Uncountably many nonoscillatory bounded solutions to second-order nonlinear neutral dynamic equations

Magdalena NOCKOWSKA-ROSIAK* ${ }^{\text {(}}$
Institute of Mathematics, Lodz University of Technology, Łódź, Poland

| Received: 07.12 .2018 | Accepted/Published Online: 25.04.2019 | Final Version: 29.05 .2019 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

This work is devoted to the study of the existence of uncountably many nonoscillatory bounded solutions to second-order nonlinear neutral dynamic equations by means of the Darbo fixed point theorem. We construct assumptions without sign conditions on the nonlinear part of the equation. Moreover, we prove the necessary condition for the existence of an asymptotically zero solution to the problem under consideration.

Key words: Nonlinear dynamic equation, neutral type equation, nonoscillation, Darbo fixed point theorem

1. Introduction and preliminaries

During the last decades, the nonoscillation and the boundedness for various nonlinear neutral differential difference equations and their generalization, dynamic equations, have attracted some attention. See, for example, $[1-3,7,8,13,16,19-23,25,26,28]$ and the references cited therein.

The fixed point approach is a standard technique in order to provide the sufficient conditions for the existence of nonoscillatory bounded solutions to second-order or higher-order nonlinear neutral dynamic equations. For example, the following problem was considered by Deng and Wang in [10] via the Krasnoselskii fixed point theorem:

$$
\begin{aligned}
& \left(r(t)(x(t)+q(t) x(\tau(t)))^{\Delta}\right)^{\Delta}=f\left(t, x^{\sigma}(t), x\left(\tau_{1}(t)\right), \ldots, x\left(\tau_{m}(t)\right)\right. \\
& \left.x\left(\xi_{1}(t)\right), \ldots, x\left(\xi_{n}(t)\right)\right)
\end{aligned}
$$

To get their results the authors used sign conditions on the continuous function f and the divergence of the improper integral of function $t \rightarrow \frac{1}{r(t)}$. Moreover, sign conditions on the nonlinear part of the equation are crucial in the consideration of Karpuz in [18] for proving sufficient conditions for the existence of a solution to the problem

$$
(x(t)+q(t) x(\alpha(t)))^{\Delta^{2}}+B(t) F(x(\beta(t)))-C(t) F(x(\gamma(t)))=\varphi(t)
$$

The Krasnoselskii fixed point theorem was used by many authors; see, for example, [2, 11, 14, 17, 27, 30-32]. On the other hand, Zhengou et el. in [29] used the Banach fixed point theorem to get the existence of nonoscillatory

[^0]
NOCKOWSKA-ROSIAK/Turk J Math

solutions of the following higher-order neutral dynamic equation:

$$
(x(t)+q(t) x(\tau(t)))^{\Delta^{n}}+f\left(t, x\left(t-\tau_{1}(t)\right), \ldots, x\left(t-\tau_{m}(t)\right)=0\right.
$$

under Lipschitz continuity and monotonicity conditions on the nonlinear part.
In this paper we shall consider a second-order nonlinear neutral dynamic equation of the following form:

$$
\begin{equation*}
\left(r(t)(x(t)+q(t) x(\tau(t)))^{\Delta}\right)^{\Delta}=a(t) f(x(\delta(t)))+b(t) \tag{1}
\end{equation*}
$$

Some of the results presented in this paper cover the case $q \equiv 0$, which means that equation (1) is the generalization of the Sturm-Louville equation on time scales. Many authors studied such equations; see, for example, [6], [15], and [24] and references therein.

To prove the existence of uncountably many nonoscillatory bounded solutions to the above equation we apply the Darbo fixed point theorem on the space of bounded continuous functions defined on a noncompact Hausdorff space S, denoted by $\mathrm{BC}(S)$. Most of the above-mentioned papers required various types of sign conditions on the nonlinear part of the equation. These conditions are a consequence of the usage of sufficient conditions for the relative compactness of a bounded subset of $\mathrm{BC}(S)$. In this article, we can avoid sign conditions on the nonlinear function f, because we use the necessary and sufficient condition of the relative compactness of a bounded subset of $\mathrm{BC}(S)$, which is a consequence of the Hausdorff theorem. Moreover, our approach allows us to prove the existence of a bounded solution to the considered problem, which satisfies the equation on the maximal interval. In the last theorem, we present the necessary condition for the existence of an asymptotically zero solution to (1).

For basic facts on time scales and dynamic equations, one may consult [5]. A time scale \mathbb{T} is an arbitrary nonempty closed subset of the real numbers \mathbb{R} with the topology and ordering inherited from \mathbb{R}. In this paper we assume that \mathbb{T} is a time scale such that $\sup \mathbb{T}=+\infty$. In the whole paper we consider only delta differentiable functions on \mathbb{T}, which we call shortly differentiable functions. The set of rd-continuous functions $f: \mathbb{T} \rightarrow \mathbb{R}$ is denoted by $\mathrm{C}_{\mathrm{rd}}(\mathbb{T})$. The set of functions $f: \mathbb{T} \rightarrow \mathbb{R}$ that are differentiable and whose derivative is rd-continuous is denoted by $\mathrm{C}_{\mathrm{rd}}^{1}(\mathbb{T})$. We define the time scale interval $\left[t_{0}, \infty\right)_{\mathbb{T}}=\left[t_{0}, \infty\right) \cap \mathbb{T}$. Let $z(t):=x(t)+q(t) x(\tau(t))$. By a solution to equation (1) we mean a function $x: \mathbb{T} \rightarrow \mathbb{R}$ such that $z \in \mathrm{C}_{\mathrm{rd}}^{1}\left[t_{x}, \infty\right)_{\mathbb{T}}$ and $r \cdot z^{\Delta} \in \mathrm{C}_{\mathrm{rd}}^{1}\left[t_{x}, \infty\right)_{\mathbb{T}}$ and satisfying (1) for all $t \geq t_{x}$, for some $t_{x} \in \mathbb{T}$. A solution to (1) is said to be nonoscillatory if it is eventually positive or eventually negative. By an asymptotically zero solution to equation (1) we mean a solution to (1) that is convergent to zero as $t \rightarrow \infty$.

To get the main results of this paper we apply the Darbo fixed point theorem of the following form.
Theorem 1.1 ([4, 9]) Let X be a Banach space; let M be a nonempty, bounded, closed, convex subset of X; and let $A: M \rightarrow M$ be an α-condensing operator. Then A has a fixed point in M.

By $[A]_{\alpha}$ we denote the α-norm of an operator $A: X \rightarrow Y$ between Banach spaces and α denotes the Kuratowski measure of noncompactness. This means

$$
[A]_{\alpha}=\inf \{k>0: \alpha(A(N)) \leq k \alpha(N) \text { for bounded } N \subset X\}
$$

We say that an operator $A: X \rightarrow Y$ between Banach spaces is an α-condensing operator if $[A]_{\alpha}<1$ (see [4], pp. 164,195$)$.

NOCKOWSKA-ROSIAK/Turk J Math

Proposition 1.1 ([4, p. 197]) Let X be a Banach space. Suppose that $A: X \rightarrow X$ is a continuous operator that admits a representation as a sum $A=A_{1}+A_{2}, A_{1}$ is a contraction, and A_{2} is compact. Then A is the α-condensing operator.

Let S be an topological space. We consider the Banach space $\mathrm{BC}(S)$ of all bounded continuous functions $f: S \rightarrow \mathbb{R}$ equipped with the standard supremum norm, i.e.

$$
\|f\|=\sup _{s \in S}|f(s)|, \text { for } f \in \mathrm{BC}(S)
$$

Theorem 1.2 [12, p. 266] Let S be an arbitrary topological space and K a bounded subset of $\mathrm{BC}(S)$. Then K is relatively compact if and only if for every $\varepsilon>0$ there is a finite collection $\left\{E_{1}, \ldots, E_{n}\right\}$ of sets with union S and points $s_{i} \in E_{i}, i=1, \ldots, n$, such that

$$
\sup _{f \in K} \sup _{s \in E_{i}}\left|f(s)-f\left(s_{i}\right)\right|<\varepsilon, i=1, \ldots, n .
$$

2. The main results

We start this section with the presentation of sufficient conditions for the existence of uncountably many nonoscillatory bounded solutions to dynamic equation (1). We recall that \mathbb{T} is a time scale such that sup $\mathbb{T}=$ $+\infty$.

Theorem 2.1 Assume that:
$\left(H_{1}\right) \quad \tau: \mathbb{T} \rightarrow \mathbb{T}$ is continuous such that $\tau(t) \leq t, t \in \mathbb{T}$ and $\lim _{s \rightarrow \infty} \tau(s)=+\infty, \delta: \mathbb{T} \rightarrow \mathbb{T}$ is rd-continuous such that $\delta(t) \leq t, t \in \mathbb{T}$ and $\lim _{s \rightarrow \infty} \delta(s)=+\infty ;$
$\left(H_{2}\right) \quad a, b: \mathbb{T} \rightarrow \mathbb{R}$ are rd-continuous and $r: \mathbb{T} \rightarrow \mathbb{R} \backslash\{0\}, q: \mathbb{T} \rightarrow \mathbb{R}$ are continuous;
$\left(H_{3}\right) \quad f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous;
$\left(H_{4}\right) \int_{t_{0}}^{\infty}\left(\frac{1}{|r(u)|} \int_{t_{1}}^{u}|a(s)| \Delta s\right) \Delta u<+\infty, \int_{t_{0}}^{\infty}\left(\frac{1}{|r(u)|} \int_{t_{1}}^{u}|b(s)| \Delta s\right) \Delta u<+\infty$, for some $t_{0}, t_{1} \in \mathbb{T}, t_{0} \geq t_{1} ;$
$\left(H_{5}\right) \quad q(t) \geq 0$ for $t \in \mathbb{T}, \sup _{t \in \mathbb{T}} q(t)=q^{\star}<1$.
Then equation (1) possesses uncountably many nonoscillatory bounded solutions.
Proof Let $M>0$ and $L \in\left(\frac{1+q^{\star}}{2} M, M\right)$. From the continuity of f on $\left[\frac{1-q^{\star}}{2} M, M\right]$ we get the existence of $Q>0$ such that

$$
|f(y)| \leq Q, \text { for } y \in\left[\frac{1-q^{\star}}{2} M, M\right]
$$

From $\left(H_{4}\right)$ it is clear that there exists $t_{2} \in \mathbb{T}, t_{2}>t_{0}$, such that

$$
\begin{equation*}
\int_{t_{2}}^{\infty}\left(\frac{1}{|r(u)|} \int_{t_{2}}^{u}(|a(s)| Q+|b(s)|) \Delta s\right) \Delta u<\min \left\{L-\frac{1+q^{\star}}{2} M, M-L\right\} \tag{2}
\end{equation*}
$$

We consider $\mathrm{BC}(\mathbb{T})$, the Banach space of bounded continuous functions on \mathbb{T}, and its subset $B_{M}:=\bar{B}\left(f^{M}, \frac{M}{4}(1+\right.$ $\left.q^{\star}\right)$), where f^{M} is a constant function $f^{M}(t)=\frac{M}{4}\left(3-q^{\star}\right), t \in \mathbb{T}$. It is obvious that B_{M} is a nonempty, bounded, convex, and closed subset of $\mathrm{BC}(\mathbb{T})$. Notice that $x \in B_{M}$ if and only if $x \in \mathrm{BC}(\mathbb{T})$ and

$$
\frac{M}{2}\left(1-q^{\star}\right) \leq x(t) \leq M, t \in \mathbb{T}
$$

Define mappings $T^{L}, T_{1}^{L}, T_{2}: B_{M} \rightarrow \mathrm{BC}(\mathbb{T})$ as follows: $T^{L}=T_{1}^{L}+T_{2}$ and

$$
\begin{gathered}
T_{1}^{L}(x)(t)= \begin{cases}L-q(t) x(\tau(t)), & \text { for } t \in\left[t_{2}, \infty\right)_{\mathbb{T}} \\
T_{1}^{L}(x)\left(t_{2}\right), & \text { for } t \in\left(-\infty, t_{2}\right)_{\mathbb{T}}\end{cases} \\
T_{2}(x)(t)= \begin{cases}-\int_{t}^{\infty}\left(\frac{1}{r(u)} \int_{t_{2}}^{u}(a(s) f(x(\delta(s)))+b(s)) \Delta s\right) \Delta u, & \text { for } t \in\left[t_{2}, \infty\right)_{\mathbb{T}} \\
T_{2}(x)\left(t_{2}\right), & \text { for } t \in\left(-\infty, t_{2}\right)_{\mathbb{T}} .\end{cases}
\end{gathered}
$$

First we notice that the continuity of $q,\left(H_{1}\right)$, and $\left(H_{5}\right)$ implies that $T_{1}^{L}(x) \in \mathrm{BC}(\mathbb{T})$ for any $x \in B_{M}$. The following provides that $T_{2}(x) \in \mathrm{BC}(\mathbb{T})$ for $x \in B_{M}$. The function $h_{x}: \mathbb{T} \rightarrow \mathbb{R}$ given by the formula

$$
h_{x}(u)=\int_{t_{2}}^{u}(a(s) f(x(\delta(s)))+b(s)) \Delta s
$$

is the antiderivative of the rd-continuous function $\mathbb{T} \ni s \mapsto a(s) f(x(\delta(s)))+b(s)$. This means that $h_{x} \in \mathrm{C}_{\mathrm{rd}}(\mathbb{T})$; see [5], p. 27. Now we define function $H_{x}: \mathbb{T} \rightarrow \mathbb{R}$ by the formula

$$
H_{x}(t)= \begin{cases}\frac{h_{x}(t)}{r(t)}, & \text { for } t \in\left[t_{2}, \infty\right)_{\mathbb{T}} \\ 0, & \text { for } t \in\left(-\infty, t_{2}\right)_{\mathbb{T}}\end{cases}
$$

From the above relation, $H_{x}\left(t_{2}\right)=0$, and from the continuity of r we get that $H_{x}: \mathbb{T} \rightarrow \mathbb{R}$ is rd-continuous on \mathbb{T}. Moreover,

$$
T_{2}(x)(t)=-\int_{t}^{\infty} H_{x}(u) \Delta u, t \in \mathbb{T}
$$

and the function $\left|H_{x}\right|$, for $x \in B_{M}$, is majorized by $H: \mathbb{T} \rightarrow \mathbb{R}$ defined by

$$
H(t)= \begin{cases}\frac{1}{|r(t)|}\left(\int_{t_{2}}^{t}(|a(s)| Q+|b(s)|) \Delta s\right), & \text { for } t \in\left[t_{2}, \infty\right)_{\mathbb{T}} \\ 0, & \text { for } t \in\left(-\infty, t_{2}\right)_{\mathbb{T}}\end{cases}
$$

From assumption $\left(H_{4}\right)$ the integral in $T_{2}(x)$ is well defined for any $x \in B_{M}$. Moreover,

$$
T_{2}(x)(t)=\int_{t_{2}}^{t} H_{x}(u) \Delta u-T_{2}(x)\left(t_{2}\right), t \in \mathbb{T}
$$

It means that T_{2} is differentiable on \mathbb{T} with

$$
\left(T_{2}(x)\right)^{\Delta}(t)= \begin{cases}H_{x}(t), & \text { for } t \in\left[t_{2}, \infty\right)_{\mathbb{T}} \\ 0, & \text { for } t \in\left(-\infty, t_{2}\right)_{\mathbb{T}}\end{cases}
$$

This implies that $T_{2}(x)$ is continuous on \mathbb{T}. In order to see that $T_{2}(x)$ is bounded on \mathbb{T}, we notice that from (2) we get $\left|T_{2}(x)(t)\right| \leq \min \left\{L-\frac{1+q^{\star}}{2} M, M-L\right\}$ for $t \in \mathbb{T}$. This means that the operator $T^{L}: B_{M} \rightarrow \mathrm{BC}(\mathbb{T})$ is well defined. Our next goal is to check assumptions of Theorem 1.1 - the Darbo fixed point for the operator $T^{L}=T_{1}^{L}+T_{2}$.
We show that $T^{L}\left(B_{M}\right) \subset B_{M}$. Let $x \in B_{M}$ and $t \in\left[t_{2}, \infty\right)_{\mathbb{T}}$. Assumption $\left(H_{5}\right)$ and (2) imply that

$$
T^{L}(x)(t)=L-q(t) x(\tau(t))-\int_{t}^{\infty} H_{x}(u) \Delta u \leq L+\int_{t_{2}}^{\infty} H(u) \Delta u \leq M
$$

and

$$
\begin{aligned}
& T^{L}(x)(t)=L-q(t) x(\tau(t))-\int_{t}^{\infty} H_{x}(u) \Delta u \geq L-q(t) x(\tau(t))-\int_{t_{2}}^{\infty} H(u) \Delta u \\
& \geq L-q^{\star} M-\min \left\{L-\frac{1+q^{\star}}{2} M, M-L\right\} \geq L-q^{\star} M-L+\frac{1+q^{\star}}{2} M=\frac{1-q^{\star}}{2} M
\end{aligned}
$$

It is easy to see that

$$
\left\|T_{1}^{L} x-T_{1}^{L} y\right\| \leq q^{\star}\|x-y\|, \text { for } x, y \in B_{M}
$$

so that T_{1}^{L} is a contraction.
Now we prove the continuity of T_{2}. Let $x \in B_{M}, \varepsilon>0$. Since $\left[\frac{1-q^{\star}}{2} M, M\right]$ is a compact set, f is uniformly continuous on $\left[\frac{1-q^{\star}}{2} M, M\right]$. Hence, there exists $\eta>0$ such that

$$
\begin{equation*}
|f(w)-f(v)|<\frac{\varepsilon}{1+\int_{t_{2}}^{\infty}\left(\frac{1}{|r(u)|} \int_{t_{2}}^{u}|a(s)| \Delta s\right) \Delta u} \tag{3}
\end{equation*}
$$

for $|w-v|<\eta$ and $w, v \in\left[\frac{1-q^{\star}}{2} M, M\right]$. For $y \in B_{M}$ such that $\|x-y\|<\eta$ we have from (3) that

$$
\left|T_{2}(x)(t)-T_{2}(y)(t)\right| \leq \int_{t}^{\infty}\left(\frac{1}{|r(u)|} \int_{t_{2}}^{u}|a(s)||f(x(\delta(s)))-f(y(\delta(s)))| \Delta s\right) \Delta u<\varepsilon
$$

for $t \geq t_{2}$. Hence, $\left\|T_{2} x-T_{2} y\right\|<\varepsilon$ for $y \in B_{M},\|x-y\|<\eta$, which proves the continuity of T_{2} on B_{M}.
Now we apply the relative compactness criterion in space $\operatorname{BC}(\mathbb{T})$ - Theorem 1.2, for $T_{2}\left(B_{M}\right)$. From (2) we get that $T_{2}\left(B_{M}\right) \subset B_{M}$, which means that $T_{2}\left(B_{M}\right)$ is bounded. Let $\varepsilon>0$. From $\left(H_{4}\right)$ we get the existence of t_{ε} such that $t_{\varepsilon}>t_{2}$ and

$$
\begin{equation*}
2 \int_{t_{\varepsilon}}^{\infty} H(u) \Delta u<\varepsilon . \tag{4}
\end{equation*}
$$

NOCKOWSKA-ROSIAK/Turk J Math

Since H is rd-continuous on compact set $\left[t_{2}, t_{\varepsilon}\right]_{\mathbb{T}}$, it is bounded by some $K, K>0$; see [5], p. 23. Moreover, the compactness of $\left[t_{2}, t_{\varepsilon}\right]_{\mathbb{T}}$ implies that there exist $s_{1}, \ldots, s_{n_{\varepsilon}} \in\left[t_{2}, t_{\varepsilon}\right]_{\mathbb{T}}$ such that $s_{1}<\ldots<s_{n_{\varepsilon}}$ and sets $\left(s_{i}-\frac{\varepsilon}{K}, s_{i}+\frac{\varepsilon}{K}\right)_{\mathbb{T}}$ for $i=1, \ldots, n_{\varepsilon}$ provide $\frac{\varepsilon}{K}-$ net of $\left[t_{2}, t_{\varepsilon}\right]_{\mathbb{T}}$. We prove that sets $E_{0}=\left(-\infty, t_{2}\right)_{\mathbb{T}}$, $E_{n_{\varepsilon}+1}=\left(t_{\varepsilon}, \infty\right)_{\mathbb{T}}, E_{i}=\left(s_{i}-\frac{\varepsilon}{K}, s_{i}+\frac{\varepsilon}{K}\right)_{\mathbb{T}}$, for $i=1, \ldots, n_{\varepsilon}$ with $s_{0}=t_{0}, s_{1}, \ldots, s_{n_{\varepsilon}}$, and $s_{n_{\varepsilon}+1}$ any element of $\left(t_{\varepsilon}, \infty\right)_{\mathbb{T}}$ satisfied the condition

$$
\begin{equation*}
\sup _{x \in B_{M}} \sup _{s \in E_{i}}\left|T_{2}(x)(s)-T_{2}(x)\left(s_{i}\right)\right|<\varepsilon, i=0, \ldots, n_{\varepsilon}+1 \tag{5}
\end{equation*}
$$

For $i=0$ condition (5) is evident, because T_{2} is constant on E_{0}. For $i=n_{\varepsilon}+1$ from (4) we have

$$
\sup _{x \in B_{M}} \sup _{s \in\left(t_{\varepsilon}, \infty\right)_{\mathbb{T}}}\left|T_{2}(x)(s)-T_{2}(x)\left(s_{n_{\varepsilon}+1}\right)\right| \leq 2 \int_{t_{\varepsilon}}^{\infty} H(u) \Delta u<\varepsilon
$$

For $i \in\left\{1, \ldots, n_{\varepsilon}\right\}$ we get

$$
\begin{aligned}
& \sup _{x \in B_{M}} \sup _{s \in E_{i}}\left|T_{2}(x)(s)-T_{2}(x)\left(s_{i}\right)\right| \leq \sup _{x \in B_{M}} \sup _{s \in E_{i}} \int_{\min \left\{s, s_{i}\right\}}^{\max \left\{s, s_{i}\right\}}\left|H_{x}(u)\right| \Delta u \leq \\
& \sup _{s \in E_{i}} \int_{\min \left\{s, s_{i}\right\}}^{\max \left\{s, s_{i}\right\}} H(u) \Delta u \leq \sup _{s \in E_{i}} \int_{\min \left\{s, s_{i}\right\}}^{\max \left\{s, s_{i}\right\}} K \Delta u=\sup _{s \in E_{i}} K\left|s-s_{i}\right|<\varepsilon
\end{aligned}
$$

It proves that $T_{2}\left(B_{M}\right)$ is a relatively compact subset of $\mathrm{BC}(\mathbb{T})$.
Since T_{1}^{L} is a contraction and since T_{2} is compact, it follows from Proposition 1.1 that $T^{L}: B_{M} \rightarrow B_{M}$ is an α-condensing operator. From the Darbo theorem we get that there exists $x \in B_{M}$, a fixed point of T^{L} on B_{M}. Thus, for $t \geq t_{2}$ we have

$$
x(t)+q(t) x(\tau(t))=L-\int_{t}^{\infty}\left(\frac{1}{r(u)} \int_{t_{2}}^{u}(a(s) f(x(\delta(s)))+b(s)) \Delta s\right) \Delta u
$$

Since the right side of the above equality is a differentiable function, the left side possesses this property, as well. Hence, for $t \geq t_{2}$,

$$
r(t)(x(t)+q(t) x(\tau(t)))^{\Delta}=\int_{t_{2}}^{t}(a(s) f(x(\delta(s)))+b(s)) \Delta s
$$

In an analogous way, we have for $t \geq t_{2}$

$$
\left(r(t)(x(t)+q(t) x(\tau(t)))^{\Delta}\right)^{\Delta}=a(t) f(x(\delta(t)))+b(t)
$$

Hence, for $x: \mathbb{T} \rightarrow \mathbb{R}$ we have that $x(\cdot)+q(\cdot) x(\tau(\cdot)) \in \mathrm{C}_{\mathrm{rd}}^{1}\left[t_{2}, \infty\right)$, $r(\cdot) \cdot(x(\cdot)+q(\cdot) x(\tau(\cdot)))^{\Delta} \in \mathrm{C}_{\mathrm{rd}}^{1}\left[t_{2}, \infty\right)$, and x satisfies (1) for $t \geq t_{2}$ with $x(t) \in\left[\frac{1-q^{\star}}{2} M, M\right]$ for $t \in \mathbb{T}$. It means that x is a bounded positive solution to (1).

NOCKOWSKA-ROSIAK/Turk J Math

Now we prove the existence of uncountably many positive solutions to (1) lying in $\left[\frac{1-q^{\star}}{2} M, M\right]$. Let $L_{1}, L_{2} \in$ $\left[\frac{1+q^{\star}}{2} M, M\right]$, and $L_{1}<L_{2}$. From the previous part of the proof, it is easy to see that there exist $t_{2}^{1}, t_{2}^{2} \geq t_{1}$ and $x^{1}, x^{2} \in \mathrm{BC}(\mathbb{T})$, each a fixed point of the operator $T^{L_{i}}$ on $B_{M}, i=1,2$, respectively, where

$$
T^{L_{i}}(x)(t)= \begin{cases}L_{i}-q(t) x(\tau(t))-T_{2}(x)(t) & \text { for } t \in\left[t_{2}^{i}, \infty\right)_{\mathbb{T}} \\ T^{L_{i}}(x)\left(t_{2}^{i}\right), & \text { for } t \in\left(-\infty, t_{2}^{i}\right)_{\mathbb{T}}\end{cases}
$$

Thus, x^{i} are solutions to (1) satisfying this equation for $t \geq \max \left\{t_{2}^{1}, t_{2}^{2}\right\}$. By $\left(H_{4}\right)$ there exists $t_{3} \geq \max \left\{t_{2}^{1}, t_{2}^{2}\right\}$ such that

$$
\left|T_{2}\left(x^{1}\right)(t)\right|+\left|T_{2}\left(x^{2}\right)(t)\right| \leq \frac{L_{2}-L_{1}}{2}, t \geq t_{3}
$$

From this it is clear that, for $t \geq t_{3}$,

$$
\left|x^{1}(t)-x^{2}(t)+q(t)\left(x^{1}(\tau(t))-x^{2}(\tau(t))\right)\right| \geq L_{2}-L_{1}-\left(\left|T_{2}\left(x^{1}\right)(t)\right|+\left|T_{2}\left(x^{2}\right)(t)\right|\right)>0
$$

which means that x^{1} and x^{2} are different solutions to (1) lying in $\left[\frac{1-q^{\star}}{2} M, M\right]$.
In the analogous way, we can prove that (1) possesses uncountably many negative solutions, so the proof of this part is omitted.
Now we are in a position to formulate and prove sufficient conditions for the existence of a bounded solution to (1) that satisfies (1) on the maximal interval. To achieve our goal we have to make stronger assumptions on the time scale.

Theorem 2.2 Assume that:
$\left(H_{0}\right)$ the number of left-scattered points in every compact subset of \mathbb{T} is finite;
$\left(H_{1}^{\prime}\right) \quad \tilde{\tau}: \mathbb{T} \rightarrow \mathbb{T}$ is a surjective function of the form $\tilde{\tau}(t)=t-\tau$, and $\tilde{\delta}: \mathbb{T} \rightarrow \mathbb{T}$ is a surjective function of the form $\tilde{\delta}(t)=t-\delta, t \in \mathbb{T}$ with $\tau>\delta>0 ;$
$\left(\mathrm{H}_{2}\right) \quad a, b: \mathbb{T} \rightarrow \mathbb{R}$ are rd-continuous and $r: \mathbb{T} \rightarrow \mathbb{R} \backslash\{0\}, q: \mathbb{T} \rightarrow \mathbb{R}$ are continuous;
$\left(H_{3}\right) \quad f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous;
$\left(H_{4}^{\prime}\right) \int_{t_{1}}^{\infty}\left(\frac{1}{|r(u)|} \int_{u}^{\infty}|a(s)| \Delta s\right) \Delta u<+\infty, \int_{t_{1}}^{\infty}\left(\frac{1}{|r(u)|} \int_{u}^{\infty}|b(s)| \Delta s\right) \Delta u<+\infty$, for some $t_{1} \in \mathbb{T}$;
$\left(H_{5}^{\prime}\right) \inf _{t \in \mathbb{T}} q(t)=q_{\star}>0, \sup _{t \in \mathbb{T}} q(t)=q^{\star}<1$.
Then:
i) equation (1) possesses a bounded solution $x: \mathbb{T} \rightarrow \mathbb{R}$, which satisfies (1) for $t \geq t_{1}^{\prime}$, if $t_{1}^{\prime}:=\min \left\{t_{1} \in\right.$ \mathbb{T} which fulfils $\left.\left(H_{4}^{\prime}\right)\right\}$;
ii) equation (1) possesses a bounded solution $x: \mathbb{T} \rightarrow \mathbb{R}$, which satisfies (1) for $t \geq t_{1}^{\prime \prime}$ for any $t_{1}^{\prime \prime}>\inf \left\{t_{1} \in\right.$ \mathbb{T} which fulfills $\left.\left(H_{4}^{\prime}\right)\right\}$, if $\min \left\{t_{1} \in \mathbb{T}\right.$ which fulfills $\left.\left(H_{4}^{\prime}\right)\right\}$ does not exist.

NOCKOWSKA-ROSIAK/Turk J Math

Proof At the beginning, we assume that $\min \left\{t_{1} \in \mathbb{T}\right.$ which fulfills $\left.\left(H_{4}^{\prime}\right)\right\}$ exists and is equal to t_{1}^{\prime}. Let $M>0$. In an analogous way as in Theorem 2.1 we get that there exist $t_{2}^{M} \geq t_{1}^{\prime}$ and $x: \mathbb{T} \rightarrow \mathbb{R}$ such that x is a fixed point of the operator $T: \bar{B}_{\mathrm{BC}(\mathbb{T})}(0, M) \rightarrow \bar{B}_{\mathrm{BC}(\mathbb{T})}(0, M)$ defined as follows:

$$
T(x)(t)= \begin{cases}-q(t) x(t-\tau)+\int_{t}^{\infty} G_{x}(u) \Delta u, & \text { for } t \in\left[t_{2}^{M}, \infty\right)_{\mathbb{T}} \\ T(x)\left(t_{2}^{M}\right), & \text { for } t \in\left(-\infty, t_{2}^{M}\right)_{\mathbb{T}}\end{cases}
$$

where

$$
G_{x}(u)=\frac{1}{r(u)}\left(\int_{u}^{\infty}(a(s) f(x(s-\delta))+b(s)) \Delta s\right), u \geq t_{2}^{M}
$$

This means that x is a bounded solution to (1), which satisfied it for $t \geq t_{2}^{M}$ and $\left.x\right|_{\left(-\infty, t_{2}^{M}\right]_{\mathbb{T}}}=x\left(t_{2}^{M}\right)$, $|x(t)| \leq M, t \in \mathbb{T}$. We claim that $\left(H_{1}^{\prime}\right)$ implies $\rho(t+\tau)-\tau=\rho(t)$ and $\rho(t)+\tau-\delta \in \mathbb{T}, t \in \mathbb{T}$, where $\rho(\cdot)$ denotes the backward jump operator on \mathbb{T}. Now we divide the proof into two parts:

1. $\rho\left(t_{2}^{M}\right)<t_{2}^{M}$. Notice that $\rho\left(t_{2}^{M}\right)+\tau-\delta \geq t_{2}^{M}$. Putting $\rho\left(t_{2}^{M}+\tau\right)$ into the equation

$$
\begin{equation*}
x(t-\tau)=\frac{1}{q(t)}\left(-x(t)+\int_{t}^{\infty} \frac{1}{r(u)}\left(\int_{u}^{\infty}(a(s) f(x(s-\delta))+b(s)) \Delta s\right) \Delta u\right) \tag{6}
\end{equation*}
$$

we get that $\tilde{x}: \mathbb{T} \rightarrow \mathbb{R}$ defined by the formula $\left.\tilde{x}\right|_{\left[t_{2}^{M},+\infty\right)_{\mathbb{T}}}=\left.x\right|_{\left[t_{2}^{M},+\infty\right)_{\mathbb{T}}},\left.\tilde{x}\right|_{\left(-\infty, \rho\left(t_{2}^{M}\right)\right]_{\mathbb{T}}}=\tilde{x}\left(\rho\left(t_{2}^{M}\right)\right)$, and

$$
\tilde{x}\left(\rho\left(t_{2}^{M}\right)\right)=\frac{1}{q\left(\rho\left(t_{2}^{M}+\tau\right)\right)}\left(-x\left(\rho\left(t_{2}^{M}+\tau\right)\right)+\int_{\rho\left(t_{2}^{M}+\tau\right)}^{\infty} G_{x}(u) \Delta u\right)
$$

satisfies (1) for $t \geq \rho\left(t_{2}^{M}\right)$, which means it is a solution to (1). Moreover, $|\tilde{x}(t)| \leq M$ for $t \geq t_{2}^{M}$ and from (6)

$$
\left|\tilde{x}\left(\rho\left(t_{2}^{M}\right)\right)\right| \leq \frac{1}{q_{\star}}\left(M+\int_{t_{1}^{\prime}}^{\infty} G(u) \Delta u\right)
$$

where $Q:=\max _{|y| \leq M}|f(y)|$ and

$$
\begin{equation*}
G(u)=\frac{1}{r(u)} \int_{u}^{\infty}(a(s) Q+b(s)) \Delta s, \quad u \geq t_{1}^{\prime} \tag{7}
\end{equation*}
$$

2. $\rho\left(t_{2}^{M}\right)=t_{2}^{M}$. Let $t \in\left[t_{2}^{M}+\delta-\tau, t_{2}^{M}\right)_{\mathbb{T}}$. Hence, we have that $t+\tau-\delta \geq t_{2}^{M}$. Putting $t+\tau$ into equation (6) we get that $\tilde{x}: \mathbb{T} \rightarrow \mathbb{R}$ defined by the formula $\left.\tilde{x}\right|_{\left[t_{2}^{M},+\infty\right)_{\mathbb{T}}}=\left.x\right|_{\left[t_{2}^{M},+\infty\right)_{\mathbb{T}}},\left.\tilde{x}\right|_{\left(-\infty, t_{2}^{M}+\delta-\tau\right]_{\mathbb{T}}}=\tilde{x}\left(t_{2}^{M}+\delta-\tau\right)$ and

$$
\tilde{x}(t)=\frac{1}{q(t+\tau)}\left(-x(t+\tau)+\int_{t+\tau}^{\infty} G_{x}(u) \Delta u\right), t \in\left[t_{2}^{M}-\delta+\tau, t_{2}^{M}\right)_{\mathbb{T}}
$$

NOCKOWSKA-ROSIAK/Turk J Math

satisfies (1) for $t \geq t_{2}^{M}-\delta+\tau$, which means \tilde{x} is a solution to (1). Moreover, $|\tilde{x}(t)| \leq M$ for $t \geq t_{2}^{M}$ and from (6)

$$
|\tilde{x}(t)| \leq \frac{1}{q_{\star}}\left(M+\int_{t_{1}^{\prime}}^{\infty} G(u) \Delta u\right), \quad t \in\left[t_{2}^{M}-\delta+\tau, t_{2}^{M}\right)_{\mathbb{T}}
$$

Our next goal is to prove that there exists a solution to (1) that satisfies this equation on $t \geq t_{1}^{\prime}$. Thanks to $\left(H_{0}\right)$, without loss of generality, we can assume that there exists $k \in \mathbb{N}$ such that

$$
\left[t_{1}, t_{2}^{M}\right]_{\mathbb{T}}=\left\{t_{2}^{M}, \rho\left(t_{2}^{M}\right), \rho^{2}\left(t_{2}^{M}\right), \ldots, \rho^{k}\left(t_{2}^{M}\right)\right\} \cup\left[t_{1}, \rho^{k}\left(t_{2}^{M}\right)\right)_{\mathbb{T}}
$$

with $t_{2}^{M}>\rho\left(t_{2}^{M}\right)>\rho^{2}\left(t_{2}^{M}\right)>\ldots>\rho^{k}\left(t_{2}^{M}\right)$ and the interval $\left[t_{1}, \rho^{k}\left(t_{2}^{M}\right)\right)_{\mathbb{T}}$ does not include left-scattered points. Similarly to the case $\rho\left(t_{2}^{M}\right)<t_{2}^{M}$ there exists a solution to (1) $\hat{x}: \mathbb{T} \rightarrow \mathbb{R}$ that satisfies this equation on $\left[\rho^{k}\left(t_{2}^{M}\right), \infty\right)_{\mathbb{T}},\left.\hat{x}\right|_{\left(-\infty, \rho^{k}\left(t_{2}^{M}\right)\right]_{\mathbb{T}}}=\hat{x}\left(\rho^{k}\left(t_{2}^{M}\right)\right)$ and

$$
|\hat{x}(t)| \leq \frac{1}{q_{\star}}\left(M+k \int_{t_{1}^{\prime}}^{\infty} G(u) \Delta u\right), \quad t \in \mathbb{T}
$$

Results from the case $\rho\left(t_{2}^{M}\right)=t_{2}^{M}$ prove the existence of a solution to (1) $\check{x}: \mathbb{T} \rightarrow \mathbb{R}$ that satisfies this equation on $\left[\rho^{k}\left(t_{2}^{M}\right)+\delta-\tau, \infty\right)_{\mathbb{T}},\left.\check{x}\right|_{\left(-\infty, \rho^{k}\left(t_{2}^{M}\right)+\delta-\tau\right]_{\mathbb{T}}}=\check{x}\left(\rho^{k}\left(t_{2}^{M}\right)+\delta-\tau\right)$ and

$$
|\check{x}(t)| \leq \frac{1}{q_{\star}}\left(M+(k+1) \int_{t_{1}^{\prime}}^{\infty} G(u) \Delta u\right), \quad t \in \mathbb{T}
$$

Since $\lim _{l \rightarrow \infty} \rho^{k}\left(t_{2}^{M}\right)+l(\delta-\tau)=-\infty$, there exists such $l_{0} \in \mathbb{N}$ that $\rho^{k}\left(t_{2}^{M}\right)+l_{0}(\delta-\tau) \leq t_{1}^{\prime}<\rho^{k}\left(t_{2}^{M}\right)+\left(l_{0}-1\right)(\delta-\tau)$.
Similarly to the above we prove the existence of a solution to (1) $\bar{x}: \mathbb{T} \rightarrow \mathbb{R}$, which satisfies it on $\left[t_{1}^{\prime}, \infty\right)_{\mathbb{T}}$, $\left.\bar{x}\right|_{\left(-\infty, t_{1}^{\prime}\right]_{\mathbb{T}}}=\bar{x}\left(t_{1}^{\prime}\right)$ with the estimation

$$
|\bar{x}(t)| \leq \frac{1}{q_{\star}}\left(M+\left(k+l_{0}\right) \int_{t_{1}^{\prime}}^{\infty} G(u) \Delta u\right), \quad t \in \mathbb{T}
$$

Case $i i$) is analogous and is left to the reader.

Remark 2.1 Notice that $\left(H_{1}^{\prime}\right)$ implies that $\inf \mathbb{T}=-\infty$. It is worth noting that besides \mathbb{R} with any $\delta, \tau \in \mathbb{R}$, $\delta>\tau$ and \mathbb{Z} with any $\delta, \tau \in \mathbb{Z}, \delta>\tau$ assumption $\left(H_{1}^{\prime}\right)$ satisfies for example $\mathbb{Z} \cup \bigcup_{k \in \mathbb{Z}}\left[\frac{1}{4}+k, \frac{3}{4}+k\right]$ with $\delta, \tau \in \mathbb{Z}$, $\delta>\tau$.

The last theorem presents the necessary condition for the existence of an asymptotically zero solution to (1).

Theorem 2.3 Assume that:
$\left(H_{1}\right) \tau: \mathbb{T} \rightarrow \mathbb{T}$ is rd-continuous such that $\tau(t) \leq t, t \in \mathbb{T}$ and $\lim _{s \rightarrow \infty} \tau(s)=+\infty$, and $\delta: \mathbb{T} \rightarrow \mathbb{T}$ is rd-continuous such that $\delta(t) \leq t, t \in \mathbb{T}$ and $\lim _{s \rightarrow \infty} \delta(s)=+\infty ;$
$\left(H_{2}^{\prime}\right) \quad a, b: \mathbb{T} \rightarrow(0,+\infty)$ are rd-continuous;
$\left(H_{3}^{\prime}\right) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with $\min _{|y| \leq \eta} f(y)=: d>0$ for some $\eta>0$;
$\left(H_{6}\right) \quad q: \mathbb{T} \rightarrow \mathbb{R}$ is bounded, continuous;
$\left(H_{7}\right) \quad r: \mathbb{T} \rightarrow(0,+\infty)$ is continuous with $\int_{t_{0}^{\prime}}^{\infty} \frac{\Delta u}{r(u)}<+\infty$ for some $t_{0}^{\prime} \in \mathbb{T}$.
If (1) possesses a solution $x: \mathbb{T} \rightarrow \mathbb{R}$ such that $\lim _{t \rightarrow \infty} x(t)=0$, then for some $t_{2} \in \mathbb{T}$

$$
\int_{t_{2}}^{\infty} \frac{1}{r(u)}\left(\int_{t_{2}}^{u} a(s) \Delta s\right) \Delta u<+\infty \wedge \int_{t_{2}}^{\infty} \frac{1}{r(u)}\left(\int_{t_{2}}^{u} b(s) \Delta s\right) \Delta u<+\infty .
$$

Proof From $\delta(t) \rightarrow \infty$ and $x(t) \rightarrow 0$ as $t \rightarrow \infty$ it is clear that there exists $t_{1} \in \mathbb{T}$ such that $|x(\delta(t))| \leq \eta$ for $t \geq t_{1}$. Moreover, there exists $t_{0} \in \mathbb{T}$, such that x satisfies (1) for $t \geq t_{0}$. Integrating (1) from t to $t_{2}:=\max \left\{t_{0}, t_{0}^{\prime}, t_{1}\right\}$, we get that

$$
r(t)(x(t)+q(t) x(\tau(t)))^{\Delta}-A_{t_{2}}=\int_{t_{2}}^{t} a(s) f(x(\delta(s)))+b(s) \Delta s
$$

where $A_{t_{2}}:=r\left(t_{2}\right)\left(x\left(t_{2}\right)+q\left(t_{2}\right) x\left(\tau\left(t_{2}\right)\right)\right)^{\Delta}$. Dividing the last equality by $r(t)$ and integrating above from t_{2} to ∞, thanks to $\lim _{t \rightarrow \infty} x(t)=0,\left(H_{7}\right)$, and boundedness of q, we see that

$$
\begin{equation*}
x\left(t_{2}\right)+q\left(t_{2}\right) x\left(\tau\left(t_{2}\right)\right)+A_{t_{2}} \int_{t_{2}}^{\infty} \frac{\Delta u}{r(u)}=-\int_{t_{2}}^{\infty} \frac{1}{r(u)}\left(\int_{t_{2}}^{u}(a(s) f(x(\delta(s)))+b(s) \Delta s) \Delta u .\right. \tag{8}
\end{equation*}
$$

From $\left(H_{2}^{\prime}\right)$ and $\left(H_{3}^{\prime}\right)$, we get that

$$
\begin{equation*}
\int_{t_{2}}^{\infty} \frac{1}{r(u)}\left(\int_{t_{2}}^{u}(a(s) f(x(\delta(s)))+b(s)) \Delta s\right) \Delta u \geq \int_{t_{2}}^{\infty} \frac{1}{r(u)}\left(\int_{t_{2}}^{u}(a(s) d+b(s)) \Delta s\right) \Delta u . \tag{9}
\end{equation*}
$$

Hence, from (8), (9), and (H_{2}^{\prime}), we see that

$$
\int_{t_{2}}^{\infty} \frac{1}{r(u)}\left(\int_{t_{2}}^{u} a(s) \Delta s\right) \Delta u<+\infty \wedge \int_{t_{2}}^{\infty} \frac{1}{r(u)}\left(\int_{t_{2}}^{u} b(s) \Delta s\right) \Delta u<+\infty
$$

NOCKOWSKA-ROSIAK/Turk J Math

3. Examples

Now we present two examples of equations that can be considered by the presented method.

Example 3.1 Let us consider the time scale $\mathbb{T}_{p}:=\left\{p^{n}: n \in \mathbb{N}\right\}$ with $p>1$ and the second-order nonlinear neutral dynamic equation

$$
\begin{equation*}
\left(t^{3}\left(x(t)+\frac{1}{t} x\left(\frac{t}{p^{2}}\right)\right)^{\Delta}\right)^{\Delta}=-\frac{1}{p}\left|x\left(\frac{t}{p}\right)\right|+\frac{(p+1)^{2}}{t^{2}}, t \geq t_{0} \tag{10}
\end{equation*}
$$

It is evident that assumptions $\left(H_{1}\right),\left(H_{2}\right)$, and $\left(H_{3}\right)$ of Theorem 2.1 are satisfied. Moreover, for checking $\left(H_{4}\right)$ and $\left(H_{5}\right)$, notice that $\sup _{t \in \mathbb{T}} q(t)=\sup _{t \in \mathbb{T}} \frac{1}{t}=\frac{1}{p}<1$ and

$$
\int_{p}^{\infty}\left(\frac{1}{u^{3}} \int_{p}^{u} \frac{1}{p} \Delta s\right) \Delta u=\frac{p^{2}+p-1}{p+1}<\infty, \int_{p}^{\infty}\left(\frac{1}{u^{3}} \int_{p}^{u} \frac{(p+1)^{2}}{s^{2}} \Delta s\right) \Delta u=\frac{p+1}{\left(p^{2}+p+1\right)}<\infty
$$

Hence, there exist uncountably many nonoscillatory bounded solutions to (10). It is easy to see that for any $c \geq 0, x_{c}(t)=c+\frac{1}{t^{2}}, t \in \mathbb{T}$ satisfies (10) for $t \in \mathbb{T}$, which means that x_{c} is a bounded nonoscillatory solution to (10). Notice that results from [10] cannot be applied to (10).

Example 3.2 Consider the time scale $\mathbb{T}=\mathbb{Z}$ and the second-order nonlinear neutral difference equation

$$
\begin{equation*}
\Delta\left(r_{n} \Delta\left(x_{n}+q_{n} x_{n-\tau}\right)\right)=a_{n} f\left(x_{n-\delta}\right)+b_{n}, n \geq \tau \tag{11}
\end{equation*}
$$

with $\tau, \delta \in \mathbb{N}, \tau>\delta, \sup _{n \in \mathbb{Z}} q_{n}=: q^{\star}<1, \inf _{n \in \mathbb{Z}} q_{n}=: q_{\star}>0, r_{n}=\sqrt{n+1}, a_{n}=\frac{1}{4 n^{2}-1}, b_{n}=4^{-n}$, $n \in \mathbb{N} \cup\{0\}, r_{n}=a_{n}=b_{n}=0,-n \in \mathbb{N}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function. (11) satisfies assumptions of Theorem 2.2, because

$$
\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} \sum_{k=n}^{\infty} \frac{1}{4 k^{2}-1}=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} \frac{1}{2(2 n-1)}<\infty, \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}} \sum_{k=n}^{\infty} 4^{-k}<\infty
$$

This means that there exists a bounded sequence $x: \mathbb{N} \cup\{0\} \rightarrow \mathbb{R}$ that satisfied

$$
\Delta\left(\sqrt{n+1} \Delta\left(x_{n}+q_{n} x_{n-\tau}\right)\right)=\frac{1}{4 n^{2}-1} f\left(x_{n-\delta}\right)+4^{-n}
$$

for $n \geq \tau$.

Acknowledgment

The author wishes to express her thanks to the referees for insightful remarks improving quality of the paper.

References

[1] Agarwal RP, Bohner M, Li WT. Nonoscillation and Oscillation Theory for Functional Differential Equations. New York, NY, USA: Marcel Dekker, 2003.
[2] Agarwal RP, Bohner M, Rehák P. Half-linear Dynamic Equations in Nonlinear Analysis and Applications: To V. Lakshmikantham on His 80th Birthday, Vol. 1, 2. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2003, pp. 1-57.
[3] Agarwal RP, Grace SR, O'Regan D. Nonoscillatory solutions for discrete equations. Computers \& Mathematics with Applications 2003; 45: 1297-1302.
[4] Appell J. Measures of noncompactness, condensing operators and fixed point: an application-oriented survey. Fixed Point Theory 2005; 6 (2): 157-229.
[5] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston, MA, USA: Birkhäuser, 2001.
[6] Bohner M, Stević S. Asymptotic behavior of second-order dynamic equations. Applied Mathematics and Computation 2007; 188 (2): 1503-1512.
[7] Cheng SS. Existence of nonoscillatory solutions of a second-order linear neutral difference equation. Applied Mathematics Letters 1999; 12: 71-78.
[8] Cheng SS, Li HJ, Patula WT. Bounded and zero convergent solutions of second order difference equations. Journal of Mathematical Analysis and Applications 1989; 141: 463-483.
[9] Darbo G. Punti uniti in trasformazioni a codominio non compatto. Rendiconti del Seminario Matematico della Universit di Padova 1955; 24: 84-92 (in Italian).
[10] Deng XH, Wang QR. Oscillation and nonoscillation for second-order nonlinear neutral functional dynamic equations on time scales. Electronic Journal of Differential Equations 2013; 234: 17.
[11] Deng XH, Wang QR. Nonoscillatory solutions to forced higher-order nonlinear neutral dynamic equations on time scales. Rocky Mountain Journal of Mathematics 2015; 45 (2): 475-507.
[12] Dunford N, Schwartz JT. Linear Operator Part 1: General Theory. New York, NY, USA: John Wiley \& Sons, 1988.
[13] Galewski M, Jankowski R, Nockowska-Rosiak M, Schmeidel E. On the existence of bounded solutions for nonlinear second order neutral difference equations. Electronic Journal of Qualitative Theory of Differential Equations 2014; 72: 1-12.
[14] Gao J, Wang QR. Existence of nonoscillatory solutions to second-order nonlinear neutral dynamic equations on time scales. Rocky Mountain Journal of Mathematics 2013; 43: 1521-1535.
[15] Higgins R. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete \& Continuous Dynamical Systems (B) 2010; 13: 609-622.
[16] Jinfa C. Existence of a nonoscillatory solution of a second-order linear neutral difference equation. Applied Mathematics Letters 2007; 20: 892-899.
[17] Karpuz B. Asymptotic behavior of bounded solutions of a class of higher-order neutral dynamic equations. Applied Mathematics and Computation 2009; 215: 2174-2183.
[18] Karpuz B. Necessary and sufficient conditions on the asymptotic behavior of second-order neutral delay dynamic equations with positive and negative coefficients. Mathematical Methods in the Applied Sciences 2014; 37 (8): 1219-1231.
[19] Lalli BS, Zhang BG. On existence of positive solutions and bounded oscillations for neutral difference equations. Journal of Mathematical Analysis and Applications 1992; 166: 272-287.
[20] Liu Z, Kang SM, Ume JS. Existence of uncountably many bounded nonoscillatory solutions and their iterative approximations for second order nonlinear neutral delay difference equations. Applied Mathematics and Computation 2009; 213: 554-576.
[21] Liu Z, Xu Y, Kang SM. Global solvability for second order nonlinear neutral delay difference equation. Computers \& Mathematics with Applications 2009; 57: 587-595.
[22] Liu Z, Zhao L, Kang SM, Ume JS. Existence of uncountably many bounded positive solutions for second order nonlinear neutral delay difference equations. Computers \& Mathematics with Applications 2011; 61: 2535-2545.
[23] Migda M, Migda J. Bounded solutions of nonlinear discrete Volterra equations. Mathematica Slovaca 2016; 66 (5): 1169-1178.

NOCKOWSKA-ROSIAK/Turk J Math

[24] Migda J, Nockowska-Rosiak M. Asymptotic properties of solutions to difference equations of Sturm-Liouville type. Applied Mathematics and Computation 2019; 340: 126-137.
[25] Nockowska-Rosiak M, Hachuła P, Schmeidel E. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with p-Laplacian. Discrete \& Continuous Dynamical Systems B 2018; 23 (1): 369-375.
[26] Schmeidel E. An application of measures of noncompactness in investigation of boundedness of solutions of second order neutral difference equations. Advances in Difference Equations 2013; 91: 9.
[27] Sun T, Xi H, Peng X, Yu W. Nonoscillatory solutions for higher-order neutral dynamic equations on times scales. Abstract and Applied Analysis 2010; 2010: 428963.
[28] Ye H, Yin J, Jin C. Non-oscillatory solutions for nonlinear neutral delay differential equations. Applied Mathematics and Computation 2014; 235: 283-291.
[29] Zhenguo Z, Wenlei D, Haiyan L. Existence of nonoscillatory solutions of higher-order nonlinear neutral dynamic equations on times scales. Journal of Applied Mathematics and Computing 2008; 28 (1-2): 29-38.
[30] Zhu SL, Lian FY. Existence for nonoscillatory solutions of forced higher-order nonlinear neutral dynamic equations. Dynamics of Continuous, Discrete and Impulsive Systems 2013; 20: 179-196.
[31] Zhu ZQ. Existence for positive solutions of second-order neutral dynamic equations on time scales. Advances in Dynamical Systems and Applications 2007; 2 (2): 265-282.
[32] Zhu ZQ, Wang QR. Existence of nonoscillatory solutions to neutral dynamic equations on times scales. Journal of Mathematical Analysis and Applications 2007; 335: 751-762.

[^0]: *Correspondence: magdalena.nockowska@p.lodz.pl
 2010 AMS Mathematics Subject Classification: 34N05, 34K25

