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Abstract: This work is devoted to the study of the existence of uncountably many nonoscillatory bounded solutions to
second-order nonlinear neutral dynamic equations by means of the Darbo fixed point theorem. We construct assumptions
without sign conditions on the nonlinear part of the equation. Moreover, we prove the necessary condition for the existence
of an asymptotically zero solution to the problem under consideration.
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1. Introduction and preliminaries

During the last decades, the nonoscillation and the boundedness for various nonlinear neutral differential
difference equations and their generalization, dynamic equations, have attracted some attention. See, for
example, [1–3, 7, 8, 13, 16, 19–23, 25, 26, 28] and the references cited therein.

The fixed point approach is a standard technique in order to provide the sufficient conditions for
the existence of nonoscillatory bounded solutions to second-order or higher-order nonlinear neutral dynamic
equations. For example, the following problem was considered by Deng and Wang in [10] via the Krasnoselskii
fixed point theorem: (

r(t) (x(t) + q(t)x(τ(t)))
∆
)∆

= f(t, xσ(t), x(τ1(t)), . . . , x(τm(t)),

x(ξ1(t)), . . . , x(ξn(t))).

To get their results the authors used sign conditions on the continuous function f and the divergence of the
improper integral of function t → 1

r(t) . Moreover, sign conditions on the nonlinear part of the equation are

crucial in the consideration of Karpuz in [18] for proving sufficient conditions for the existence of a solution to
the problem

(x(t) + q(t)x(α(t)))
∆2

+B(t)F (x(β(t)))− C(t)F (x(γ(t))) = φ(t).

The Krasnoselskii fixed point theorem was used by many authors; see, for example, [2, 11, 14, 17, 27, 30–32]. On
the other hand, Zhengou et el. in [29] used the Banach fixed point theorem to get the existence of nonoscillatory
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solutions of the following higher-order neutral dynamic equation:

(x(t) + q(t)x(τ(t)))
∆n

+ f(t, x(t− τ1(t)), . . . , x(t− τm(t)) = 0,

under Lipschitz continuity and monotonicity conditions on the nonlinear part.
In this paper we shall consider a second-order nonlinear neutral dynamic equation of the following form:

(
r(t) (x(t) + q(t)x(τ(t)))

∆
)∆

= a(t)f(x(δ(t))) + b(t). (1)

Some of the results presented in this paper cover the case q ≡ 0 , which means that equation (1) is the
generalization of the Sturm–Louville equation on time scales. Many authors studied such equations; see, for
example, [6], [15], and [24] and references therein.

To prove the existence of uncountably many nonoscillatory bounded solutions to the above equation we
apply the Darbo fixed point theorem on the space of bounded continuous functions defined on a noncompact
Hausdorff space S , denoted by BC(S) . Most of the above-mentioned papers required various types of sign
conditions on the nonlinear part of the equation. These conditions are a consequence of the usage of sufficient
conditions for the relative compactness of a bounded subset of BC(S) . In this article, we can avoid sign
conditions on the nonlinear function f , because we use the necessary and sufficient condition of the relative
compactness of a bounded subset of BC(S) , which is a consequence of the Hausdorff theorem. Moreover, our
approach allows us to prove the existence of a bounded solution to the considered problem, which satisfies the
equation on the maximal interval. In the last theorem, we present the necessary condition for the existence of
an asymptotically zero solution to (1).

For basic facts on time scales and dynamic equations, one may consult [5]. A time scale T is an arbitrary
nonempty closed subset of the real numbers R with the topology and ordering inherited from R . In this paper
we assume that T is a time scale such that supT = +∞ . In the whole paper we consider only delta differentiable
functions on T , which we call shortly differentiable functions. The set of rd-continuous functions f : T → R is
denoted by Crd(T) . The set of functions f : T → R that are differentiable and whose derivative is rd-continuous
is denoted by C1

rd(T) . We define the time scale interval [t0,∞)T = [t0,∞) ∩ T . Let z(t) := x(t) + q(t)x(τ(t)) .
By a solution to equation (1) we mean a function x : T → R such that z ∈ C1

rd[tx,∞)T and r ·z∆ ∈ C1
rd[tx,∞)T

and satisfying (1) for all t ≥ tx , for some tx ∈ T . A solution to (1) is said to be nonoscillatory if it is eventually
positive or eventually negative. By an asymptotically zero solution to equation (1) we mean a solution to (1)
that is convergent to zero as t → ∞ .

To get the main results of this paper we apply the Darbo fixed point theorem of the following form.

Theorem 1.1 ([4, 9]) Let X be a Banach space; let M be a nonempty, bounded, closed, convex subset of X ;
and let A : M → M be an α−condensing operator. Then A has a fixed point in M .

By [A]α we denote the α -norm of an operator A : X → Y between Banach spaces and α denotes the Kuratowski
measure of noncompactness. This means

[A]α = inf{k > 0 : α(A(N)) ≤ kα(N) for bounded N ⊂ X}.

We say that an operator A : X → Y between Banach spaces is an α -condensing operator if [A]α < 1 (see [4],
pp. 164, 195).
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Proposition 1.1 ([4, p. 197]) Let X be a Banach space. Suppose that A : X → X is a continuous operator
that admits a representation as a sum A = A1 + A2 , A1 is a contraction, and A2 is compact. Then A is the
α-condensing operator.

Let S be an topological space. We consider the Banach space BC(S) of all bounded continuous functions
f : S → R equipped with the standard supremum norm, i.e.

||f || = sup
s∈S

|f(s)|, for f ∈ BC(S).

Theorem 1.2 [12, p. 266] Let S be an arbitrary topological space and K a bounded subset of BC(S) . Then
K is relatively compact if and only if for every ε > 0 there is a finite collection {E1, . . . , En} of sets with union
S and points si ∈ Ei , i = 1, . . . , n , such that

sup
f∈K

sup
s∈Ei

|f(s)− f(si)| < ε, i = 1, . . . , n.

2. The main results
We start this section with the presentation of sufficient conditions for the existence of uncountably many
nonoscillatory bounded solutions to dynamic equation (1). We recall that T is a time scale such that supT =

+∞ .

Theorem 2.1 Assume that:

(H1) τ : T → T is continuous such that τ(t) ≤ t , t ∈ T and lim
s→∞

τ(s) = +∞ , δ : T → T is rd-continuous such

that δ(t) ≤ t , t ∈ T and lim
s→∞

δ(s) = +∞ ;

(H2) a, b : T → R are rd-continuous and r : T → R \ {0} , q : T → R are continuous;

(H3) f : R → R is continuous;

(H4)
∞∫
t0

(
1

|r(u)|

u∫
t1

|a(s)|∆s

)
∆u < +∞ ,

∞∫
t0

(
1

|r(u)|

u∫
t1

|b(s)|∆s

)
∆u < +∞, for some t0, t1 ∈ T , t0 ≥ t1 ;

(H5) q(t) ≥ 0 for t ∈ T , sup
t∈T

q(t) = q⋆ < 1 .

Then equation (1) possesses uncountably many nonoscillatory bounded solutions.

Proof Let M > 0 and L ∈ ( 1+q⋆

2 M,M) . From the continuity of f on [ 1−q⋆

2 M,M ] we get the existence of
Q > 0 such that

|f(y)| ≤ Q, for y ∈
[
1−q⋆

2 M,M
]
.

From (H4) it is clear that there exists t2 ∈ T , t2 > t0 , such that∫ ∞

t2

(
1

|r(u)|

∫ u

t2

(|a(s)|Q+ |b(s)|)∆s

)
∆u < min{L− 1+q⋆

2 M,M − L}. (2)
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We consider BC(T) , the Banach space of bounded continuous functions on T , and its subset BM := B(fM , M
4 (1+

q⋆)) , where fM is a constant function fM (t) = M
4 (3−q⋆) , t ∈ T . It is obvious that BM is a nonempty, bounded,

convex, and closed subset of BC(T) . Notice that x ∈ BM if and only if x ∈ BC(T) and

M
2 (1− q⋆) ≤ x(t) ≤ M, t ∈ T.

Define mappings TL, TL
1 , T2 : BM → BC(T) as follows: TL = TL

1 + T2 and

TL
1 (x)(t) =

{
L− q(t)x(τ(t)), for t ∈ [t2,∞)T

TL
1 (x)(t2), for t ∈ (−∞, t2)T,

T2(x)(t) =

−
∞∫
t

(
1

r(u)

u∫
t2

(a(s)f(x(δ(s))) + b(s))∆s

)
∆u, for t ∈ [t2,∞)T

T2(x)(t2), for t ∈ (−∞, t2)T.

First we notice that the continuity of q , (H1) , and (H5) implies that TL
1 (x) ∈ BC(T) for any x ∈ BM . The

following provides that T2(x) ∈ BC(T) for x ∈ BM . The function hx : T → R given by the formula

hx(u) =

u∫
t2

(a(s)f(x(δ(s))) + b(s))∆s

is the antiderivative of the rd-continuous function T ∋ s 7→ a(s)f(x(δ(s)))+b(s) . This means that hx ∈ Crd(T) ;
see [5], p. 27. Now we define function Hx : T → R by the formula

Hx(t) =

{
hx(t)
r(t) , for t ∈ [t2,∞)T

0, for t ∈ (−∞, t2)T.

From the above relation, Hx(t2) = 0 , and from the continuity of r we get that Hx : T → R is rd-continuous
on T . Moreover,

T2(x)(t) = −
∞∫
t

Hx(u)∆u, t ∈ T

and the function |Hx| , for x ∈ BM , is majorized by H : T → R defined by

H(t) =

{
1

|r(t)|

(∫ t

t2
(|a(s)|Q+ |b(s)|)∆s

)
, for t ∈ [t2,∞)T

0, for t ∈ (−∞, t2)T.

From assumption (H4) the integral in T2(x) is well defined for any x ∈ BM . Moreover,

T2(x)(t) =

∫ t

t2

Hx(u)∆u− T2(x)(t2), t ∈ T.
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It means that T2 is differentiable on T with

(T2(x))
∆(t) =

{
Hx(t), for t ∈ [t2,∞)T

0, for t ∈ (−∞, t2)T.

This implies that T2(x) is continuous on T . In order to see that T2(x) is bounded on T , we notice that from

(2) we get |T2(x)(t)| ≤ min{L− 1+q⋆

2 M,M − L} for t ∈ T . This means that the operator TL : BM → BC(T)
is well defined. Our next goal is to check assumptions of Theorem 1.1 – the Darbo fixed point for the operator
TL = TL

1 + T2 .
We show that TL(BM ) ⊂ BM . Let x ∈ BM and t ∈ [t2,∞)T . Assumption (H5) and (2) imply that

TL(x)(t) = L− q(t)x(τ(t))−
∞∫
t

Hx(u)∆u ≤ L+

∞∫
t2

H(u)∆u ≤ M

and

TL(x)(t) = L− q(t)x(τ(t))−
∞∫
t

Hx(u)∆u ≥ L− q(t)x(τ(t))−
∞∫

t2

H(u)∆u

≥ L− q⋆M − min{L− 1+q⋆

2 M,M − L} ≥ L− q⋆M − L+ 1+q⋆

2 M = 1−q⋆

2 M.

It is easy to see that
||TL

1 x− TL
1 y|| ≤ q⋆||x− y||, for x, y ∈ BM ,

so that TL
1 is a contraction.

Now we prove the continuity of T2 . Let x ∈ BM , ε > 0 . Since [ 1−q⋆

2 M,M ] is a compact set, f is uniformly

continuous on [ 1−q⋆

2 M,M ] . Hence, there exists η > 0 such that

|f(w)− f(v)| < ε

1 +
∫∞
t2

(
1

|r(u)|
∫ u

t2
|a(s)|∆s

)
∆u

, (3)

for |w − v| < η and w, v ∈ [ 1−q⋆

2 M,M ] . For y ∈ BM such that ||x− y|| < η we have from (3) that

|T2(x)(t)− T2(y)(t)| ≤
∞∫
t

 1

|r(u)|

u∫
t2

|a(s)||f(x(δ(s)))− f(y(δ(s)))|∆s

∆u < ε

for t ≥ t2 . Hence, ||T2x− T2y|| < ε for y ∈ BM , ||x− y|| < η , which proves the continuity of T2 on BM .
Now we apply the relative compactness criterion in space BC(T) – Theorem 1.2, for T2(BM ) . From (2) we get
that T2(BM ) ⊂ BM , which means that T2(BM ) is bounded. Let ε > 0 . From (H4) we get the existence of tε

such that tε > t2 and

2

∫ ∞

tε

H(u)∆u < ε. (4)
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Since H is rd-continuous on compact set [t2, tε]T , it is bounded by some K , K > 0 ; see [5], p. 23. Moreover,
the compactness of [t2, tε]T implies that there exist s1, . . . , snε ∈ [t2, tε]T such that s1 < . . . < snε and
sets (si − ε

K , si +
ε
K )T for i = 1, . . . , nε provide ε

K− net of [t2, tε]T . We prove that sets E0 = (−∞, t2)T ,
Enε+1 = (tε,∞)T , Ei = (si − ε

K , si +
ε
K )T , for i = 1, . . . , nε with s0 = t0 , s1, . . . , snε , and snε+1 any element

of (tε,∞)T satisfied the condition

sup
x∈BM

sup
s∈Ei

|T2(x)(s)− T2(x)(si)| < ε, i = 0, . . . , nε + 1. (5)

For i = 0 condition (5) is evident, because T2 is constant on E0 . For i = nε + 1 from (4) we have

sup
x∈BM

sup
s∈(tε,∞)T

|T2(x)(s)− T2(x)(snε+1)| ≤ 2

∞∫
tε

H(u)∆u < ε.

For i ∈ {1, . . . , nε} we get

sup
x∈BM

sup
s∈Ei

|T2(x)(s)− T2(x)(si)| ≤ sup
x∈BM

sup
s∈Ei

∫ max{s,si}

min{s,si}
|Hx(u)|∆u ≤

sup
s∈Ei

∫ max{s,si}

min{s,si}
H(u)∆u ≤ sup

s∈Ei

∫ max{s,si}

min{s,si}
K∆u = sup

s∈Ei

K|s− si| < ε.

It proves that T2(BM ) is a relatively compact subset of BC(T) .
Since TL

1 is a contraction and since T2 is compact, it follows from Proposition 1.1 that TL : BM → BM

is an α -condensing operator. From the Darbo theorem we get that there exists x ∈ BM , a fixed point of TL

on BM . Thus, for t ≥ t2 we have

x(t) + q(t)x(τ(t)) = L−
∞∫
t

 1
r(u)

u∫
t2

(a(s)f(x(δ(s))) + b(s))∆s

∆u.

Since the right side of the above equality is a differentiable function, the left side possesses this property, as
well. Hence, for t ≥ t2 ,

r(t) (x(t) + q(t)x(τ(t)))
∆
=

t∫
t2

(a(s)f(x(δ(s))) + b(s)) ∆s.

In an analogous way, we have for t ≥ t2

(
r(t) (x(t) + q(t)x(τ(t)))

∆
)∆

= a(t)f(x(δ(t))) + b(t).

Hence, for x : T → R we have that x(·) + q(·)x(τ(·)) ∈ C1
rd[t2,∞) ,

r(·) · (x(·) + q(·)x(τ(·)))∆ ∈ C1
rd[t2,∞) , and x satisfies (1) for t ≥ t2 with x(t) ∈ [ 1−q⋆

2 M,M ] for t ∈ T . It
means that x is a bounded positive solution to (1).
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Now we prove the existence of uncountably many positive solutions to (1) lying in [ 1−q⋆

2 M,M ] . Let L1, L2 ∈

[ 1+q⋆

2 M,M ] , and L1 < L2 . From the previous part of the proof, it is easy to see that there exist t12, t
2
2 ≥ t1

and x1, x2 ∈ BC(T) , each a fixed point of the operator TLi on BM , i = 1, 2 , respectively, where

TLi(x)(t) =

{
Li − q(t)x(τ(t))− T2(x)(t) for t ∈ [ti2,∞)T

TLi(x)(ti2), for t ∈ (−∞, ti2)T.

Thus, xi are solutions to (1) satisfying this equation for t ≥ max{t12, t22} . By (H4) there exists t3 ≥ max{t12, t22}
such that

|T2(x
1)(t)|+ |T2(x

2)(t)| ≤ L2−L1

2 , t ≥ t3.

From this it is clear that, for t ≥ t3 ,

|x1(t)− x2(t) + q(t)(x1(τ(t))− x2(τ(t)))| ≥ L2 − L1 − (|T2(x
1)(t)|+ |T2(x

2)(t)|) > 0,

which means that x1 and x2 are different solutions to (1) lying in [ 1−q⋆

2 M,M ] .
In the analogous way, we can prove that (1) possesses uncountably many negative solutions, so the proof

of this part is omitted. 2

Now we are in a position to formulate and prove sufficient conditions for the existence of a bounded solution
to (1) that satisfies (1) on the maximal interval. To achieve our goal we have to make stronger assumptions on
the time scale.

Theorem 2.2 Assume that:

(H0) the number of left-scattered points in every compact subset of T is finite;

(H ′
1) τ̃ : T → T is a surjective function of the form τ̃(t) = t− τ , and δ̃ : T → T is a surjective function of the

form δ̃(t) = t− δ , t ∈ T with τ > δ > 0 ;

(H2) a, b : T → R are rd-continuous and r : T → R \ {0} , q : T → R are continuous;

(H3) f : R → R is continuous;

(H ′
4)

∞∫
t1

(
1

|r(u)|

∞∫
u

|a(s)|∆s

)
∆u < +∞,

∞∫
t1

(
1

|r(u)|

∞∫
u

|b(s)|∆s

)
∆u < +∞, for some t1 ∈ T ;

(H ′
5) inf

t∈T
q(t) = q⋆ > 0 , sup

t∈T
q(t) = q⋆ < 1 .

Then:

i) equation (1) possesses a bounded solution x : T → R , which satisfies (1) for t ≥ t′1 , if t′1 := min{t1 ∈
T which fulfils (H ′

4)} ;

ii) equation (1) possesses a bounded solution x : T → R , which satisfies (1) for t ≥ t′′1 for any t′′1 > inf{t1 ∈
T which fulfills (H ′

4)} , if min{t1 ∈ T which fulfills (H ′
4)} does not exist.
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Proof At the beginning, we assume that min{t1 ∈ T which fulfills (H ′
4)} exists and is equal to t′1 . Let M > 0 .

In an analogous way as in Theorem 2.1 we get that there exist tM2 ≥ t′1 and x : T → R such that x is a fixed
point of the operator T : BBC(T)(0,M) → BBC(T)(0,M) defined as follows:

T (x)(t) =

−q(t)x(t− τ) +
∞∫
t

Gx(u)∆u, for t ∈ [tM2 ,∞)T

T (x)(tM2 ), for t ∈ (−∞, tM2 )T,

where

Gx(u) =
1

r(u)

 ∞∫
u

(a(s)f(x(s− δ)) + b(s))∆s

 , u ≥ tM2 .

This means that x is a bounded solution to (1), which satisfied it for t ≥ tM2 and x|(−∞,tM2 ]T = x(tM2 ) ,
|x(t)| ≤ M , t ∈ T . We claim that (H ′

1) implies ρ(t + τ) − τ = ρ(t) and ρ(t) + τ − δ ∈ T , t ∈ T , where ρ(·)
denotes the backward jump operator on T . Now we divide the proof into two parts:
1. ρ(tM2 ) < tM2 . Notice that ρ(tM2 ) + τ − δ ≥ tM2 . Putting ρ(tM2 + τ) into the equation

x(t− τ) =
1

q(t)

−x(t) +

∞∫
t

1

r(u)

 ∞∫
u

(a(s)f(x(s− δ)) + b(s))∆s

∆u

 , (6)

we get that x̃ : T → R defined by the formula x̃|[tM2 ,+∞)T = x|[tM2 ,+∞)T , x̃|(−∞,ρ(tM2 )]T = x̃(ρ(tM2 )) , and

x̃(ρ(tM2 )) =
1

q(ρ(tM2 + τ))

−x(ρ(tM2 + τ)) +

∞∫
ρ(tM2 +τ)

Gx(u)∆u


satisfies (1) for t ≥ ρ(tM2 ) , which means it is a solution to (1). Moreover, |x̃(t)| ≤ M for t ≥ tM2 and from (6)

|x̃(ρ(tM2 ))| ≤ 1

q⋆

M +

∞∫
t′1

G(u)∆u

 ,

where Q := max
|y|≤M

|f(y)| and

G(u) =
1

r(u)

∞∫
u

(a(s)Q+ b(s))∆s, u ≥ t′1. (7)

2. ρ(tM2 ) = tM2 . Let t ∈ [tM2 + δ− τ, tM2 )T . Hence, we have that t+ τ − δ ≥ tM2 . Putting t+ τ into equation (6)
we get that x̃ : T → R defined by the formula x̃|[tM2 ,+∞)T = x|[tM2 ,+∞)T , x̃|(−∞,tM2 +δ−τ ]T = x̃(tM2 + δ − τ) and

x̃(t) =
1

q(t+ τ)

−x(t+ τ) +

∞∫
t+τ

Gx(u)∆u

 , t ∈ [tM2 − δ + τ, tM2 )T
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satisfies (1) for t ≥ tM2 − δ+ τ , which means x̃ is a solution to (1). Moreover, |x̃(t)| ≤ M for t ≥ tM2 and from
(6)

|x̃(t)| ≤ 1

q⋆

M +

∞∫
t′1

G(u)∆u

 , t ∈ [tM2 − δ + τ, tM2 )T.

Our next goal is to prove that there exists a solution to (1) that satisfies this equation on t ≥ t′1 . Thanks
to (H0) , without loss of generality, we can assume that there exists k ∈ N such that

[t1, t
M
2 ]T = {tM2 , ρ(tM2 ), ρ2(tM2 ), . . . , ρk(tM2 )} ∪ [t1, ρ

k(tM2 ))T

with tM2 > ρ(tM2 ) > ρ2(tM2 ) > . . . > ρk(tM2 ) and the interval [t1, ρk(tM2 ))T does not include left-scattered points.
Similarly to the case ρ(tM2 ) < tM2 there exists a solution to (1) x̂ : T → R that satisfies this equation on
[ρk(tM2 ),∞)T , x̂|(−∞,ρk(tM2 )]T = x̂(ρk(tM2 )) and

|x̂(t)| ≤ 1

q⋆

M + k

∞∫
t′1

G(u)∆u

 , t ∈ T.

Results from the case ρ(tM2 ) = tM2 prove the existence of a solution to (1) x̌ : T → R that satisfies this equation
on [ρk(tM2 ) + δ − τ,∞)T , x̌|(−∞,ρk(tM2 )+δ−τ ]T = x̌(ρk(tM2 ) + δ − τ) and

|x̌(t)| ≤ 1

q⋆

M + (k + 1)

∞∫
t′1

G(u)∆u

 , t ∈ T.

Since lim
l→∞

ρk(tM2 )+l(δ−τ) = −∞ , there exists such l0 ∈ N that ρk(tM2 )+l0(δ−τ) ≤ t′1 < ρk(tM2 )+(l0−1)(δ−τ) .

Similarly to the above we prove the existence of a solution to (1) x̄ : T → R , which satisfies it on [t′1,∞)T ,
x̄|(−∞,t′1]T

= x̄(t′1) with the estimation

|x̄(t)| ≤ 1

q⋆

M + (k + l0)

∞∫
t′1

G(u)∆u

 , t ∈ T.

Case ii) is analogous and is left to the reader. 2

Remark 2.1 Notice that (H ′
1) implies that infT = −∞ . It is worth noting that besides R with any δ, τ ∈ R ,

δ > τ and Z with any δ, τ ∈ Z , δ > τ assumption (H ′
1) satisfies for example Z∪

∪
k∈Z

[ 14 +k, 3
4 +k] with δ, τ ∈ Z ,

δ > τ .

The last theorem presents the necessary condition for the existence of an asymptotically zero solution to (1).
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Theorem 2.3 Assume that:

(H1) τ : T → T is rd-continuous such that τ(t) ≤ t , t ∈ T and lim
s→∞

τ(s) = +∞ , and δ : T → T is

rd-continuous such that δ(t) ≤ t , t ∈ T and lim
s→∞

δ(s) = +∞ ;

(H ′
2) a, b : T → (0,+∞) are rd-continuous;

(H ′
3) f : R → R is continuous with min

|y|≤η
f(y) =: d > 0 for some η > 0 ;

(H6) q : T → R is bounded, continuous;

(H7) r : T → (0,+∞) is continuous with
∞∫
t′0

∆u
r(u) < +∞ for some t′0 ∈ T .

If (1) possesses a solution x : T → R such that lim
t→∞

x(t) = 0 , then for some t2 ∈ T

∞∫
t2

1

r(u)

 u∫
t2

a(s)∆s

∆u < +∞ ∧
∞∫

t2

1

r(u)

 u∫
t2

b(s)∆s

∆u < +∞.

Proof From δ(t) → ∞ and x(t) → 0 as t → ∞ it is clear that there exists t1 ∈ T such that |x(δ(t))| ≤ η

for t ≥ t1. Moreover, there exists t0 ∈ T , such that x satisfies (1) for t ≥ t0 . Integrating (1) from t to
t2 := max{t0, t′0, t1} , we get that

r(t) (x(t) + q(t)x(τ(t)))
∆ −At2 =

t∫
t2

a(s)f(x(δ(s))) + b(s)∆s,

where At2 := r(t2) (x(t2) + q(t2)x(τ(t2)))
∆ . Dividing the last equality by r(t) and integrating above from t2

to ∞ , thanks to lim
t→∞

x(t) = 0 , (H7) , and boundedness of q , we see that

x(t2) + q(t2)x(τ(t2)) +At2

∞∫
t2

∆u

r(u)
= −

∞∫
t2

1

r(u)

 u∫
t2

(a(s)f(x(δ(s))) + b(s)∆s

∆u. (8)

From (H ′
2) and (H ′

3) , we get that

∞∫
t2

1

r(u)

 u∫
t2

(a(s)f(x(δ(s))) + b(s))∆s

∆u ≥
∞∫

t2

1

r(u)

 u∫
t2

(a(s)d+ b(s))∆s

∆u. (9)

Hence, from (8), (9), and (H ′
2) , we see that

∞∫
t2

1

r(u)

 u∫
t2

a(s)∆s

∆u < +∞ ∧
∞∫

t2

1

r(u)

 u∫
t2

b(s)∆s

∆u < +∞.

2
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3. Examples
Now we present two examples of equations that can be considered by the presented method.

Example 3.1 Let us consider the time scale Tp := {pn : n ∈ N} with p > 1 and the second-order nonlinear
neutral dynamic equation

(
t3
(
x(t) + 1

tx
(

t
p2

))∆)∆

= − 1
p

∣∣∣x( t
p

)∣∣∣+ (p+1)2

t2 , t ≥ t0. (10)

It is evident that assumptions (H1) , (H2) , and (H3) of Theorem 2.1 are satisfied. Moreover, for checking (H4)

and (H5) , notice that supt∈T q(t) = supt∈T
1
t = 1

p < 1 and

∫ ∞

p

(
1
u3

∫ u

p

1
p∆s

)
∆u = p2+p−1

p+1 < ∞,

∫ ∞

p

(
1
u3

∫ u

p

(p+1)2

s2 ∆s

)
∆u = p+1

(p2+p+1) < ∞.

Hence, there exist uncountably many nonoscillatory bounded solutions to (10). It is easy to see that for any
c ≥ 0 , xc(t) = c+ 1

t2 , t ∈ T satisfies (10) for t ∈ T , which means that xc is a bounded nonoscillatory solution
to (10). Notice that results from [10] cannot be applied to (10).

Example 3.2 Consider the time scale T = Z and the second-order nonlinear neutral difference equation

∆(rn∆(xn + qnxn−τ )) = anf(xn−δ) + bn, n ≥ τ (11)

with τ, δ ∈ N , τ > δ , supn∈Z qn =: q⋆ < 1 , infn∈Z qn =: q⋆ > 0, rn =
√
n+ 1 , an = 1

4n2−1 , bn = 4−n ,
n ∈ N ∪ {0} , rn = an = bn = 0 , −n ∈ N , and f : R → R a continuous function. (11) satisfies assumptions of
Theorem 2.2, because

∞∑
n=0

1√
n+1

∞∑
k=n

1
4k2−1 =

∞∑
n=0

1√
n+1

1
2(2n−1) < ∞,

∞∑
n=0

1√
n+1

∞∑
k=n

4−k < ∞.

This means that there exists a bounded sequence x : N ∪ {0} → R that satisfied

∆
(√

n+ 1∆(xn + qnxn−τ )
)
= 1

4n2−1f(xn−δ) + 4−n

for n ≥ τ .
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