A new general subclass of m-fold symmetric bi-univalent functions given by subordination

Arzu AKGÜL ${ }^{*}$
Department of Mathematics, Faculty of Arts and Science, Kocaeli University, Kocaeli, İzmit, Turkey

Received: 21.02.2019 • Accepted/Published Online: 15.04.2019 • Final Version: 29.05 .2019

Abstract

In a recent work, Orhan et al. (Afrika Matematika, 2016) defined a subclass of analytic bi-univalent one-fold symmetric functions. The main purpose of this paper is to generalize and improve the results of Orhan et al.

Key words: Analytic functions, m-fold symmetric bi-univalent functions, coefficient bounds, subordination

1. Introduction

Let A denote the family of analytic functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

in $U=\{z:|z|<1\}$ and $S=\{f \in A: f$ is univalent in $U\}$.

Theorem 1 [8] The range of every function of class S contains a disk of radius $\frac{1}{4}$.
By Theorem 1, every function $f \in A$ has an inverse f^{-1} defined by

$$
f^{-1}(f(z))=z \quad(z \in U)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2}
\end{equation*}
$$

A function $f \in A$ is called bi-univalent if both f and f^{-1} are univalent in U. We say that f is in the class Σ for such functions. The function $f \in A$ is said to be subordinate to another analytic function g, shown as

$$
\begin{equation*}
f(z) \prec g(z) \tag{3}
\end{equation*}
$$

[^0]
AKGÜL/Turk J Math

provided that there is an analytic function w defined on U with

$$
w(0)=0 \text { and }|w(z)|<1
$$

fulfilling the following condition:

$$
f(z)=g(w(z))
$$

For each function $f \in S$, the function

$$
\begin{equation*}
h(z)=\sqrt[m]{f\left(z^{m}\right)} \quad(z \in U, \quad m \in \mathbb{N}) \tag{4}
\end{equation*}
$$

is univalent and maps the unit disk U into a region with m-fold symmetry. A function is called m-fold symmetric (see [18]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in U, \quad m \in \mathbb{N}) \tag{5}
\end{equation*}
$$

We say that f is in the class S_{m} for such functions, which are normalized by series expansion (5). The series expansion for f^{-1} is given as follows:

$$
\begin{align*}
g(w)= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \tag{6}\\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots,
\end{align*}
$$

where $f^{-1}=g$. This form was recently given in [18]. Σ_{m} denotes the class of such functions. Recently, many authors investigated bounds for various subclasses of m-fold symmetric bi-univalent functions (see [1, 2, 4$6,15,16,19]$).

In the present work, we also use the symbol \mathcal{P} denoting the class of analytic functions of the form:

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots
$$

such that

$$
R(p(z))>0 \quad(z \in U)
$$

According to the study in [14], the m-fold symmetric function p in the class \mathcal{P} has the following form:

$$
\begin{equation*}
p(z)=1+p_{m} z+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{7}
\end{equation*}
$$

Assume that φ is an analytic function together with positive real part in U such that

$$
\varphi(0)=1 \quad \text { and } \quad \varphi^{\prime}(0)>0
$$

and $\varphi(U)$ is symmetric with respect to the real axis. The function φ has a series expansion of the following form:

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots\left(B_{1}>0\right) \tag{8}
\end{equation*}
$$

AKGÜL/Turk J Math

Let $u(z)$ and $v(z)$ be two analytic functions in U with

$$
u(0)=v(0)=0 \quad \text { and } \quad \max \{|u(z)|,|v(w)|\}<1
$$

Observe that

$$
\begin{equation*}
u(z)=b_{m} z^{m}+b_{2 m} z^{2 m}+b_{3 m} z^{3 m}+\cdots \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=c_{m} w^{m}+c_{2 m} w^{2 m}+c_{3 m} w^{3 m}+\cdots \cdot \tag{10}
\end{equation*}
$$

Also, we notice that

$$
\begin{equation*}
\left|b_{m}\right| \leq 1,\left|b_{2 m}\right| \leq 1-\left|b_{m}\right|^{2},\left|c_{m}\right| \leq 1, \quad\left|c_{2 m}\right| \leq 1-\left|c_{m}\right|^{2} \tag{11}
\end{equation*}
$$

By some simple calculations we can state that

$$
\begin{equation*}
\varphi(u(z))=1+B_{1} b_{m} z^{m}+\left(B_{1} b_{2 m}+B_{2} b_{m}^{2}\right) z^{2 m}+\cdots(|z|<1) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(v(w))=1+B_{1} c_{m} w^{m}+\left(B_{1} c_{2 m}+B_{2} c_{m}^{2}\right) w^{2 m}+\cdots(|w|<1) \tag{13}
\end{equation*}
$$

The aim of this paper is to introduce a new subclasses $\mathcal{S}_{\Sigma_{m}}^{\varphi}(\lambda, \mu)$ of Σ_{m} and derive estimates on the initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in $\mathcal{S}_{\Sigma_{m}}^{\varphi}(\lambda, \mu)$, motivated essentially by the work of Ma and Minda [11].

2. Coefficient estimates for $\mathcal{S}_{\Sigma_{m}}^{\varphi}(\lambda, \mu)$

Definition 2 For a function $f \in \Sigma_{m}$, we say that $f \in \mathcal{S}_{\Sigma_{m}}^{\varphi}(\lambda, \mu)$ if the following conditions are satisfied:

$$
\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right) \prec \varphi(z) \quad(\lambda \geq 1, \quad \mu \geq 0, \quad z \in U)
$$

and

$$
\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right) \prec \varphi(w) \quad(\lambda \geq 1, \quad \mu \geq 0, w \in U)
$$

where the function $g=f^{-1}$.

Remark 3

1. Letting $\mu=1$, we have the class

$$
\mathcal{S}_{\Sigma_{m}}^{\varphi}(\lambda, 1)=B_{\Sigma_{m}}(\lambda, \varphi)
$$

(see Def. 4 in [19]).

AKGÜL/Turk J Math

2. For $\mu=1$ and $\lambda=1$ we have the class

$$
\mathcal{S}_{\Sigma_{m}}^{\varphi}(1,1)=\mathcal{H}_{\Sigma, m}(\varphi)
$$

(see Def. 4 in [19]).
3. For $\mu=0$ and $\lambda=1$, we have the class of m-fold symmetric bi-starlike functions (see [10]). In the case of one-fold symmetric functions, we have the following classes:
4. For $m=1$, we have the class

$$
\mathcal{S}_{\Sigma_{1}}^{\varphi}(\lambda, \mu)=N_{\Sigma}^{\mu, \lambda}(\varphi)
$$

(see [12]).
5. For $m=1, \lambda=1$, and $\mu=1$, we have the following class:

$$
\mathcal{S}_{\Sigma_{1}}^{\varphi}(1,1)=H_{\Sigma}^{\varphi}
$$

(see [3]).
For $\varphi=\left(\frac{1+z}{1-z}\right)^{\beta}$ and for $\varphi=\left(\frac{1+(1-2 \alpha) z}{1-z}\right)$, we have the following classes:

$$
\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+z}{1-z}\right)^{\beta}}(1,1)=\mathcal{H}_{\Sigma}^{\beta}(0<\beta \leq 1)
$$

and

$$
\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+(1-2 \alpha) z}{1-z}\right)}(1,1)=\mathcal{H}_{\Sigma}^{\alpha}(0 \leq \alpha<1)
$$

respectively (see [17]).
6. For $m=1$ and $\mu=1$, we have the following class:

$$
\mathcal{S}_{\Sigma_{1}}^{\varphi}(1, \lambda)=R_{\Sigma}(\lambda, \varphi), \quad \lambda \geq 0
$$

(see [3]).
For $m=1, \mu=1$, and $\varphi=\left(\frac{1+z}{1-z}\right)^{\beta}$ and for $\varphi=\left(\frac{1+(1-2 \alpha) z}{1-z}\right)$, we have the following classes:

$$
\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+z}{1-z}\right)^{\beta}}(\lambda, 1)=\mathcal{B}_{\Sigma}(\beta, \lambda), \quad(0<\beta \leq 1, \lambda \geq 1)
$$

and

$$
\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+(1-2 \alpha) z}{1-z}\right)}(\lambda, 1)=\mathcal{B}_{\Sigma}(\alpha, \lambda), \quad(0 \leq \alpha<1, \lambda \geq 1)
$$

respectively (see [17]).
7. For $m=1$ and $\lambda=1$, we have the class

$$
\mathcal{S}_{\Sigma_{1}}^{\varphi}(1, \mu)=\mathcal{F}_{\Sigma}^{\mu}(\varphi)(\mu \geq 0)
$$

(see [19]).
8. For $m=1, \mu=0, \lambda=1$, and $\varphi=\left(\frac{1+z}{1-z}\right)^{\beta}$ and for $\varphi=\left(\frac{1+(1-2 \alpha) z}{1-z}\right)$, we have the following classes:

$$
\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+z}{1-z}\right)^{\beta}}(1,0)=\mathcal{S}_{\Sigma, \beta}^{*}, \quad(0<\beta \leq 1)
$$

and

$$
\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+(1-2 \alpha) z}{1-z}\right)}(1,0)=\mathcal{S}_{\Sigma}^{*}(\alpha), \quad(0 \leq \alpha<1)
$$

respectively (see [12]).
9. For $m=1, \varphi=\left(\frac{1+z}{1-z}\right)^{\beta}$ and for $\varphi=\left(\frac{1+(1-2 \alpha) z}{1-z}\right)$, we have the following classes:

$$
\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+z}{1-z}\right)^{\beta}}(\lambda, \mu)=N_{\Sigma}^{\mu, \lambda}(\beta), \quad(0<\beta \leq 1, \lambda \geq 1, \mu \geq 0)
$$

and

$$
\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+(1-2 \alpha) z}{1-z}\right)}(\lambda, \mu)=N_{\Sigma}^{\mu, \lambda}(\alpha), \quad(0 \leq \alpha<1, \lambda \geq 1, \mu \geq 0)
$$

respectively (see [7]).

Theorem 4 Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{m}}^{\varphi}(\lambda, \mu)$. Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{\left|B_{1}^{2}(\mu+2 m \lambda)(\mu+m)-2 B_{2}(\mu+m \lambda)^{2}\right|+2 B_{1}(\mu+m \lambda)^{2}}} \tag{14}
\end{equation*}
$$

and
$\left|a_{2 m+1}\right| \leq\left\{\begin{array}{cl}\left(\frac{m+1}{2}-\frac{(\mu+m \lambda)^{2}}{(\mu+2 m \lambda) B_{1}}\right) \frac{2 B_{1}^{3}}{\left|B_{1}^{2}(\mu+2 m \lambda)(\mu+m)-2 B_{2}(\mu+m \lambda)^{2}\right|+2 B_{1}(\mu+m \lambda)^{2}}+\frac{B_{1}}{\mu+2 m \lambda} & , \quad B_{1} \geq \frac{2(\mu+m \lambda)^{2}}{(m+1)(\mu+2 m \lambda)} \\ \frac{B_{1}}{\mu+2 m \lambda} & , \quad B_{1}<\frac{2(\mu+m \lambda)^{2}}{(m+1)(\mu+2 m \lambda)}\end{array}\right.$
where $\lambda \geq 1, \quad \mu \geq 0$.

AKGÜL/Turk J Math

Proof Let $f \in \mathcal{S}_{\Sigma_{m}}^{\varphi}(\lambda, \mu)$. Then there are two analytic functions $u: U \rightarrow U$ and $v: U \rightarrow U$, with

$$
u(0)=v(0)=0
$$

satisfying the following conditions:

$$
\begin{equation*}
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}=\varphi(u(z)) \quad \text { and } \quad(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}=\varphi(v(w)) \tag{16}
\end{equation*}
$$

Using the equalities (12) and (13) in (16) and by equating the coefficients in equation (16), we have

$$
\begin{gather*}
(\mu+m \lambda) a_{m+1}=B_{1} b_{m} \tag{17}\\
(\mu+2 m \lambda)\left(\frac{\mu-1}{2} a_{m+1}^{2}+a_{2 m+1}\right)=B_{1} b_{2 m}+B_{2} b_{m}^{2} \tag{18}
\end{gather*}
$$

and

$$
\begin{gather*}
-(\mu+m \lambda) a_{m+1}=B_{1} c_{m} \tag{19}\\
(\mu+2 m \lambda)\left[\left(m+\frac{\mu+1}{2}\right) a_{m+1}^{2}-a_{2 m+1}\right]=B_{1} c_{2 m}+B_{2} c_{m}^{2} \tag{20}
\end{gather*}
$$

From (17) and (19) we obtain

$$
\begin{equation*}
b_{m}=-c_{m} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
(\mu+m \lambda)^{2} a_{m+1}^{2}=B_{1}^{2}\left(b_{m}^{2}+c_{m}^{2}\right) \tag{22}
\end{equation*}
$$

Also, from (19), (20), and (22), we have

$$
(\mu+2 m \lambda)(\mu+m) a_{m+1}^{2}=B_{1}\left(b_{2 m}+c_{2 m}\right)+\frac{2 B_{2}(\mu+m \lambda)^{2}}{B_{1}^{2}} a_{m+1}^{2}
$$

Therefore, we have

$$
\begin{equation*}
\left[(\mu+2 m \lambda)(\mu+m) B_{1}^{2}-2 B_{2}(\mu+m \lambda)^{2}\right] a_{m+1}^{2}=B_{1}^{3}\left(b_{2 m}+c_{2 m}\right) \tag{23}
\end{equation*}
$$

By using the inequalities in (11) for the coefficients $b_{2 m}$ and $c_{2 m}$, we obtain

$$
\begin{equation*}
\left|(\mu+2 m \lambda)(\mu+m) B_{1}^{2}-2 B_{2}(\mu+m \lambda)^{2}\right|\left|a_{m+1}\right|^{2} \leq 2 B_{1}^{3}\left(1-\left|b_{m}^{2}\right|\right) \tag{24}
\end{equation*}
$$

and by using (17) in (24) we have

$$
\begin{equation*}
\left|a_{m+1}\right|^{2} \leq \frac{2 B_{1}^{3}}{\left|B_{1}^{2}(\mu+2 m \lambda)(\mu+m)-2 B_{2}(\mu+m \lambda)^{2}\right|+2 B_{1}(\mu+m \lambda)^{2}} \tag{25}
\end{equation*}
$$

AKGÜL/Turk J Math

which implies assertion (14). Similarly, in order to find the bound on $\left|a_{2 m+1}\right|$, we subtract (20) from (18). Then we obtain

$$
\begin{equation*}
2(\mu+2 m \lambda) a_{2 m+1}=(\mu+2 m \lambda)(m+1) a_{m+1}^{2}+B_{1}\left(b_{2 m}-c_{2 m}\right) \tag{26}
\end{equation*}
$$

Thus, in view of (17), (21), and (26), and applying (11) for the coefficients $b_{2 m}, b_{m}$ and $c_{2 m}, c_{m}$, we have

$$
\begin{align*}
2(\mu+2 m \lambda)\left|a_{2 m+1}\right| & \leq(\mu+2 m \lambda)(m+1)\left|a_{m+1}\right|^{2}+2 B_{1}\left(1-\left|b_{m}^{2}\right|\right) \\
\left|a_{2 m+1}\right| & \leq\left(\frac{m+1}{2}-\frac{(\mu+m \lambda)^{2}}{(\mu+2 m \lambda) B_{1}}\right)\left|a_{m+1}\right|^{2}+\frac{B_{1}}{\mu+2 m \lambda} \tag{27}
\end{align*}
$$

Upon substituting the value of $\left|a_{m+1}\right|^{2}$ from inequality (25) and putting it in (27), we have the desired result.

3. Corollaries of the main theorem

For the case of m-fold symmetric functions, we have following:

Remark 5 For $\mu=1$, Theorem 4 reduces to the corresponding results of Tang et al. (Theorem 7, p. 11086 in [19]), which we recall here as Corollary 6 below.

Corollary 6 (See [19]) Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{m}}^{\varphi}(\lambda, 1)$. Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{\left|B_{1}^{2}(1+2 m \lambda)(1+m)-2 B_{2}(1+m \lambda)^{2}\right|+2 B_{1}(1+m \lambda)^{2}}} \tag{28}
\end{equation*}
$$

and

$$
\left|a_{2 m+1}\right| \leq\left\{\begin{array}{cl}
\left(\frac{m+1}{2}-\frac{(1+m \lambda)^{2}}{(1+2 m \lambda) B_{1}}\right) \frac{2 B_{1}^{3}}{\left|B_{1}^{2}(1+2 m \lambda)(1+m)-2 B_{2}(1+m \lambda)^{2}\right|+2 B_{1}(1+m \lambda)^{2}} \tag{29}\\
\begin{array}{c}
+\frac{B_{1}}{1+2 m \lambda} \\
\frac{B_{1}}{1+2 m \lambda}
\end{array} & , \quad B_{1} \geq \frac{2(1+m \lambda)^{2}}{(m+1)(1+2 m \lambda)}
\end{array}\right.
$$

where $0 \leq \lambda<1$.
Remark 7 For $\lambda=1$ and $\mu=1$, Theorem 4 reduces to the corresponding results of Tang et al. (Theorem 1 in [19]), which we recall here as Corollary 8 below.

Corollary 8 (See [19]) Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{m}}^{\varphi}(1,1)$. Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{(1+m)\left[\left|B_{1}^{2}(1+2 m)-2 B_{2}(1+m)\right|+2 B_{1}(1+m)\right]}} \tag{30}
\end{equation*}
$$

and

$$
\left|a_{2 m+1}\right| \leq\left\{\begin{array}{cll}
\left(1-\frac{2(1+m)}{(1+2 m) B_{1}}\right) \frac{2 B_{1}^{3}}{(1+m)\left[\left|B_{1}^{2}(1+2 m)-2 B_{2}(1+m)\right|+2 B_{1}(1+m)\right]}+\frac{B_{1}}{1+2 m} & , \quad B_{1} \geq \frac{2(1+m)}{1+2 m} \tag{31}\\
\frac{B_{1}}{1+2 m} & , \quad B_{1}<\frac{2(1+m)}{1+2 m}
\end{array} .\right.
$$

AKGÜL/Turk J Math

Remark 9 For $\lambda=1$ and $\mu=0$, Theorem 4 reduces to the following corollary:
Corollary 10 Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{m}}^{\varphi}(1,0)$. Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{m \sqrt{\left|B_{1}^{2}-B_{2}\right|+B_{1}}} \tag{32}
\end{equation*}
$$

and

$$
\left|a_{2 m+1}\right| \leq\left\{\begin{array}{cll}
\left(\frac{m+1}{2}-\frac{m}{2 B_{1}}\right) \frac{B_{1}^{3}}{m^{2}\left[\left|B_{1}^{2}-B_{2}\right|+B_{1}\right]}+\frac{B_{1}}{2 m} & , \quad B_{1} \geq \frac{m}{1+m} \tag{33}\\
\frac{B_{1}}{2 m} & , \quad B_{1}<\frac{m}{1+m}
\end{array}\right.
$$

For the case of one-fold symmetric functions, we have following:

Remark 11 Theorem 4 reduces to Corollary 12:
Corollary 12 Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{1}}^{\varphi}(\lambda, \mu)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{2 B_{1}}}{\sqrt{\left|B_{1}^{2}(\mu+2 \lambda)(\mu+1)-2 B_{2}(\mu+\lambda)^{2}\right|+2 B_{1}(\mu+\lambda)^{2}}} \tag{34}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cc}
\left(1-\frac{(\mu+\lambda)^{2}}{(\mu+2 \lambda) B_{1}}\right) \frac{2 B_{1}^{3}}{\left|B_{1}^{2}(\mu+2 \lambda)(\mu+1)-2 B_{2}(\mu+\lambda)^{2}\right|+2 B_{1}(\mu+\lambda)^{2}} \tag{35}\\
+\frac{B_{1}}{\mu+2 \lambda} & , \\
\frac{B_{1}}{\mu+2 \lambda} & , \\
B_{1} \geq \frac{(\mu+\lambda)^{2}}{\mu+2 \lambda} \\
B_{1}<\frac{(\mu+\lambda)^{2}}{\mu+2 \lambda}
\end{array}\right.
$$

where $0 \leq \lambda<1, \mu \geq 0$.

From among the many choices of λ, μ and the function φ that would provide the following corollaries:
i) In the case of $\varphi=\left(\frac{1+z}{1-z}\right)^{\beta}$, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \beta}{\sqrt{\left|(\mu+2 \lambda)(\mu+1) \beta-(\mu+\lambda)^{2} \beta\right|+(\mu+\lambda)^{2}}} \tag{36}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cl}
2 \beta\left[\left(1-\frac{(\mu+\lambda)^{2}}{2 \beta(\mu+2 \lambda)}\right) \frac{2 \beta}{\left|(\mu+2 \lambda)(\mu+1) \beta-(\mu+\lambda)^{2} \beta\right|+(\mu+\lambda)^{2}}+\frac{1}{\mu+2 \lambda}\right] & , \beta \geq \frac{(\mu+\lambda)^{2}}{2(\mu+2 \lambda)} \tag{37}\\
\frac{2 \beta}{\mu+2 \lambda} & , \beta<\frac{(\mu+\lambda)^{2}}{2(\mu+2 \lambda)}
\end{array}\right.
$$

and

AKGÜL/Turk J Math

ii) for $\varphi=\left(\frac{1+(1-2 \alpha) z}{1-z}\right)$, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2(1-\alpha)}{\sqrt{\left|(\mu+2 \lambda)(\mu+1)(1-\alpha)-(\mu+\lambda)^{2}\right|+(\mu+\lambda)^{2}}} \tag{38}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cc}
2(1-\alpha)\left[\left(1-\frac{(\mu+\lambda)^{2}}{2(1-\alpha)(\mu+2 \lambda)}\right) \frac{2(1-\alpha)}{\left|(\mu+2 \lambda)(\mu+1)(1-\alpha)-(\mu+\lambda)^{2}\right|+(\mu+\lambda)^{2}}+\frac{1}{\mu+2 \lambda}\right] & , 1-\alpha \geq \frac{(\mu+\lambda)^{2}}{2(\mu+2 \lambda)} \tag{39}\\
\frac{2(1-\alpha)}{\mu+2 \lambda} & , \quad 1-\alpha<\frac{(\mu+\lambda)^{2}}{2(\mu+2 \lambda)}
\end{array} .\right.
$$

Remark 13 For $\mu=1$, Theorem 4 reduces the corresponding results of Peng and Han [13], which we recall here as Corollary 14.

Corollary 14 [13] Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{1}}^{\varphi}(\lambda, 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|B_{1}^{2}(1+2 \lambda)-B_{2}(1+\lambda)^{2}\right|+B_{1}(1+\lambda)^{2}}} \tag{40}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cll}
\left(1-\frac{(1+\lambda)^{2}}{(1+2 \lambda) B_{1}}\right) \frac{B_{1}^{3}}{\left|B_{1}^{2}(1+2 \lambda)-B_{2}(1+\lambda)^{2}\right|+B_{1}(1+\lambda)^{2}}+\frac{B_{1}}{1+2 \lambda} & , & B_{1} \geq \frac{(1+\lambda)^{2}}{1+2 \lambda} \tag{41}\\
\frac{B_{1}}{1+2 \lambda} & , & B_{1}<\frac{(1+\lambda)^{2}}{1+2 \lambda}
\end{array}\right.
$$

From among the many choices of λ and the function φ that would provide the following corollaries:

For the class of strongly starlike functions, the function φ is given by $\varphi=\left(\frac{1+z}{1-z}\right)^{\beta}$. Theorem 4 reduces the corresponding corollary of Tang et al. [19] (see Corollary 27, p. 1087 in [19]), which we recall here as Corollary 15:

Corollary 15 [19] Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+z}{1-z}\right)^{\beta}}(\lambda, 1)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \beta}{\sqrt{(1+\lambda)^{2}+\left|1+2 \lambda-\lambda^{2}\right| \beta}}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cc}
\frac{2 \beta^{2}\left[2(1+2 \lambda)+\left|1+2 \lambda-\lambda^{2}\right|\right]}{(1+2 \lambda)\left(\left|1+2 \lambda-\lambda^{2}\right| \beta+(1+\lambda)^{2}\right)} & , \quad \frac{(1+\lambda)^{2}}{2(1+2 \lambda)}<\beta \leq 1 \\
\frac{2 \beta}{1+2 \lambda} & , \quad 0<\beta \leq \frac{(1+\lambda)^{2}}{2(1+2 \lambda)}
\end{array}\right.
$$

Remark 16 The estimates for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ given by Corollary 15 are more accurate than those given by Theorem 2.2 of Frasin and Aouf [9].
ii) For the class of starlike functions of order α, the function φ is given by $\varphi=\left(\frac{1+(1-2 \alpha) z}{1-z}\right)$. Theorem 4 reduces the corresponding corollary of Tang et al. [19] (see Corollary 28, p. 1087 in [19], which we recall here as Corollary 17:

Corollary 17 [19] Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{1}}^{\left(\frac{1+(1-2 \alpha) z}{1-z}\right)}(\lambda, 1)$. Then

$$
\left|a_{2}\right| \leq \frac{2(1-\alpha)}{\sqrt{(1+\lambda)^{2}+\left|2(1+2 \lambda)(1-\alpha)-(1+\lambda)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \begin{cases}2(1-\alpha) \frac{\left|2(1+2 \lambda)(1-\alpha)-(1+\lambda)^{2}\right|+2(1-\alpha)(1+2 \lambda)}{(1+2 \lambda)\left[2(1+2 \lambda)(1-\alpha)-(1+\lambda)^{2} \mid+(1+\lambda)^{2}\right]} & , 0 \leq \alpha<\frac{1+2 \lambda-\lambda^{2}}{2(1+2 \lambda)} \\ \frac{2(1-\alpha)}{1+2 \lambda} & , \frac{1+2 \lambda-\lambda^{2}}{2(1+2 \lambda)} \leq \alpha<1\end{cases}
$$

Remark 18 The estimates for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ given by Corollary 17 are more accurate than those given by Theorem 2.2 of Frasin and Aouf [9].

Remark 19 For $\mu=1=\lambda$ Theorem 4 reduces the corresponding corollary of Peng and Han [13], which we recall here as Corollary 20:

Corollary 20 [13] Let f given by (5) be in the class $\mathcal{S}_{\Sigma_{1}}^{\varphi}(1,1)$. Then

$$
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|3 B_{1}^{2}-4 B_{2}\right|+4 B_{1}}}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cc}
\left(1-\frac{4}{3 B_{1}}\right) \frac{B_{1}^{3}}{\left|3 B_{1}^{2}-4 B_{2}\right|+4 B_{1}} & , \\
+\frac{B_{1}}{3} & B_{1} \geq \frac{4}{3} \\
\frac{B_{1}}{3} & B_{1}<\frac{4}{3}
\end{array}\right.
$$

AKGÜL/Turk J Math

References

[1] Akgül A. On the coefficient estimates of analytic and bi-univalent m-fold symmetric functions. Mathematica Aeterna 2017; 7 (3): 253-260.
[2] Akgül A. The Fekete-Szego coefficient inequality for a new class of m-fold symmetric bi-univalent functions satisfying subordination condition. Honam Mathematical Journal Korea Science 2018; 70 (4): 733-748.
[3] Ali RM, Lee SK, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathemtics Letters 2012; 25 (3): 344-351.
[4] Altınkaya Ş, Yalçın S. Coefficient bounds for two new subclasses of symmetric bi-univalent functions. Serdica Mathematical Journal 2016; 42: 175-186.
[5] Altınkaya Ş, Yalçın S. On some subclasses of m-fold symmetric bi univalent functions. Communications Faculty of Sciences of Ankara University Series A1 Mathematics and Statics 2018; 67 (1): 29-36.
[6] Çağlar M, Gurusamy P, Deniz E. Unpredictability of initial coefficient bounds for m-fold symmetric bi-univalent starlike and convex functions defined by subordinations. Afrika Matematika 2018; 29 (5-6): 793-802.
[7] Çağlar M, Orhan H, Yağmur N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013; 27 (7): 1165-1171.
[8] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften. New York, NY, USA: Springer, 1983.
[9] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Applied Mathematics Letters 2011; 24 (2011): 1569-1573.
[10] Hamidi SG, Jahangiri JM. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus Mathematique 2014; 352 (1): 17-20.
[11] Ma W, Minda D. A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, 1994, pp. 157-169.
[12] Orhan H, Magesh N, Balaji VK. Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions. Afrika Matematika 2016; 27 (5-6): 889-897.
[13] Peng Z, Han Q. On the coefficients of several classes of bi-univalent functions. Acta Mathematica Scientia 2014; 34 (1): 228-240.
[14] Pommerenke C. Univalent Functions. Göttingen, Germany: Vandenhoeck and Ruprecht, 1975.
[15] Sakar FM, Aydoğan SM. Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions defined by convolution. Acta Universitatis Apulensis 2018; 55: 11-21.
[16] Sakar FM, Taşar N. Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions. New Trends in Mathematical Sciences 2019; 7 (1): 62-70. doi: 10.20852/ntmsci.2019.342
[17] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters 2010; 23 (10): 1188-1192.
[18] Srivastava HM, Sivasubramanian S, Sivakumar R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Mathematical Journal 2014; 7: 2.
[19] Tang H, Srivastava HM, Sivasubramanian S, Gurusamy P. The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions. Journal of Mathematical Inequalities 2016; 10 (4): 1063-1092.

[^0]: *Correspondence: akgul@kocaeli.edu.tr
 2010 AMS Mathematics Subject Classification: 30C45, 30C50

