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Abstract: A commutative semisimple regular Banach algebra A with the Gelfand space ΣA is called a Ditkin algebra
if each point of ΣA ∪ {∞} is a set of synthesis for A . Generalizing the Choquet–Deny theorem, it is shown that if T is
a multiplier of a Ditkin algebra A, then {φ ∈ A∗ : T ∗φ = φ} is finite dimensional if and only if cardFT is finite, where

FT =
{
γ ∈ ΣA : T̂ (γ) = 1

}
and T̂ is the Helgason–Wang representation of T.
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1. Introduction
This note was motivated by the classical result of Choquet and Deny [2] on ergodic properties of measures on
locally compact abelian groups.

We begin with some basic notations and definitions. For a commutative Banach algebra A, by ΣA ,
we will denote the Gelfand space of A equipped with the w∗ -topology and by a → â, where â (γ) = γ (a)

(γ ∈ ΣA) , the Gelfand transform of a ∈ A. A linear operator T : A → A is called a multiplier of A if

(Ta)b = a(Tb) (= T (ab)) , ∀a, b ∈ A.

When A is semisimple, the set M (A) of all multipliers of A is a commutative, closed, and unital subalgebra
of B (A) , the algebra of all bounded linear operators on A. Unless otherwise stated, we always assume that A

is a commutative semisimple Banach algebra.
For an arbitrary a ∈ A, the multiplication operator La given by Lab = ab (b ∈ A) is a multiplier of A.

The algebra A embeds into M (A) via the mapping a 7→ La and therefore the Gelfand space of M (A) may be
represented as the disjoint union of ΣA and hull(A) , where ΣA is canonically embedded in ΣM(A) and hull(A)

denotes the hull of A in ΣM(A).

For each T ∈ M (A) , there is a uniquely determined bounded continuous function T̂ on ΣA such that

sup
γ∈ΣA

∣∣∣T̂ (γ)
∣∣∣ ≤ ∥T∥

and
(̂Ta) (γ) = T̂ (γ) â (γ) , ∀a ∈ A, ∀γ ∈ ΣA.
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In fact, T̂ is the restriction to ΣA of the Gelfand transform of T on ΣM(A). The function T̂ is often called the
Helgason–Wang representation of T. Standard references to multipliers are the books [1, 5, 7].

2. Ditkin algebras

Throughout this paper, G will denote a locally compact abelian group with the Haar measure. By Ĝ , we will
denote the dual group of G. As usual, L1 (G) and M (G) will denote the group algebra and the convolution
measure algebra of G, respectively. By the Wendel–Helson theorem [5, Theorem 0.1.1], an operator T on
L1 (G) is a multiplier of L1 (G) if and only if there exists a measure µ ∈ M (G) such that T = Tµ, where
Tµf = µ ∗ f , f ∈ L1 (G) . Moreover, the map µ 7→ Tµ is an isometric isomorphism.

Let f̂ and µ̂ denote the Fourier and the Fourier–Stieltjes transform of f ∈ L1 (G) and µ ∈ M (G) ,

respectively. The classical Choquet–Deny theorem [2] characterizes a certain ergodic property of measures on
G as follows. Given µ ∈ M (G) , the following two conditions are equivalent:

(i) For any φ ∈ L∞ (G) , the identity µ ∗ φ = φ implies that φ is constant.

(ii) µ̂ (χ) ̸= 1 , for all χ ∈ Ĝ⧹ {0} .
In [10], Ramsey and Weit give a different proof of the Choquet–Deny theorem. Granirer [3, Theorem 3]

obtained an extension of the Choquet–Deny theorem for the Herz algebras Ap (G) (1 < p < ∞) . In [4, Theorem
3.6], more general Choquet–Deny type results are established for some class of commutative Banach algebras
(for the related results, see also [8, 9]).

Recall that a commutative Banach algebra A is said to be regular if, given a closed subset S of ΣA and
γ ∈ ΣA⧹S, there exists an a ∈ A such that â (S) = {0} and â (γ) ̸= 0 . A regular Banach algebra A is said to
be Tauberian if A00 = A, where

A00 := {a ∈ A : suppâ is compact} .

The Tauberian condition implies that every proper closed ideal of A is contained in a maximal modular ideal.
Let A be a regular semisimple Banach algebra. Given a closed set S in ΣA, there are two distinguished

closed ideals of A with hull equal to S ; namely JS := Jo
S is the smallest closed ideal

Jo
S := {a ∈ A00 : suppâ ∩ S = ∅}

and
IS := {a ∈ A : â (γ) = 0, ∀γ ∈ S}

is the largest closed ideal whose hulls are S. The set S is a set of synthesis for A if JS = IS (for instance, see
[6, Sect. 8.3]). Thus, S is a set of synthesis for A if and only if IS is the only closed ideal of A whose hull is
S. It is a famous theorem of Malliavin that, for each noncompact locally compact abelian group G, there exists
a set of nonsynthesis for L1 (G) .

We say that a regular semisimple Banach algebra A is a w -Ditkin algebra if each point of ΣA ∪ {∞} is
a set of synthesis for A . Since Jo

{∞} = A00 and I{∞} = A, the algebra A is a w -Ditkin algebra if J{γ} = I{γ} ,

for all γ ∈ ΣA and A00 = A.

Recall that a weight function ω is a continuous function on G such that

ω (g) ≥ 1 and ω (g + s) ≤ ω (g)ω (s) , ∀g, s ∈ G.
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For a weight function ω on G , by L1
ω (G) we will denote the Banach space of the functions f ∈ L1 (G) with

the norm

∥f∥1,ω =

∫
G

|f (g)|ω (g) dg < ∞.

The space L1
ω (G) with convolution product and the norm ∥·∥1,ω is a commutative semisimple Banach algebra

with a bounded approximate identity and is called Beurling algebra. The dual space of L1
ω (G) , denoted by

L∞
ω (G) , is the space of all measurable functions φ on G such that

∥φ∥ω,∞ := ess sup
g∈G

|φ (g)|
ω (g)

< ∞.

Let Mω (G) denote the Banach algebra (with respect to the convolution product) of all complex regular Borel
measures on G with the norm

∥µ∥1,ω =

∫
G

ω (g) d |µ| (g) < ∞.

There is a version of the Wendel–Helson theorem for Beurling algebras. This result says that an operator T

on L1
ω (G) is a multiplier of L1

ω (G) if and only if there exists a measure µ ∈ Mω (G) for which Tf = µ ∗ f ,
f ∈ L1

ω (G) [7, 4.1.7].
We mention the following result [11, Ch. 6, §3.2].

Theorem 2.1 Let ω be a weight function on G satisfying the following conditions for each g ∈ G :

(i) ω (gn) = O (|n|αg ) (|n| → ∞) , for some αg > 0;

(ii) lim inf
|n|→∞

ω(gn)
|n| = 0 .

Then:
(a) The Gelfand space of L1

ω (G) is the dual group of G.

(b) The Gelfand transform of f ∈ L1
ω (G) is just the Fourier transform of f.

(c) L1
ω (G) is a w -Ditkin algebra.

Let A be a commutative Banach algebra. For φ ∈ A∗ and a ∈ A, the functional φ · a on A is defined
by

⟨φ · a, b⟩ = ⟨φ, ab⟩, b ∈ A.

If T ∈ M (A) , then as T (ab) = a (Tb) (a, b ∈ A) , we have

T ∗ (φ · a) = (T ∗φ) · a, ∀a ∈ A, ∀φ ∈ A∗. (2.1)

Further, note that for an arbitrary φ ∈ A∗,

Iφ := {a ∈ A : φ · a = 0}

is a closed ideal of A. If the algebra A has an approximate identity, then φ ∈ I⊥φ . The w∗ -spectrum of φ ∈ A∗,

denoted by σ∗ (φ) , is the set

σ∗ (φ) = {φ · a : a ∈ A}
w∗

∩ ΣA.

We will need the following well-known results (for instance, see [4]).
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Lemma 2.2 If A is a regular semisimple Banach algebra, then the following assertions hold for every φ ∈ A∗

and a ∈ A :

(a) σ∗ (φ) = hull (Iφ) .
(b) σ∗ (φ · a) ⊆ σ∗ (φ)∩supp â.
(c) If A is Tauberian with an approximate identity, then σ∗ (φ) ̸= ∅, whenever φ ̸= 0.

We have the following.

Lemma 2.3 If A is a Tauberian Banach algebra, then

σ∗ (φ) ∩ {γ ∈ ΣA : â (γ) ̸= 0} ⊆ σ∗ (φ · a) ,

for all φ ∈ A∗ and a ∈ A.

Proof Let φ ∈ A∗ and a ∈ A be given. Let γ ∈ ΣA be such that γ ∈ σ∗ (φ) and â (γ) ̸= 0. Assume that

γ /∈ σ∗ (φ · a) . Then there exists b ∈ A such that b̂ (γ) ̸= 0 and b̂ vanishes in a neighborhood of σ∗ (φ · a) .

Since A is Tauberian, there exists a sequence {bn} in A00 such that ∥bn − b∥ → 0. It follows that b̂n (γ) ̸= 0,

for some n. If c := bbn, then we have ĉ (γ) ̸= 0, c ∈ A00 , and ĉ vanishes in a neighborhood of σ∗ (φ · a) .
Consequently, c belongs to the smallest ideal of A whose hull is σ∗ (φ · a) . By Lemma 2.2 (a), c ∈ Iφ·a and
therefore φ · (ac) = 0. It follows that âĉ vanishes on σ∗ (φ) . Since γ ∈ σ∗ (φ) and ĉ (γ) ̸= 0, we have â (γ) = 0.

This contradicts â (γ) ̸= 0. 2

Notice that if T ∈ M (A) , then

FT := (I − T )A

is a closed ideal of A associated with T and hull(FT ) = FT , where

FT =
{
γ ∈ ΣA : T̂ (γ) = 1

}
.

The main result of this note is the following:

Theorem 2.4 Let A be a w -Ditkin algebra with an approximate identity (not necessarily bounded) and
T ∈ M (A) . Then the subspace {φ ∈ A∗ : T ∗φ = φ} is finite dimensional if and only if cardFT is finite.
In this case,

dim {φ ∈ A∗ : T ∗φ = φ} = cardFT

and
{φ ∈ A∗ : T ∗φ = φ} = spanFT .

Proof Assume that the subspace {φ ∈ A∗ : T ∗φ = φ} is finite dimensional. It follows from the identity

T ∗γ = T̂ (γ) γ (γ ∈ ΣA)

that
FT ⊆ {φ ∈ A∗ : T ∗φ = φ} .
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Since ΣA is a linearly independent subset of A∗, we have

dim {φ ∈ A∗ : T ∗φ = φ} ≥ cardFT .

Now, assume that cardFT is finite, say FT = {γ1, ..., γn} . Clearly,

spanFT ⊆ {φ ∈ A∗ : T ∗φ = φ} .

Let φ ∈ A∗ be such that T ∗φ = φ and γ ∈ σ∗ (φ) . Then

γ = w∗ − lim
λ

(φ · aλ) ,

for some net {aλ} in A. By (2.1), we can write

T ∗γ = w∗ − lim
λ

[(T ∗φ) · aλ] = w∗ − lim
λ

(φ · aλ) = γ.

It follows that T̂ (γ) = 1 and therefore γ ∈ FT . We have σ∗ (φ) ⊆ {γ1, ..., γn} . Let us show that φ =

c1γ1 + ... + cnγn , for some c1, ..., cn ∈ C. We may assume that σ∗ (φ) = {γ1, ..., γn} . Let U1, ..., Un be the
disjoint neighborhoods of γ1, ..., γn, respectively. Let Vi be a compact neighborhood of γi such that Vi ⊂ Ui .
Then there exist elements a1, ..., an in A such that âi = 1 on Vi and âi = 0 outside Ui (i = 1, ..., n) . Let
a := a1 + ... + an. Since â = 1 in a neighborhood of σ∗ (φ) , the Gelfand transform of ab − b vanishes in a
neighborhood of σ∗ (φ) , for every b ∈ A00. Consequently, ab− b belongs to the smallest ideal of A whose hull
is σ∗ (φ) and therefore ab− b ∈ Iφ. Hence,

(φ · a) · b = φ · b, ∀b ∈ A00.

Since A00 is dense in A, we have
(φ · a) · b = φ · b, ∀b ∈ A.

If {eλ} is an approximate identity for A, then from the identities (φ · a) · eλ = φ · eλ , we obtain that φ · a = φ.

Thus, we have φ = φ1 + ...+ φn, where φi = φ · ai (i = 1, ..., n) . By Lemmas 2.2 and 2.3, we can write

{γi} ⊆ σ∗ (φ · ai) ⊆ σ∗ (φ) ∩ suppâi = {γi} .

Consequently, σ∗ (φi) = {γi} , so that hull(Iφi
) = {γi} . Since {γi} is a set of synthesis for A, we have

Iφi
= I{γi} . It follows that

φi ∈ I⊥φi
= I⊥{γi} = Cγi.

Hence, φi = ciγi , for some ci ∈ C , and therefore φ = c1γ1 + ...+ cnγn . It follows that

dim {φ ∈ A∗ : T ∗φ = φ} ≤ cardFT .

Thus, we have
dim {φ ∈ A∗ : T ∗φ = φ} = cardFT .

This completes the proof. 2
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Let ω be a weight function on G. For an arbitrary µ ∈ Mω (G) , we put

Fµ = {(f − µ ∗ f) : f ∈ L1
ω (G)}

and
Fµ =

{
χ ∈ Ĝ : µ̂ (χ) = 1

}
.

The following result is an immediate consequence of Theorem 2.4.

Corollary 2.5 Let ω be a weight function on G satisfying the hypotheses of Theorem 2.1. If µ ∈ Mω (G) ,

then the subspace
{φ ∈ L∞

ω (G) : µ ∗ φ = φ}

is finite dimensional if and only if cardFµ is finite. In this case, we have

dim {φ ∈ L∞
ω (G) : µ ∗ φ = φ} = cardFµ

and
{φ ∈ L∞

ω (G) : µ ∗ φ = φ} = spanFµ.

The following example shows that without the w− -Ditkin algebra condition, Theorem 2.4 does not hold
in general.

Example 2.6 Let A = L1
ω (R) be the Beurling algebra with weight ω (t) = 1 + |t| (t ∈ R) . Then,

I{0} =
{
f ∈ A : f̂ (0) = 0

}
and

J{0} =
{
f ∈ A : f̂ (0) = f̂ ′ (0) = 0

}
.

Define a multiplier T on A by Tf = h ∗ f, where h (t) = 1
2
√
π
e−

t2

4 . Then T̂ = ĥ , and as ĥ (λ) = e−λ2

, we

have FT = {0} . Hence, cardFT = 1. If f ∈ (I − T )A, then f = k − h ∗ k for some k ∈ A and

f̂ (λ) = k̂ (λ)
(
1− e−λ2

)
.

Notice that f̂ (0) = f̂ ′ (0) = 0 and therefore FT ⊆ J{0} . Since J{0} is the smallest closed ideal of A with hull
equal to {0} , we obtain that FT = J{0} . We thus have

dim {φ ∈ A∗ : T ∗φ = φ} = dimF⊥
T = dim J⊥

{0} = 2.

Recall that a regular semisimple Banach algebra A is said to satisfy Ditkin’s condition [6, Definition
8.5.1] at γ ∈ ΣA ∪{∞} if for every a ∈ A with â (γ) = 0, there exists a sequence {an} in A such that each ân

vanishes in a neighborhood Un of γ and ∥aan − a∥ → 0 . We say that A is an s -Ditkin algebra if it satisfies
Ditkin’s condition at each point of ΣA ∪{∞} . For example, if ω (g) = (1 + |g|)α (0 ≤ α < 1) , then L1

ω (Rn) is
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an s -Ditkin algebra [11, Ch. 6, §3.3], where for g = (x1, ..., xn) , we have |g| =
(
x2
1 + ...+ x2

n

) 1
2 . Clearly, every

s -Ditkin algebra is a w -Ditkin algebra.
A locally compact Hausdorff space Ω is said to be scattered if it contains no nonempty compact perfect

subset. As usual, ∂S will denote the topological boundary of S ⊂ Ω.

The following result is another extension of the Choquet–Deny theorem.

Theorem 2.7 Let A be an s-Ditkin algebra and let S be a closed subset of ΣA such that ∂S is scattered. The
following conditions are equivalent for T ∈ M (A) :

(a) {φ ∈ A∗ : T ∗φ = φ} ⊆ spanSw∗

.

(b) T̂ (γ) ̸= 1, ∀γ ∈ ΣA⧹S.

Moreover, if ∂FT is scattered, then

{φ ∈ A∗ : T ∗φ = φ} = spanFT
w∗

.

Proof (a)⇒ (b) Since
{φ ∈ A∗ : T ∗φ = φ} = F⊥

T ,

we have F⊥
T ⊆ spanSw∗

, and therefore,

IS =⊥
(

spanSw∗)
⊆ FT .

It follows that {
γ ∈ ΣA : T̂ (γ) = 1

}
= hull (FT ) ⊆ hull (IS) = S.

Hence, T̂ (γ) ̸= 1, ∀γ ∈ ΣA⧹S.

(b)⇒ (a) Since
FT = hull (FT ) ⊆ S

and S is a set of synthesis for A [6, Corollary 8.5.1], we can write

IS = JS ⊆ JFT
⊆ FT .

This implies

{φ ∈ A∗ : T ∗φ = φ} = F⊥
T ⊆ I⊥S = spanSw∗

.

If S = FT , then as T̂ (γ) ̸= 1, ∀γ ∈ ΣA⧹FT , by (a),

{φ ∈ A∗ : T ∗φ = φ} ⊆ spanFT
w∗

.

On the other hand, since
T ∗γ = T̂ (γ) γ, ∀γ ∈ ΣA,

we have
spanFT

w∗

⊆ {φ ∈ A∗ : T ∗φ = φ}
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and so

{φ ∈ A∗ : T ∗φ = φ} = spanFT
w∗

.

2

Recall that a linear subspace of L1 (G) is said to be a Segal algebra and denoted by S (G) if it satisfies
the following conditions:

a) S (G) is a translation invariant dense subalgebra of L1 (G) ;

b) For an arbitrary f ∈ S (G) and g ∈ G, ∥fg∥S = ∥f∥S , where fg (s) := f (g + s) and ∥·∥S is the
norm of S (G) ;

c) For each f ∈ S (G) , the mapping g 7→ fg is continuous from G into S (G) .

About Segal algebras, ample information can be found in Reiter’s book [11]. The following examples
show that the class of Segal algebras is sufficiently large.

1) The algebra L1 (G) ∩ Lp (G) (1 ≤ p < ∞) , equipped with the norm ∥f∥ = ∥f∥1 + ∥f∥p , is a Segal
algebra.

2) The algebra L1 (G)∩C0 (G) , equipped with the norm ∥f∥ = ∥f∥1 + ∥f∥∞ , is a Segal algebra, where
C0 (G) is the space of all complex valued continuous functions on G vanishing at infinity.

A Segal algebra S (G) is a commutative semisimple regular Banach algebra with respect to convolution.

The Gelfand space of S (G) is Ĝ and the Gelfand transform of f ∈ S (G) is just the Fourier transform of f.

Moreover, S (G) is an s -Ditkin algebra [13]. Moreover, a Segal algebra S (G) has an approximate identity (not
bounded in S (G) -norm unless S (G) = L1 (G)).

Let A (G) be the Fourier algebra of G. We know that A (G) is isometrically isomorphic to the algebra

L1
(
Ĝ
)

via the Fourier transform. The elements of A (G)
∗ are called pseudomeasures. If T is a multiplier

of S (G) , then there exists a unique pseudomeasure σ such that Tf = σ ∗ f, f ∈ S (G) [12]. It follows that

T̂ = σ̂ , where σ̂ is the Fourier transform of σ , which is defined by

⟨σ̂, f⟩ = ⟨σ, f̂⟩, f ∈ L1
(
Ĝ
)
.

Consequently, Theorems 2.4 and 2.7 can be applied to the Segal algebras.
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