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Abstract: A commutative semisimple regular Banach algebra A with the Gelfand space ¥4 is called a Ditkin algebra
if each point of ¥4 U {co} is a set of synthesis for A. Generalizing the Choquet—Deny theorem, it is shown that if T is
a multiplier of a Ditkin algebra A, then {¢ € A* : T"p = ¢} is finite dimensional if and only if card Fr is finite, where

Fr = {7 exa:T (v) = 1} and T is the Helgason—Wang representation of 7.
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1. Introduction
This note was motivated by the classical result of Choquet and Deny [2] on ergodic properties of measures on
locally compact abelian groups.

We begin with some basic notations and definitions. For a commutative Banach algebra A, by X4,
we will denote the Gelfand space of A equipped with the w*-topology and by a — @, where a(y) = v (a)
(v € £4), the Gelfand transform of a € A. A linear operator T : A — A is called a multiplier of A if

(Ta)b = a(Tb) (=T(ab)), Va,be A.

When A is semisimple, the set M (A) of all multipliers of A is a commutative, closed, and unital subalgebra
of B(A), the algebra of all bounded linear operators on A. Unless otherwise stated, we always assume that A
is a commutative semisimple Banach algebra.

For an arbitrary a € A, the multiplication operator L, given by L,b=ab (b € A) is a multiplier of A.
The algebra A embeds into M (A) via the mapping a — L, and therefore the Gelfand space of M (A) may be
represented as the disjoint union of ¥4 and hull(A), where ¥4 is canonically embedded in ¥;(4) and hull (A)
denotes the hull of A in Xj/(4).

For each T € M (A), there is a uniquely determined bounded continuous function T on $4 such that

sup
YEX A

7o) <

and

—

(Ta)(v) =T (1)@(7), Yac A, ¥y €Sy,
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In fact, T is the restriction to ¥ A of the Gelfand transform of T" on ¥p;(4). The function T is often called the

Helgason—Wang representation of T. Standard references to multipliers are the books [1, 5, 7].

2. Ditkin algebras

Throughout this paper, G will denote a locally compact abelian group with the Haar measure. By G , we will
denote the dual group of G. As usual, L' (G) and M (G) will denote the group algebra and the convolution
measure algebra of G, respectively. By the Wendel-Helson theorem [5, Theorem 0.1.1], an operator 7' on
L' (@) is a multiplier of L' (G) if and only if there exists a measure u € M (G) such that T = T,,, where
T.f=uxf, fe L' (G). Moreover, the map p T, is an isometric isomorphism.

Let f and i denote the Fourier and the Fourier-Sticltjes transform of f € L' (G) and pu € M (G),
respectively. The classical Choquet-Deny theorem [2] characterizes a certain ergodic property of measures on
G as follows. Given p € M (G), the following two conditions are equivalent:

(i) For any ¢ € L™ (@), the identity u* ¢ = ¢ implies that ¢ is constant.

(i) 7i (x) # 1, for all y € G\ {0}.

In [10], Ramsey and Weit give a different proof of the Choquet—Deny theorem. Granirer [3, Theorem 3]
obtained an extension of the Choquet—Deny theorem for the Herz algebras A, (G) (1 < p < 00). In [4, Theorem
3.6], more general Choquet—Deny type results are established for some class of commutative Banach algebras
(for the related results, see also [8, 9]).

Recall that a commutative Banach algebra A is said to be regular if, given a closed subset S of ¥4 and
v € BaA\.5, there exists an a € A such that @ (S) = {0} and @ (y) # 0. A regular Banach algebra A is said to
be Tauberian if Agy = A, where

Ago := {a € A : suppa is compact} .
The Tauberian condition implies that every proper closed ideal of A is contained in a maximal modular ideal.

Let A be a regular semisimple Banach algebra. Given a closed set S in ¥ 4, there are two distinguished

closed ideals of A with hull equal to S; namely Jg := J2 is the smallest closed ideal
Jg :={a € Ay : suppan S = 0}

and
Is:={acA:a(y)=0, Vye S}

is the largest closed ideal whose hulls are S. The set S is a set of synthesis for A if Jg = Is (for instance, see
[6, Sect. 8.3]). Thus, S is a set of synthesis for A if and only if Ig is the only closed ideal of A whose hull is
S. It is a famous theorem of Malliavin that, for each noncompact locally compact abelian group G, there exists
a set of nonsynthesis for L (G).

We say that a regular semisimple Banach algebra A is a w-Ditkin algebra if each point of ¥4 U {oo} is
a set of synthesis for A. Since J{Ooo} = Ago and I{,) = A, the algebra A is a w-Ditkin algebra if Jy,; = I3,
for all v € ¥4 and Agy = A.

Recall that a weight function w is a continuous function on G such that

w(g)>landw(g+s) <w(g)w(s), Vg,s €G.
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For a weight function w on G, by L} (G) we will denote the Banach space of the functions f € L' (G) with

the norm

wmw=éuwwmm@<m.

The space Ll (G) with convolution product and the norm ||-||, , is a commutative semisimple Banach algebra

with a bounded approximate identity and is called Beurling algebra. The dual space of L} (G), denoted by

L (G), is the space of all measurable functions ¢ on G such that

v (9)]
lp = ess sup < 00
1P 1l,00 Do (g)

Let M, (G) denote the Banach algebra (with respect to the convolution product) of all complex regular Borel

measures on G with the norm

W%M=Lw@wM@<w-

There is a version of the Wendel-Helson theorem for Beurling algebras. This result says that an operator T
on Ll (G) is a multiplier of L} (G) if and only if there exists a measure pu € M,, (G) for which Tf = u* f,
feLl(@) |7, 4.1.7].

We mention the following result [11, Ch. 6, §3.2].

Theorem 2.1 Let w be a weight function on G satisfying the following conditions for each g € G :

(i) w(g™) =0 (n]") (In| = o), for some ay > 0;

w(g™) g

(44) lim inf o

Inl—>o0
Then:

(a) The Gelfand space of LY (G) is the dual group of G.

(b) The Gelfand transform of f € LL (Q) is just the Fourier transform of f.
(¢) LY (G) is a w-Ditkin algebra.

Let A be a commutative Banach algebra. For ¢ € A* and a € A, the functional ¢ -a on A is defined
by
(p-a,b) = (p,ab), be A.

If T e M(A), then as T (ab) = a (Th) (a,b € A), we have
T (p-a)=(T"p)-a, Ya€ A, Yo € A™. (2.1)
Further, note that for an arbitrary ¢ € A*,
I,-={a€A:¢p-a=0}

is a closed ideal of A. If the algebra A has an approximate identity, then ¢ € I j;. The w*-spectrum of p € A*,
denoted by o, (¢), is the set
(%) :{<p~a:a6A}w NXa.

We will need the following well-known results (for instance, see [4]).
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Lemma 2.2 If A is a reqular semisimple Banach algebra, then the following assertions hold for every ¢ € A*
and a € A:

(a) 04 (p) =hull(1,).
(b) 0. (¢-a) C ox(p)Nsuppa.
(c) If A is Tauberian with an approzimate identity, then o. () # 0, whenever ¢ # 0.

We have the following.

Lemma 2.3 If A is a Tauberian Banach algebra, then

ox(@)N{yeZa:a(y) #0} Coulp-a),
for all p € A* and a € A.

Proof Let ¢ € A* and a € A be given. Let v € 34 be such that v € o, (p) and @(y) # 0. Assume that
v & 0. (¢-a). Then there exists b € A such that 3(7) # 0 and b vanishes in a neighborhood of o, (p-a).
Since A is Tauberian, there exists a sequence {b,} in Agy such that ||b, — b|| — 0. It follows that by (7) # 0,

for some n. If ¢ := bb,, then we have ¢(y) # 0, ¢ € Ap, and ¢ vanishes in a neighborhood of o, (¢ -a).
Consequently, ¢ belongs to the smallest ideal of A whose hull is o, (¢ - a). By Lemma 2.2 (a), ¢ € I,., and
therefore ¢- (ac) = 0. It follows that @c vanishes on o, (¢). Since v € o, (¢) and ¢ () # 0, we have @ (y) = 0.
This contradicts a (y) # 0. O

Notice that if T € M (A), then
Fr=(I-T)A

is a closed ideal of A associated with T' and hull (Fr) = Fr, where
fT:{’YGZA:f(’y):l}.
The main result of this note is the following:

Theorem 2.4 Let A be a w-Ditkin algebra with an approzimate identity (not necessarily bounded) and
T € M (A). Then the subspace {p € A* : T*p = ¢} is finite dimensional if and only if cardFr is finite.
In this case,

dim{p € A* : T*p = p} = cardFr

and
{p€e A" : T p = p} = spanFr.

Proof Assume that the subspace {¢ € A* : T*p = ¢} is finite dimensional. It follows from the identity

~

T*y=T(v)y (v €Xa)

that
FrC{pe A" : T p = ¢}.
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Since Y4 is a linearly independent subset of A*, we have
dim{p € A" : T*p = ¢} > card Fr.
Now, assume that card Fr is finite, say Fr = {71, ..., 7n}. Clearly,
spanFr C{p € A" : T"p = p}.
Let ¢ € A* be such that T*p = ¢ and v € 0, (p). Then
y=w' —lim(p-ay),
for some net {ay} in A. By (2.1), we can write

Ty =w' =1 [(T"p) -ax] = w” —lim (¢ - ax) = .

It follows that 7'(y) = 1 and therefore v € Fr. We have o, (¢) € {71,...,}. Let us show that ¢ =
11 + .. + cuYn, for some cyq,...,c, € C. We may assume that o, (p) = {71,...,7}. Let Uy,...,U, be the
disjoint neighborhoods of 71, ...,7,, respectively. Let V; be a compact neighborhood of 7; such that V; C Uj;.
Then there exist elements ay,...,a, in A such that @ = 1 on V; and a@; = 0 outside U; (i =1,...,n). Let
a:=ai+ ...+ a,. Since @ = 1 in a neighborhood of o, (p), the Gelfand transform of ab — b vanishes in a
neighborhood of o, (¢), for every b € Agg. Consequently, ab — b belongs to the smallest ideal of A whose hull
is 0. (¢) and therefore ab— b € I,. Hence,

(p-a)-b=p-b, Vbe Agp.

Since Agg is dense in A, we have
(p-a)-b=yp-b, Vbe A.

If {e)} is an approximate identity for A, then from the identities (¢ - a)-ex = ¢- ey, we obtain that ¢-a = ¢.
Thus, we have ¢ = @1 + ... + ¢, where ¢; = p-a; (i=1,...,n). By Lemmas 2.2 and 2.3, we can write

{7i} Cou(p-ai) Cou(p) Nsuppa; = {yi}.

Consequently, o, (¢;) = {7}, so that hull(I,,) = {7}. Since {7;} is a set of synthesis for A, we have
I,, = I, - It follows that

Hence, ¢; = ¢;7y;, for some ¢; € C, and therefore ¢ = 11 + ... + ¢y, . It follows that
dim{p € A" : T*p = ¢} < card Fr.

Thus, we have
dim{p € A* : T*p = ¢} = card Fr.

This completes the proof. O
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Let w be a weight function on G. For an arbitrary p € M, (G), we put

Fy={(f—nuxf):feL,(G)}
and
fuz{xe@:ﬁ(x)zl}.

The following result is an immediate consequence of Theorem 2.4.

Corollary 2.5 Let w be a weight function on G satisfying the hypotheses of Theorem 2.1. If p € M, (G),

then the subspace
{oeLZ (G):pxp=¢}

is finite dimensional if and only if cardF,, is finite. In this case, we have
dim{p € LY (G) : p* ¢ = ¢} = cardF,

and
{o € L (G) : p* o= p} = spanF,.

The following example shows that without the w—-Ditkin algebra condition, Theorem 2.4 does not hold

in general.
Example 2.6 Let A= L. (R) be the Beurling algebra with weight w (t) =1+ |t| (t € R). Then,
Loy ={fea:fo=o}

and

Joy = {f € A: F(0) = J'(0) = 0}.

Define a multiplier T on A by Tf = hx f, where h(t) = ﬁe’ﬁ. Then T = ﬁ, and as E()\) = e*>‘2, we
have Fr = {0}. Hence, cardFr =1. If f € (I —=T) A, then f =k —hxk for some k € A and

FO) =k (1 - e—V) .

Notice that f(O) = f’ (0) = 0 and therefore Fr C Jyoy. Since Jyoy is the smallest closed ideal of A with hull
equal to {0}, we obtain that Fr = Jy). We thus have

dim{p € A* : T*p = ¢} = dim Ff- :dimJ{Jb} =2.

Recall that a regular semisimple Banach algebra A is said to satisfy Ditkin’s condition [6, Definition
8.5.1] at v € ¥4 U{oc} if for every a € A with a () = 0, there exists a sequence {a,} in A such that each a,
vanishes in a neighborhood U, of v and |laa, —a| — 0. We say that A is an s-Ditkin algebra if it satisfies
Ditkin’s condition at each point of ¥4 U {oo}. For example, if w (g) = (1 + |g])* (0 < a < 1), then L (R™) is
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an s-Ditkin algebra [11, Ch. 6, §3.3], where for g = (21, ...,x,), we have [g| = (2 + ... + z%)% . Clearly, every
s-Ditkin algebra is a w-Ditkin algebra.

A locally compact Hausdorff space 2 is said to be scattered if it contains no nonempty compact perfect
subset. As usual, 0S will denote the topological boundary of S C €.

The following result is another extension of the Choquet-Deny theorem.
Theorem 2.7 Let A be an s-Ditkin algebra and let S be a closed subset of X4 such that S is scattered. The
following conditions are equivalent for T € M (A) :
(a) {¢ € A* : T*p = ¢} CspanS" .
(b) T(7) #1, Vv € Ba\S.
Moreover, if OFr is scattered, then
{pe A" . T*¢p = ¢} = spanFr .

Proof (a)= (b) Since
{pe A : T o=y} =Fy,

*

we have F% C spanSw , and therefore,
Ig =" (spanSw ) C Fr.

It follows that

~

{’y ey T ()= 1} = hull (Fr) C hull (Is) = S.

Hence, f('y) #1, Vy € AN\5.
(b)= (a) Since
]:T = hull (FT) g S

and S is a set of synthesis for A [6, Corollary 8.5.1], we can write
Is =Js C Jr,. C Fr.

This implies
{pec A" T o=y} =F} CIg = spanSw*.

If S = Fr, then as f(’y) #1, Vy € X4\ Fr, by (a),
{pe A" T"p =} CspanFr " .

On the other hand, since
Ty = f('y)’y, Vy € X4,
we have

spanFr C{p€ A" : T p =}
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and so
{p€ A" T"p =g} =spanFr" .
O

Recall that a linear subspace of L' (G) is said to be a Segal algebra and denoted by S (G) if it satisfies
the following conditions:

a) S(G) is a translation invariant dense subalgebra of L' (G);

b) For an arbitrary f € S(G) and g € G, ||fyllg = [fllg, where f,(s) := f(g+s) and ||-[|g is the
norm of S (G);

c) For each f € S(G), the mapping g — f, is continuous from G into S (G).

About Segal algebras, ample information can be found in Reiter’s book [11]. The following examples

show that the class of Segal algebras is sufficiently large.

1) The algebra L' (G) N L? (@) (1 <p < o), equipped with the norm | f|| = || f|l, + || fl
algebra.

2) The algebra L' (G) N Cy (G), equipped with the norm || f|| = || f|l, + ||/l . is a Segal algebra, where

Co (G) is the space of all complex valued continuous functions on G vanishing at infinity.

pris a Segal

A Segal algebra S (G) is a commutative semisimple regular Banach algebra with respect to convolution.

The Gelfand space of S (G) is G and the Gelfand transform of f € S (G) is just the Fourier transform of f.
Moreover, S (G) is an s-Ditkin algebra [13]. Moreover, a Segal algebra S (G) has an approximate identity (not
bounded in S (G)-norm unless S (G) = L' (Q)).

Let A(G) be the Fourier algebra of G. We know that A (G) is isometrically isomorphic to the algebra

Lt (é) via the Fourier transform. The elements of A (G)" are called pseudomeasures. If T is a multiplier
S

(G), then there exists a unique pseudomeasure o such that Tf = o % f, f € S(G) [12]. It follows that

T = 0, where ¢ is the Fourier transform of o, which is defined by
@.f)=(o.f), fer'(G).
Consequently, Theorems 2.4 and 2.7 can be applied to the Segal algebras.
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