 13
> /—6 (1—e)” dy - (1) — 2/—65 (14€) |dQa,4-~ (1)

=(1- 5)2 (911,q—f» (§) = Qi g~ (_f))

— 25 (1 + E) f/g {ng’q—n (,U)} .

Since

3 1

Yé { Qa4 (W)} < 3 [Q11,4-x (&) = Q1 g—n (=€) 4+ oz g—n (§) — Qoo g (=E)], (22)
we have

wo+q ™"
[ @ > =39 (R (O~ e (-0}
—e(l+¢) {922711*” (§) = Qa2 4= (—5)} . (23)
Let
_{ 9r(x)
gk (z) = < 9:2 (z) >

be a nonnegative vector-valued function such that g2 () vanishes outside the interval [wo — ¢~ ", wp + ¢~ "]

with
wo+q~ "
/ gr2 () du,qr =1,

wo—q~"
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and g1 (x) = 0. Similar arguments apply to the function g (z), and we obtain

wo+q
/ 02 (2) dy g > (1~ 32) { Qg g (€) — Vingr (—))}

o—q—"

—e(l+e¢) {Qll,q_“ (&) = Qu1,q-+ (_f)} : (24)

Adding inequalities (23) and (24), we conclude that

wo+q~ "
/ {2 (5) + g2 (2) } dugn

wo—q~"

> (1 —de — 52) { Qll,q*” (5) - Qél,q*” (_g)) } .

If we choose € > 0 such that 1 — 4e —e? > 0, then we obtain the assertion of the lemma for the functions
Q1,4+ (=€) and Qg 4« (=), relying on their monotonicity. From (22), we obtain the assertion of the lemma

for the function Q5 -« (=£). O

Now, for the convenience of the reader, we recall the following.

Theorem 15 ([20]) Let (wy,) be a uniformly bounded sequence of real, nondecreasing functions on a finite

neN
interval a <y <b. Then there exists a subsequence (wy,),cy and a nondecreasing function w such that

lim w,, (1) =w(p), a < p<b.

§—00

Theorem 16 ([20]) Assume that (wy),cy @5 a real, uniformly bounded sequence of nondecreasing functions

on a finite interval a < p <b, and suppose that

lim wy, (p) =w(p), a<p<b

n—oo
If f is any continuous function on a < u < b, then

b

b
tiw [ f () dn () = [ £ (0w ().

n— oo a

Now let ¢ be any nondecreasing function on —oo < pu < oco. Denote by LZ (R) the Hilbert space of all
functions f : R — R measurable with respect to the Lebesgue—Stieltjes measure defined by ¢ and such that

/_°° £ () do () < oo,

with the inner product

o), [ T W g () de ().

The main results of this paper are the following three theorems.
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Theorem 17 Let
_( () 2 .2
f() - ( f2 () ) € Lw,q(RaR )

Then there exist monotonic functions Qq1 (@) and Qoo (1), which are bounded over every finite interval, and a

function Qyo (), which is of bounded variation over every finite interval with the property

o) fo%e) 2
[ 1 @ldege = [ 37 F ) B ()0 (), (25)

- i.j=1

where

K

wo+q
Fi () = lim / (F (@), i (5 18)) s g (3 = 1,2).

k—o0 wo—q—*

The matrix-valued function Q = (Q45)7,_; (12 = Q1) is called a spectral function for the system
(1)-(2).

Proof Assume that the real-valued function f, ()= < j:l” Eg ) satisfies the following conditions:
2n

1) fn (z) vanishes outside the interval [wo — ¢, wo + ¢~ "], where ¢~™ < ¢~ ".
2) The functions f,, (z) and D, 4f, (z) are continuous at wy.

If we apply the Parseval equality to f, (z), then we get

K

wot+q~ " 9 0 1 wo+q~ 2
/ 1o @ dugr = 3 { / (fa (2), @, <x>>Edw,qx} . (26)
wo—g~™ Vi | Ywo—g

S§=—00

Via the w, g-integration by parts, we see that

wo+q
/ (fn (x)v(I)S (I))E dquz

1 wo+q

_ L / fin (2) (L1®.) () dy g
Hs Jwo—q=r
1 wo+q~ "
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Then we have

wo+q ™" 2
> 5 { /w (fn (2), @, (x))Edw,qx}

0o—q— "

wo—gq~"

= 1{/ +{ e }d“’qx}Q

[ ) bl

1 = 1
=P v{

wo—q—"

2 D Lafa)? (@) + (Lafa)? (2)} g

= 52 e

By virtue of (26), we obtain

wotq " 9 1 wot+q " 2
[ @l Y S8 (a@), 0 @) dage
wo=q " ~e<p<e 15 womamr
1 wo+q~ " 1 2
< ?/ |:_D—wq_1,q_1f2n ({L‘) +p($) fln (&U):| dw,qx
wo—q~"

wo+q~ "
‘1‘5% /o—q" [Des.g fin (2) + 7 () fon ()] dy g

w

K

wo+q 2
> 712{/ o (fn(x)@s(x»Edw,qx}

—E<ps<E

Furthermore, we have

1 wotq™ " i
= Z ? {/ (fn (), psipr (m, ps) + o502 (2, 1)) 5 d‘*”qm}

—6<ps<g 0=q™"

where
wo+q~ "
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Therefore, we have
w + 2 £ 2
L @) g = S5 522 51 Fom (1) Fi (1) A5 (10)
—n 2
< & o [ FAD g fon (@) (@) fin (2)] duge (27)

+25 o [Duafin (@) + 7 (2) fan (@) dug.

By Lemma 14 and Theorems 15 and 16, we can find a sequence {¢~"} such that the functions €;; ,—»; (1)

converge to a monotone function €;; (1) as k; — oo. Passing to the limit with respect to {¢="} (as k; — 00)
n (27), we get

n

wo+q
[ ey [ 5 B B 00
wo—g~"

3,7=1

n

wo+q 2
ca [ [P @) ) )] e

q

1 wo+q™ "

62 wo—q~— "

+ [Dw,qfln (z) +7 () fon (x)]Q disq®.

As & — oo, we get

[ e = [ R B a0, )

0—4q i,5=1

Now let f(.) € L2 ,(R;R?). Let us choose functions {f, (x)} satisfying conditions 1 and 2 and such that

lim ||f( ) = fn @5 dugz = 0.

n—ro0

Let

Fo ) = [ (@) 01 ) p g = 1,2).
Then we have

[ 1@ e = [ 5 Pt B 1000, )

1,5=1

Since

e 2
/ o (@) = foy (@)% s g = 0 25 1, 72 = 00,
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we get

| o () B (1) = Fo () Py 1) 2 (0

- / 1o @) = o @) ]2 dpgr = 0

as 11,72 — oo. Therefore, there exists a limit function F; (i = 1,2), which satisfies

[ U@l = [ F) F (a9, (o).

4,J=1

by the completeness of the space L (R).
Now we will show that the sequence (K,;) (¢ =1,2) given by

n

wo+q
Ko (1) = / (F (@) 1 0 (2, 1))

o—q~"

converges to F; (i = 1,2) as n — oo, in the metric of the space L3 (R). Let g be another function in
L2, ,(R;R?). By similar arguments, G; (i = 1,2) can be defined by g.

It is obvious that

/°° 1 @) — g (@)% duga

o 2
= [ () = G ) (85 ()~ G ()} ().

Let

_J f(@), z€wo—q " wo+q"]
g() = { 0, otherwise.

Then we have

o 2
/ ST {F (1) = Koi (1)) (Fy (1) — Koy (1))} 425 (1)

=1

n

wo—q 5 [e%e] 5
= [ W@l [ 1@l 50 (o).
—o0 wo+q~"

which proves that (K,;) converges to F; (i =1,2) in L3 (R) as n — oo. O

Theorem 18 Suppose that
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and F; (), G; (n) (i =1,2) are the Fourier transforms of f and g, respectively. Then we have

o] o) 2
| G@g@pdage= [ 3 F0 G5 ()% (),

- —04,5=1
which is called the generalized Parseval equality.

Proof It is clear that F' G are the transforms of f F g. Therefore, we have

| 1@+ 9@l e

— 00

and

|15 @ =@l e

= [ )~ G ) (B () = Gy ) s ).

ij=1

By these equalities, we get the desired result.

Theorem 19 Let
_( H() 2 (. 2
ro=( 11 ) e, mr
Then the integrals

| R et ) 65 =1.2)

converge in Liyq(R; R?). Consequently, we have
o 2
F@ = [ e o d ).
T 4,5=1
which is called the spectral expansion formula.
Proof Take any function f,, € Li’q(R; R?) and any positive number m, and set
2

fm (@) :/m > Fi(p) e () dij ().

Let
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be a vector-valued function that is equal to zero outside the finite interval [wo — ¢~ 7, wo + ¢~ 7], where ¢~ 7 <

q~". Thus, we obtain

wo+q~ "
/ (o (2) 19 (@) p o g2

wo—q~ 7"

I
[
3
[
e
S
—N—
e
S €
| [=)
Q +
I <
Bl |
o
&
AS)
S
&
E
=
S
&
Q
8
——
IS
=
<
=

I
—
3
[
3
=
9
s
U
=
<
S
)
x

From Theorem 5, we get

2

/Oo (f (2),9(2))p duwqr = /OO > Fi(1) G () dij (u) - (29)

> T 4,5=1
By (28) and (29), we get

(F =t = [ D7 F0) Gy () ).

[u|>m ij=1

If we apply this equality to the function

_ S F@) = fm (@), xefwo—g™" wo+q7"]
9(@) = { 0, ’ otherwiseo,

then we get

2
£ =l < Y0 [ R B )9 (),

ij=1"lul>m

Letting m — oo yields the expansion result. O
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