

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Some ergodic properties of multipliers on commutative Banach algebras

Heybetkulu MUSTAFAYEV^{*}, Hayri TOPAL

Department of Mathematics, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey

Received: 30.01.2019	•	Accepted/Published Online: 29.04.2019	•	Final Version: 29.05.2019

Abstract: A commutative semisimple regular Banach algebra A with the Gelfand space Σ_A is called a Ditkin algebra if each point of $\Sigma_A \cup \{\infty\}$ is a set of synthesis for A. Generalizing the Choquet–Deny theorem, it is shown that if T is a multiplier of a Ditkin algebra A, then $\{\varphi \in A^* : T^*\varphi = \varphi\}$ is finite dimensional if and only if card \mathcal{F}_T is finite, where $\mathcal{F}_T = \{\gamma \in \Sigma_A : \widehat{T}(\gamma) = 1\}$ and \widehat{T} is the Helgason–Wang representation of T.

Key words: Commutative Banach algebra, multiplier, Choquet–Deny theorem

1. Introduction

This note was motivated by the classical result of Choquet and Deny [2] on ergodic properties of measures on locally compact abelian groups.

We begin with some basic notations and definitions. For a commutative Banach algebra A, by Σ_A , we will denote the Gelfand space of A equipped with the w^* -topology and by $a \to \hat{a}$, where $\hat{a}(\gamma) = \gamma(a)$ $(\gamma \in \Sigma_A)$, the Gelfand transform of $a \in A$. A linear operator $T: A \to A$ is called a multiplier of A if

$$(Ta)b = a(Tb) \ (= T(ab)), \ \forall a, b \in A.$$

When A is semisimple, the set M(A) of all multipliers of A is a commutative, closed, and unital subalgebra of B(A), the algebra of all bounded linear operators on A. Unless otherwise stated, we always assume that A is a commutative semisimple Banach algebra.

For an arbitrary $a \in A$, the multiplication operator L_a given by $L_a b = ab$ $(b \in A)$ is a multiplier of A. The algebra A embeds into M(A) via the mapping $a \mapsto L_a$ and therefore the Gelfand space of M(A) may be represented as the disjoint union of Σ_A and hull(A), where Σ_A is canonically embedded in $\Sigma_{M(A)}$ and hull(A)denotes the hull of A in $\Sigma_{M(A)}$.

For each $T \in M(A)$, there is a uniquely determined bounded continuous function \widehat{T} on Σ_A such that

$$\sup_{\gamma \in \Sigma_{A}} \left| \widehat{T} \left(\gamma \right) \right| \le \|T\|$$

and

$$\widehat{(Ta)}(\gamma) = \widehat{T}(\gamma) \,\widehat{a}(\gamma) \,, \ \forall a \in A, \ \forall \gamma \in \Sigma_A.$$

*Correspondence: hsmustafayev@yahoo.com

²⁰¹⁰ AMS Mathematics Subject Classification: 46J05, 43A22

1721

In fact, \hat{T} is the restriction to Σ_A of the Gelfand transform of T on $\Sigma_{M(A)}$. The function \hat{T} is often called the Helgason–Wang representation of T. Standard references to multipliers are the books [1, 5, 7].

2. Ditkin algebras

Throughout this paper, G will denote a locally compact abelian group with the Haar measure. By \widehat{G} , we will denote the dual group of G. As usual, $L^1(G)$ and M(G) will denote the group algebra and the convolution measure algebra of G, respectively. By the Wendel-Helson theorem [5, Theorem 0.1.1], an operator T on $L^1(G)$ is a multiplier of $L^1(G)$ if and only if there exists a measure $\mu \in M(G)$ such that $T = T_{\mu}$, where $T_{\mu}f = \mu * f$, $f \in L^1(G)$. Moreover, the map $\mu \mapsto T_{\mu}$ is an isometric isomorphism.

Let \widehat{f} and $\widehat{\mu}$ denote the Fourier and the Fourier-Stieltjes transform of $f \in L^1(G)$ and $\mu \in M(G)$, respectively. The classical Choquet-Deny theorem [2] characterizes a certain ergodic property of measures on G as follows. Given $\mu \in M(G)$, the following two conditions are equivalent:

(i) For any $\varphi \in L^{\infty}(G)$, the identity $\mu * \varphi = \varphi$ implies that φ is constant.

(ii) $\widehat{\mu}(\chi) \neq 1$, for all $\chi \in \widehat{G} \setminus \{0\}$.

In [10], Ramsey and Weit give a different proof of the Choquet–Deny theorem. Granirer [3, Theorem 3] obtained an extension of the Choquet–Deny theorem for the Herz algebras $A_p(G)$ (1 . In [4, Theorem 3.6], more general Choquet–Deny type results are established for some class of commutative Banach algebras (for the related results, see also [8, 9]).

Recall that a commutative Banach algebra A is said to be regular if, given a closed subset S of Σ_A and $\gamma \in \Sigma_A \setminus S$, there exists an $a \in A$ such that $\hat{a}(S) = \{0\}$ and $\hat{a}(\gamma) \neq 0$. A regular Banach algebra A is said to be Tauberian if $\overline{A_{00}} = A$, where

$$A_{00} := \{a \in A : \operatorname{supp}\widehat{a} \text{ is compact}\}\$$

The Tauberian condition implies that every proper closed ideal of A is contained in a maximal modular ideal.

Let A be a regular semisimple Banach algebra. Given a closed set S in Σ_A , there are two distinguished closed ideals of A with hull equal to S; namely $J_S := \overline{J_S^o}$ is the smallest closed ideal

$$J_S^o := \{ a \in A_{00} : \operatorname{supp} \widehat{a} \cap S = \emptyset \}$$

and

$$I_S := \{ a \in A : \widehat{a}(\gamma) = 0, \ \forall \gamma \in S \}$$

is the largest closed ideal whose hulls are S. The set S is a set of synthesis for A if $J_S = I_S$ (for instance, see [6, Sect. 8.3]). Thus, S is a set of synthesis for A if and only if I_S is the only closed ideal of A whose hull is S. It is a famous theorem of Malliavin that, for each noncompact locally compact abelian group G, there exists a set of nonsynthesis for $L^1(G)$.

We say that a regular semisimple Banach algebra A is a w-Ditkin algebra if each point of $\Sigma_A \cup \{\infty\}$ is a set of synthesis for A. Since $J^o_{\{\infty\}} = A_{00}$ and $I_{\{\infty\}} = A$, the algebra A is a w-Ditkin algebra if $J_{\{\gamma\}} = I_{\{\gamma\}}$, for all $\gamma \in \Sigma_A$ and $\overline{A_{00}} = A$.

Recall that a weight function ω is a continuous function on G such that

$$\omega(g) \ge 1 \text{ and } \omega(g+s) \le \omega(g)\omega(s), \ \forall g, s \in G.$$

For a weight function ω on G, by $L^{1}_{\omega}(G)$ we will denote the Banach space of the functions $f \in L^{1}(G)$ with the norm

$$\left\|f\right\|_{1,\omega} = \int_{G} \left|f\left(g\right)\right| \omega\left(g\right) dg < \infty.$$

The space $L^{1}_{\omega}(G)$ with convolution product and the norm $\|\cdot\|_{1,\omega}$ is a commutative semisimple Banach algebra with a bounded approximate identity and is called Beurling algebra. The dual space of $L^{1}_{\omega}(G)$, denoted by $L^{\infty}_{\omega}(G)$, is the space of all measurable functions φ on G such that

$$\left\|\varphi\right\|_{\omega,\infty} := \operatorname{ess\,sup}_{g\in G} \frac{\left|\varphi\left(g\right)\right|}{\omega\left(g\right)} < \infty.$$

Let $M_{\omega}(G)$ denote the Banach algebra (with respect to the convolution product) of all complex regular Borel measures on G with the norm

$$\left\Vert \mu \right\Vert _{1,\omega }=\int_{G}\omega \left(g
ight) d\left\vert \mu
ightert \left(g
ight) <\infty .$$

There is a version of the Wendel-Helson theorem for Beurling algebras. This result says that an operator T on $L^1_{\omega}(G)$ is a multiplier of $L^1_{\omega}(G)$ if and only if there exists a measure $\mu \in M_{\omega}(G)$ for which $Tf = \mu * f$, $f \in L^1_{\omega}(G)$ [7, 4.1.7].

We mention the following result [11, Ch. 6, §3.2].

Theorem 2.1 Let ω be a weight function on G satisfying the following conditions for each $g \in G$:

- (i) $\omega(g^n) = O(|n|^{\alpha_g}) \ (|n| \to \infty), \text{ for some } \alpha_g > 0;$
- $(ii) \liminf_{|n| \to \infty} \frac{\omega(g^n)}{|n|} = 0.$

Then:

- (a) The Gelfand space of $L^{1}_{\omega}(G)$ is the dual group of G.
- (b) The Gelfand transform of $f \in L^1_{\omega}(G)$ is just the Fourier transform of f.
- (c) $L^{1}_{\omega}(G)$ is a w-Ditkin algebra.

Let A be a commutative Banach algebra. For $\varphi \in A^*$ and $a \in A$, the functional $\varphi \cdot a$ on A is defined by

$$\langle \varphi \cdot a, b \rangle = \langle \varphi, ab \rangle, \ b \in A.$$

If $T \in M(A)$, then as $T(ab) = a(Tb) (a, b \in A)$, we have

$$T^*(\varphi \cdot a) = (T^*\varphi) \cdot a, \ \forall a \in A, \ \forall \varphi \in A^*.$$

$$(2.1)$$

Further, note that for an arbitrary $\varphi \in A^*$,

$$I_{\varphi} := \{a \in A : \varphi \cdot a = 0\}$$

is a closed ideal of A. If the algebra A has an approximate identity, then $\varphi \in I_{\varphi}^{\perp}$. The w^* -spectrum of $\varphi \in A^*$, denoted by $\sigma_*(\varphi)$, is the set

$$\sigma_*\left(\varphi\right) = \overline{\left\{\varphi \cdot a : a \in A\right\}}^{w^*} \cap \Sigma_A.$$

We will need the following well-known results (for instance, see [4]).

Lemma 2.2 If A is a regular semisimple Banach algebra, then the following assertions hold for every $\varphi \in A^*$ and $a \in A$:

- (a) $\sigma_*(\varphi) = \operatorname{hull}(I_{\varphi}).$
- (b) $\sigma_*(\varphi \cdot a) \subseteq \sigma_*(\varphi) \cap \operatorname{supp} \widehat{a}$.

(c) If A is Tauberian with an approximate identity, then $\sigma_*(\varphi) \neq \emptyset$, whenever $\varphi \neq 0$.

We have the following.

Lemma 2.3 If A is a Tauberian Banach algebra, then

$$\sigma_*\left(\varphi\right) \cap \left\{\gamma \in \Sigma_A : \widehat{a}\left(\gamma\right) \neq 0\right\} \subseteq \sigma_*\left(\varphi \cdot a\right),$$

for all $\varphi \in A^*$ and $a \in A$.

Proof Let $\varphi \in A^*$ and $a \in A$ be given. Let $\gamma \in \Sigma_A$ be such that $\gamma \in \sigma_*(\varphi)$ and $\hat{a}(\gamma) \neq 0$. Assume that $\gamma \notin \sigma_*(\varphi \cdot a)$. Then there exists $b \in A$ such that $\hat{b}(\gamma) \neq 0$ and \hat{b} vanishes in a neighborhood of $\sigma_*(\varphi \cdot a)$. Since A is Tauberian, there exists a sequence $\{b_n\}$ in A_{00} such that $||b_n - b|| \to 0$. It follows that $\hat{b}_n(\gamma) \neq 0$, for some n. If $c := bb_n$, then we have $\hat{c}(\gamma) \neq 0$, $c \in A_{00}$, and \hat{c} vanishes in a neighborhood of $\sigma_*(\varphi \cdot a)$. Consequently, c belongs to the smallest ideal of A whose hull is $\sigma_*(\varphi \cdot a)$. By Lemma 2.2 (a), $c \in I_{\varphi \cdot a}$ and therefore $\varphi \cdot (ac) = 0$. It follows that $\hat{a}\hat{c}$ vanishes on $\sigma_*(\varphi)$. Since $\gamma \in \sigma_*(\varphi)$ and $\hat{c}(\gamma) \neq 0$, we have $\hat{a}(\gamma) = 0$.

Notice that if $T \in M(A)$, then

$$F_T := \overline{(I-T)A}$$

is a closed ideal of A associated with T and hull $(F_T) = \mathcal{F}_T$, where

$$\mathcal{F}_{T} = \left\{ \gamma \in \Sigma_{A} : \widehat{T}(\gamma) = 1 \right\}.$$

The main result of this note is the following:

Theorem 2.4 Let A be a w-Ditkin algebra with an approximate identity (not necessarily bounded) and $T \in M(A)$. Then the subspace $\{\varphi \in A^* : T^*\varphi = \varphi\}$ is finite dimensional if and only if card \mathcal{F}_T is finite. In this case,

$$\dim \{\varphi \in A^* : T^*\varphi = \varphi\} = \operatorname{card} \mathcal{F}_T$$

and

$$\{\varphi \in A^* : T^*\varphi = \varphi\} = \operatorname{span}\mathcal{F}_T.$$

Proof Assume that the subspace $\{\varphi \in A^* : T^*\varphi = \varphi\}$ is finite dimensional. It follows from the identity

$$T^*\gamma = \widehat{T}(\gamma)\gamma \ (\gamma \in \Sigma_A)$$

that

$$\mathcal{F}_T \subseteq \{\varphi \in A^* : T^*\varphi = \varphi\}.$$

1724

Since Σ_A is a linearly independent subset of A^* , we have

$$\dim \{\varphi \in A^* : T^*\varphi = \varphi\} \ge \operatorname{card} \mathcal{F}_T.$$

Now, assume that $\operatorname{card} \mathcal{F}_T$ is finite, say $\mathcal{F}_T = \{\gamma_1, ..., \gamma_n\}$. Clearly,

$$\operatorname{span}\mathcal{F}_T \subseteq \{\varphi \in A^* : T^*\varphi = \varphi\}.$$

Let $\varphi \in A^*$ be such that $T^*\varphi = \varphi$ and $\gamma \in \sigma_*(\varphi)$. Then

$$\gamma = w^* - \lim_{\lambda} \left(\varphi \cdot a_{\lambda} \right),$$

for some net $\{a_{\lambda}\}$ in A. By (2.1), we can write

$$T^*\gamma = w^* - \lim_{\lambda} \left[(T^*\varphi) \cdot a_{\lambda} \right] = w^* - \lim_{\lambda} \left(\varphi \cdot a_{\lambda} \right) = \gamma.$$

It follows that $\widehat{T}(\gamma) = 1$ and therefore $\gamma \in \mathcal{F}_T$. We have $\sigma_*(\varphi) \subseteq \{\gamma_1, ..., \gamma_n\}$. Let us show that $\varphi = c_1\gamma_1 + ... + c_n\gamma_n$, for some $c_1, ..., c_n \in \mathbb{C}$. We may assume that $\sigma_*(\varphi) = \{\gamma_1, ..., \gamma_n\}$. Let $U_1, ..., U_n$ be the disjoint neighborhoods of $\gamma_1, ..., \gamma_n$, respectively. Let V_i be a compact neighborhood of γ_i such that $\overline{V_i} \subset U_i$. Then there exist elements $a_1, ..., a_n$ in A such that $\widehat{a_i} = 1$ on $\overline{V_i}$ and $\widehat{a_i} = 0$ outside U_i (i = 1, ..., n). Let $a := a_1 + ... + a_n$. Since $\widehat{a} = 1$ in a neighborhood of $\sigma_*(\varphi)$, the Gelfand transform of ab - b vanishes in a neighborhood of $\sigma_*(\varphi)$, for every $b \in A_{00}$. Consequently, ab - b belongs to the smallest ideal of A whose hull is $\sigma_*(\varphi)$ and therefore $ab - b \in I_{\varphi}$. Hence,

$$(\varphi \cdot a) \cdot b = \varphi \cdot b, \ \forall b \in A_{00}.$$

Since A_{00} is dense in A, we have

$$(\varphi \cdot a) \cdot b = \varphi \cdot b, \ \forall b \in A.$$

If $\{e_{\lambda}\}$ is an approximate identity for A, then from the identities $(\varphi \cdot a) \cdot e_{\lambda} = \varphi \cdot e_{\lambda}$, we obtain that $\varphi \cdot a = \varphi$. Thus, we have $\varphi = \varphi_1 + ... + \varphi_n$, where $\varphi_i = \varphi \cdot a_i$ (i = 1, ..., n). By Lemmas 2.2 and 2.3, we can write

$$\{\gamma_i\} \subseteq \sigma_* \left(\varphi \cdot a_i\right) \subseteq \sigma_* \left(\varphi\right) \cap \operatorname{supp} \widehat{a_i} = \{\gamma_i\}.$$

Consequently, $\sigma_*(\varphi_i) = \{\gamma_i\}$, so that $\operatorname{hull}(I_{\varphi_i}) = \{\gamma_i\}$. Since $\{\gamma_i\}$ is a set of synthesis for A, we have $I_{\varphi_i} = I_{\{\gamma_i\}}$. It follows that

$$\varphi_i \in I_{\varphi_i}^{\perp} = I_{\{\gamma_i\}}^{\perp} = \mathbb{C}\gamma_i.$$

Hence, $\varphi_i = c_i \gamma_i$, for some $c_i \in \mathbb{C}$, and therefore $\varphi = c_1 \gamma_1 + \ldots + c_n \gamma_n$. It follows that

$$\dim \{\varphi \in A^* : T^*\varphi = \varphi\} \le \operatorname{card} \mathcal{F}_T$$

Thus, we have

$$\dim \{\varphi \in A^* : T^*\varphi = \varphi\} = \operatorname{card} \mathcal{F}_T$$

This completes the proof.

Let ω be a weight function on G. For an arbitrary $\mu \in M_{\omega}(G)$, we put

$$F_{\mu} = \overline{\left\{ \left(f - \mu * f\right) : f \in L^{1}_{\omega}\left(G\right)\right\}}$$

and

$$\mathcal{F}_{\mu} = \left\{ \chi \in \widehat{G} : \widehat{\mu} \left(\chi \right) = 1 \right\}.$$

The following result is an immediate consequence of Theorem 2.4.

Corollary 2.5 Let ω be a weight function on G satisfying the hypotheses of Theorem 2.1. If $\mu \in M_{\omega}(G)$, then the subspace

$$\{\varphi \in L^{\infty}_{\omega}\left(G\right): \mu \ast \varphi = \varphi\}$$

is finite dimensional if and only if $\operatorname{card} \mathcal{F}_{\mu}$ is finite. In this case, we have

$$\dim \left\{ \varphi \in L^{\infty}_{\omega} \left(G \right) : \mu * \varphi = \varphi \right\} = \operatorname{card} \mathcal{F}_{\mu}$$

and

$$\{\varphi \in L^{\infty}_{\omega}(G) : \mu * \varphi = \varphi\} = \operatorname{span}\mathcal{F}_{\mu}.$$

The following example shows that without the w--Ditkin algebra condition, Theorem 2.4 does not hold in general.

Example 2.6 Let $A = L^1_{\omega}(\mathbb{R})$ be the Beurling algebra with weight $\omega(t) = 1 + |t|$ $(t \in \mathbb{R})$. Then,

$$I_{\left\{0\right\}}=\left\{f\in A:\widehat{f}\left(0\right)=0\right\}$$

and

$$J_{\{0\}} = \left\{ f \in A : \hat{f}(0) = \hat{f}'(0) = 0 \right\}.$$

Define a multiplier T on A by Tf = h * f, where $h(t) = \frac{1}{2\sqrt{\pi}}e^{-\frac{t^2}{4}}$. Then $\widehat{T} = \widehat{h}$, and as $\widehat{h}(\lambda) = e^{-\lambda^2}$, we have $\mathcal{F}_T = \{0\}$. Hence, card $\mathcal{F}_T = 1$. If $f \in (I - T)A$, then f = k - h * k for some $k \in A$ and

$$\widehat{f}(\lambda) = \widehat{k}(\lambda) \left(1 - e^{-\lambda^2}\right).$$

Notice that $\hat{f}(0) = \hat{f}'(0) = 0$ and therefore $F_T \subseteq J_{\{0\}}$. Since $J_{\{0\}}$ is the smallest closed ideal of A with hull equal to $\{0\}$, we obtain that $F_T = J_{\{0\}}$. We thus have

$$\dim \{\varphi \in A^* : T^*\varphi = \varphi\} = \dim F_T^{\perp} = \dim J_{\{0\}}^{\perp} = 2.$$

Recall that a regular semisimple Banach algebra A is said to satisfy Ditkin's condition [6, Definition 8.5.1] at $\gamma \in \Sigma_A \cup \{\infty\}$ if for every $a \in A$ with $\hat{a}(\gamma) = 0$, there exists a sequence $\{a_n\}$ in A such that each $\hat{a_n}$ vanishes in a neighborhood U_n of γ and $||aa_n - a|| \to 0$. We say that A is an s-Ditkin algebra if it satisfies Ditkin's condition at each point of $\Sigma_A \cup \{\infty\}$. For example, if $\omega(g) = (1 + |g|)^{\alpha}$ $(0 \le \alpha < 1)$, then $L^1_{\omega}(\mathbb{R}^n)$ is

an *s*-Ditkin algebra [11, Ch. 6, §3.3], where for $g = (x_1, ..., x_n)$, we have $|g| = (x_1^2 + ... + x_n^2)^{\frac{1}{2}}$. Clearly, every *s*-Ditkin algebra is a *w*-Ditkin algebra.

A locally compact Hausdorff space Ω is said to be scattered if it contains no nonempty compact perfect subset. As usual, ∂S will denote the topological boundary of $S \subset \Omega$.

The following result is another extension of the Choquet–Deny theorem.

Theorem 2.7 Let A be an s-Ditkin algebra and let S be a closed subset of Σ_A such that ∂S is scattered. The following conditions are equivalent for $T \in M(A)$:

- (a) $\{\varphi \in A^* : T^*\varphi = \varphi\} \subseteq \overline{\operatorname{span}S}^{w^*}$.
- (b) $\widehat{T}(\gamma) \neq 1, \ \forall \gamma \in \Sigma_A \backslash S.$

Moreover, if $\partial \mathcal{F}_T$ is scattered, then

$$\{\varphi \in A^* : T^*\varphi = \varphi\} = \overline{\operatorname{span}\mathcal{F}_T}^{w^*}.$$

Proof (a) \Rightarrow (b) Since

$$\{\varphi \in A^* : T^*\varphi = \varphi\} = F_T^{\perp},$$

we have $F_T^{\perp} \subseteq \overline{\operatorname{span} S}^{w^*}$, and therefore,

$$I_S =^{\perp} \left(\overline{\operatorname{span}S}^{w^*}\right) \subseteq F_T.$$

It follows that

$$\left\{\gamma \in \Sigma_A : \widehat{T}(\gamma) = 1\right\} = \operatorname{hull}(F_T) \subseteq \operatorname{hull}(I_S) = S.$$

Hence, $\widehat{T}(\gamma) \neq 1$, $\forall \gamma \in \Sigma_A \setminus S$. (b) \Rightarrow (a) Since

 $\mathcal{F}_T = \operatorname{hull}(F_T) \subseteq S$

and S is a set of synthesis for A [6, Corollary 8.5.1], we can write

$$I_S = J_S \subseteq J_{\mathcal{F}_T} \subseteq F_T.$$

This implies

$$\{\varphi \in A^* : T^*\varphi = \varphi\} = F_T^{\perp} \subseteq I_S^{\perp} = \overline{\operatorname{span}}S^{w^*}.$$

If $S = \mathcal{F}_T$, then as $\widehat{T}(\gamma) \neq 1$, $\forall \gamma \in \Sigma_A \setminus \mathcal{F}_T$, by (a),

{

$$\{\varphi \in A^* : T^*\varphi = \varphi\} \subseteq \overline{\operatorname{span}\mathcal{F}_T}^{w^*}.$$

On the other hand, since

$$T^*\gamma = \widehat{T}(\gamma)\gamma, \quad \forall \gamma \in \Sigma_A,$$

we have

$$\overline{\operatorname{span}\mathcal{F}_T}^{w^*} \subseteq \{\varphi \in A^* : T^*\varphi = \varphi\}$$

and so

$$\{\varphi \in A^* : T^* \varphi = \varphi\} = \overline{\operatorname{span} \mathcal{F}_T}^{w^*}.$$

Recall that a linear subspace of $L^{1}(G)$ is said to be a Segal algebra and denoted by S(G) if it satisfies the following conditions:

a) S(G) is a translation invariant dense subalgebra of $L^{1}(G)$;

b) For an arbitrary $f \in S(G)$ and $g \in G$, $||f_g||_S = ||f||_S$, where $f_g(s) := f(g+s)$ and $||\cdot||_S$ is the norm of S(G);

c) For each $f \in S(G)$, the mapping $g \mapsto f_g$ is continuous from G into S(G).

About Segal algebras, ample information can be found in Reiter's book [11]. The following examples show that the class of Segal algebras is sufficiently large.

1) The algebra $L^{1}(G) \cap L^{p}(G)$ $(1 \le p < \infty)$, equipped with the norm $||f|| = ||f||_{1} + ||f||_{p}$, is a Segal algebra.

2) The algebra $L^{1}(G) \cap C_{0}(G)$, equipped with the norm $||f|| = ||f||_{1} + ||f||_{\infty}$, is a Segal algebra, where $C_{0}(G)$ is the space of all complex valued continuous functions on G vanishing at infinity.

A Segal algebra S(G) is a commutative semisimple regular Banach algebra with respect to convolution. The Gelfand space of S(G) is \hat{G} and the Gelfand transform of $f \in S(G)$ is just the Fourier transform of f. Moreover, S(G) is an *s*-Ditkin algebra [13]. Moreover, a Segal algebra S(G) has an approximate identity (not bounded in S(G)-norm unless $S(G) = L^1(G)$).

Let A(G) be the Fourier algebra of G. We know that A(G) is isometrically isomorphic to the algebra $L^1(\widehat{G})$ via the Fourier transform. The elements of $A(G)^*$ are called pseudomeasures. If T is a multiplier of S(G), then there exists a unique pseudomeasure σ such that $Tf = \sigma * f$, $f \in S(G)$ [12]. It follows that $\widehat{T} = \widehat{\sigma}$, where $\widehat{\sigma}$ is the Fourier transform of σ , which is defined by

$$\langle \widehat{\sigma}, f \rangle = \langle \sigma, \widehat{f} \rangle, \quad f \in L^1\left(\widehat{G}\right)$$

Consequently, Theorems 2.4 and 2.7 can be applied to the Segal algebras.

Acknowledgement

The authors were supported by the TUBITAK 1001 project MFAG No: 118F410.

References

- [1] Aiena P. Fredholm and Local Spectral Theory, with Applications to Multipliers. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2004.
- [2] Choquet G, Deny J. Sur l'équation de convolution $\mu = \mu * \sigma$. Comptes Rendus des Séances de l'Académie des Sciences 1960; 250: 799-801 (in French).
- [3] Granirer E. On some properties of the Banach algebras $A_p(G)$ for locally compact groups. Proceedings of the American Mathematical Society 1985; 95: 375-381.

MUSTAFAYEV and TOPAL/Turk J Math

- [4] Kaniuth E, Lau A, Ülger A. Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras. Journal of the London Mathematical Society 2010; 81: 255-275.
- [5] Larsen R. An Introduction to the Theory of Multipliers. New York, NY, USA: Springer-Verlag, 1971.
- [6] Larsen R. Banach Algebras. New York, NY, USA: Marcel Dekker, 1973.
- [7] Laursen KB, Neumann MM. An Introduction to Local Spectral Theory. New York, NY, USA: Oxford University Press, 2000.
- [8] Mustafayev H. Some convergence theorems for multipliers on commutative Banach algebras. Acta Scientiarum Mathematicarum (Szeged) 2018; 84: 673-685.
- [9] Mustafayev H. Mean ergodic theorems for multipliers on Banach algebras. Journal of Fourier Analysis and Applications 2019; 25: 393–426.
- [10] Ramsey T, Weit Y. Ergodic and mixing properties of measures on locally compact abelian groups. Proceedings of the American Mathematical Society 1984; 92: 519-520.
- [11] Reiter H. Classical Harmonic Analysis and Locally Compact Groups. Oxford, UK: Oxford University Press, 1968.
- [12] Unni KR. A note on multipliers on a Segal algebra. Studia Mathematica 1974; 49: 125-127.
- [13] Yap LYH. Every Segal algebra satisfies Ditkin's condition. Studia Mathematica 1971; 40: 235-237.