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Abstract: Projective Ricci curvature is a projective invariant quantity in Finsler geometry which is introduced by Z.
Shen. In this paper, we study special projective Ricci curvature of C-reducible Finsler metrics. The necessary and
sufficient conditions of these metrics, which cause these metrics to be weak or isotropic projective Ricci curvature, are
found and it is proved that C-reducible Douglas metric of isotropic PRic-curvature must be PRic flat. The same theorem
for C-reducible metrics of scalar flag curvature is also investigated.
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1. Introduction
There are some well-known projective invariants of Finsler metrics namely Douglas curvature, Weyl curvature
[2], generalized Douglas-Weyl curvature [3], and another projective invariant by Akbar-Zadeh [1] (For another
special projective invariant, see [15, 19]). Recently, Z. Shen [17] defined the concept of projective Ricci curvature
PRic for a Finsler metric F as

PRic := Ric + (n− 1){S̄|mym + S̄2},

where Ric and S denote the Ricci curvature and S -curvature and ‘‘|” is the horizontal covariant derivative
with respect to the Berwald connection (or the Chern connection), and

S̄ :=
1

n+ 1
S.

A Finsler metric is called projective Ricci flat if PRic = 0 . It is remarkable that the S -curvature is a non-
Riemannian quantity and plays an important role in Finsler geometry, which was introduced by Shen [16]. In
[8], Cheng-Shen-Ma rewrote the projective Ricci curvature as

PRic = Ric +
n− 1

n+ 1
S|mym +

n− 1

(n+ 1)2
S2. (1.1)

Moreover, they completely classified projective Ricci flat Randers metrics. In [22], Zhu and Zhang studied
the projective Ricci curvature and characterized projective Ricci flat spherically symmetric Finsler metrics.
Recently, Rezaei et al. defined the concept of weak, isotropic and constant PRic-curvature∗.
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Definition 1.1 Let F be a Finsler metric on n-dimensional manifold M and PRic denote the projective Ricci
curvature of F .

• F is of weak PRic-curvature if

PRic = (n− 1)[
3θ

F
+ κ]F 2, (1.2)

where θ = θiy
i is a 1− form and κ = κ(x) is scalar function on M ;

• F is of isotropic PRic-curvature if θ = 0 i.e. PRic = (n− 1)κ(x)F 2 ;

• F is of constant PRic-curvature if PRic = (n− 1)cF 2 , where c is a real constant;

• F is called PRic flat if PRic = 0 .

(α, β) -metrics are a rich and important class of Finsler metrics. The Randers, Kropina, and Matsumoto metrics
are special (α, β) -metrics. The second author and others classified Matsumoto metric of weak projective Ricci
curvature and they showed that projective Ricci flat Matsumoto metrics with constant length one-forms reduces
to Ricci flat metric†.

There is a class of Finsler metrics which is called C-reducible Finsler metrics. These spaces first were
introduced by Matsumoto [12] and were classified by special form of Cartan torsion. In [14] Matsumoto and
Hojo proved that a Finsler space is C-reducible if and only if the space is either a Randers or a Kropina space.
In this paper, we study special projective Ricci curvature of Randers and Kropina metrics and we prove:

Theorem 1.2 C-reducible Douglas metric of isotropic PRic-curvature on a manifold M with dimension n > 2

must be projective Ricci flat.

The flag curvature in Finsler geometry is a natural extension of the sectional curvature in Riemannian
geometry. The flag curvature of a Finsler metric F is a function K = K(P, y) of a two-dimensional plane called
“flag” P ⊂ TxM and a “flagpole” y ∈ P \ {0} . A Finsler metric F is said to be of scalar flag curvature if
K = K(x, y) is independent of P containing y ∈ TxM . This quantity tells us how curved the space is. Finsler
metric of scalar flag curvature has vanishing weyl curvature. X. Cheng showed that F is of scalar flag curvature
and of vanishing S-curvature if and only if the flag curvature K = 0 and F is a Berwald metric. In this case, F
is a locally Minkowski metric [5]. In this paper, we prove the following theorem:

Theorem 1.3 Let F be a C-reducible Finsler metric of isotropic PRic-curvature on a manifold M with
dimension n > 2 . If F is of scalar flag curvature, then it is projective Ricci flat.

2. Preliminaries
Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space at x ∈ M , and by

TM = ∪x∈MTxM the tangent bundle of M . Each element of TM has the form (x, y) , where x ∈ M and
y ∈ TxM . Let TM0 = TM\{0} . The natural projection π : TM → M is given by π(x, y) = x . The pull-back
tangent bundle π∗TM is a vector bundle over TM0 whose fiber π∗

vTM at v ∈ TM0 is just TxM , where
π(v) = x . Then

π∗TM = {(x, y, v)|y ∈ TxM0, v ∈ TxM}.
†Rezaei B, Tayebi A, Gabrani M. On projective Ricci curvature of Finsler metrics. (submitted)
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A Finsler metric on a manifold M is a function F : TM → [0,∞) which has the following properties:
(i) F is C∞ on TM0 ;
(ii) F (x, λy) = λF (x, y) λ > 0 ;
(iii) For any tangent vector y ∈ TxM , the vertical Hessian of F 2/2 given by

gij(x, y) =

[
1

2
F 2

]
yiyj

,

is positive definite. The non-Riemannian quantity C = Cijkdx
i⊗dxj ⊗dxk is a tensor on TM which is defined

by fundamental tensor

Cijk =
1

2

∂gij
∂yk

=
1

4

∂3F 2

∂yi∂yj∂yk
,

and called the Cartan tensor. A Finsler space of dimension n > 2 is called C-reducible if the Cartan tensor
Cijk satisfies

Cijk =
1

n+ 1
(hijCk + hjkCi + hkiCj),

where hij = F ∂2F
∂yi∂yj is called angular metric tensor and Ci = Cijkg

jk .

For a Finsler metric F = F (x, y) , its geodesics are characterized by the system of differential equations
c̈i + 2Gi(ċ) = 0 , where the local functions Gi = Gi(x, y) are called the spray coefficients and are given by

Gi =
1

4
gil

{
[F 2]xkylyk − [F 2]xl

}
,

where y ∈ TxM and (gij) := (gij)
−1 .

Berwald curvature B = B i
jkl

∂
∂xi ⊗ dxj ⊗ dxk ⊗ dxl is defined by spray geodesic coefficients as B i

jkl =

∂3Gi

∂yj∂yk∂yl . The Finsler space is called Berwald space if B = 0 .

The tensor D = Di
jkl

∂
∂xi ⊗ dxj ⊗ dxk ⊗ dxl , where

Di
jkl =

∂3

∂yj∂yk∂yl
(Gi − 1

n+ 1

∂Gm

∂ym
yi),

is called Douglas curvature tensor. Finsler metric called Douglas if D = 0 . It is easy to see that Berwald spaces
are subspace of Douglas spaces.

The Riemann curvature Ry = Ri
k

∂
∂xi ⊗ dxk of F is defined by

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

When F (x, y) =
√

aij(x)yiyj is a Riemannian metric, Ri
k = Ri

jkl(x)y
jyl , where Ri

jkl(x) denotes
the coefficients of the usual Riemannian curvature tensor. Thus, the quantity Ry in Finsler geometry is still
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called the Riemann curvature [20]. The Ricci curvature Ric is defined by Ric := Ri
i. By definition, the Ricci

curvature is a positively homogeneous function of degree two in y ∈ TM .
The flag curvature is a natural extension of the sectional curvature of Riemannian metrics. Let (x, y) ∈

TxM and u be an arbitrary vector in TxM such that P = span{y, u} ⊂ TxM , Then

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
,

is called flag curvature. F is of scalar flag curvature if K(P, y) is independent of P ⊂ TxM , It is known that
F is of scalar flag curvature if and only if in a standard local coordinate system

Ri
k = K(F 2δik − FFykyi).

For a Finsler metric F, the Busemann–Hausdorff volume form dVBH := σBH(x)ω1 ∧ · · · ∧ ωn , is defined
by

σBH :=
V ol(Bn(1))

V ol
{
(yi) ∈ Rn | F (x, yi ∂

∂xi |x)
} .

Here Vo l{.} denotes the Euclidean volume function and Bn(1) denotes the unit ball on Rn . When F (x, y) =√
gij(x)yiyj is a Riemannian metric, then σBH(x) =

√
det(gij) . There is a notion of distortion τ = τ(x, y) on

TM associated with the Busemann–Hausdorff volume form dVBH := σBH(x)ω1 ∧ · · · ∧ ωn , i.e.

τ(x, y) := ln
[√

det(gij(x, y))

σBH(x)

]
.

The S−curvature is defined by

S(x, y) := d

dt
[τ(c(t), ċ(t))] |t=0,

where c(t) is the geodesic with c(0) = x and ċ(0) = y [16]. From the definition, we see that the S -curvature
measures the rate of change of the distortion on (TxM,Fx) in the direction y ∈ TxM . For a Finsler metric F ,
the S -curvature is given by following:

S =
∂Gm

∂ym
− ym

∂

∂xm

[
lnσBH

]
. (2.1)

The class of (α, β) -metrics forms a special and important class of Finsler metrics which can be expressed in
the form F = αϕ(s), s = β/α , where α := α(x, y) =

√
aij(x)yiyj is a Riemannian metric, β := β(y) = bi(x)y

i

is a 1 -form on M , and ϕ(s) is a C∞ positive function on some open interval. In particular, when ϕ(s) = 1+s ,
the Finsler metrics F = α + β is called Randers metrics, which were introduced and studied by Randers. If
ϕ(s) = 1/s , the Finsler metric F = α2/β is called a Kropina metric. Kropina metrics were first introduced by
Berwald in connection with a two-dimensional Finsler space with rectilinear extremal and were investigated by
Kropina [11].
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For generic (α, β) -metric usually use the following notations

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i),

where ”; ” denotes the covariant derivative with respect to the Levi-Civita connection of α . Further, put

rij := aimrmj , sij := aimsmj , rj := bmrmj , sj := bmsmj , r := rijb
ibj = bjrj ,

qij := rimsmj , tij := simsmj , qj := biqij = rmsmj , tj := bitij = smsmj , sijs
j
i := tmm,

where (aij) := (aij)
−1 and bi := aijbj . Let us define:

ri0 := rijy
j , si0 := sijy

j , r00 := rijy
iyj , r0 := riy

i, s0 := siy
i.

3. Weak projective Ricci curvature of C-reducible Finsler metrics

Now we study special PRic-curvature of Randers metrics. Projective Ricci curvature of Randers metrics is as
follows

PRic = αRic + 2αsm0;m − 2t00 − α2tmm + (n− 1)
{
2α(ρmsm0)− ρ0;0 + ρ20

}
,

where ρm = − rm+sm
1−b2 and ρ0 = ρmym (see [8]). Let Randers metrics be of weak isotropic PRic-curvature,

then by (1.2) we have

0 = αRic − (n− 1)[
3θ

F
+ κ]F 2 + 2αsm0;m − 2t00

− α2tmm + (n− 1)
{
2α(ρmsm0)− ρ0;0 + ρ20

}
.

We can sort equation mentioned above by α as follows

A2α
2 +A1α+A0 = 0, (3.1)

where

A2 = −(n− 1)κ− tmm,

A1 = (n− 1)[−3θ − 2κβ + 2ρmsm0] + 2sm0;m,

A0 = αRic + (n− 1)[−3θβ − κβ2 − ρ0;0 + ρ20]− 2t00.

From 3.1 we obtain two fundamental equations:

A1 = 0, (3.2)

A2α
2 +A0 = 0. (3.3)

From (3.2) and (3.3) we can get equations that characterize Randers metric of weak projective Ricci curvature.
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Theorem 3.1 Let F = α + β be the non-Riemannian Randers metric on manifold M . Then F is a weak
projective Ricci curvature metric if and only if α and β satisfies..

sm0;m = (n− 1)
{3

2
θ + κβ − ρmsm0

}
,

αRic = (n− 1)
{
κα2 + 3θβ + κβ2 + ρ0;0 − ρ20

}
+ tmmα2 + 2t00.

If F = α + β is of isotropic PRic−curvature then θ = 0 and these classifing equations are changed as
follows

sm0;m = (n− 1)
{
κβ − ρmsm0)

}
, (3.4)

αRic = (n− 1)
{
κ(α2 + β2) + ρ0;0 − ρ20

}
+ tmmα2 + 2t00. (3.5)

PRic flat Randers metric had been studied by Cheng et al. [8], later Cheng and Rezaei wrote the
modification to this paper and corrected the results [7]. It is easy to get the same classifing theorem in [7] by
putting θ = 0 and κ = 0 In theorem 3.1.

Example 3.2 For a constant number a ∈ Rn , let us define the Randers metirc F = α+ β by

α :=

√
(1− |a|2|x|4)|y|2 + (|x|2 < a, y > −2 < a, x >< x, y >)2

1− |a|2|x|4
,

β :=
|x|2 < a, y > −2 < a, x >< x, y >

1− |a|2|x|4
.

This Randers metric satisfies following equations

S = (n+ 1)cF,

Ric = (n− 1)(3c0F + δF 2),

where

c :=< a, x >, c0 := cxmym, δ := 3 < a, x >2 −2|a|2|x|2.

For more details see [10]. Then by (1.1) we can see

PRic = (n− 1)[
4c0
F

+ c2 + δ]F 2.

Therefore, F is of weak projective Ricci curvature with θ = 4c0
3 and κ = c2 + δ .

Cheng et al. compute the PRic-curvature of Kropina metrics in [6], but some terms of this curvature were
missing. We added these terms and stated this theorem completely as:
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Theorem 3.3 Let F = α2/β be a Kropina metric on an n-dimensional manifold M . Then the projective
Ricci curvature of F is given by

PRic = αRic + (n− 2)

[
1

b2
r0;0 +

1

b2
s0;0 −

1

b4
(r0 + s0)

2

]
+ (n− 1)

F

b2
t0

+
2

b2
q00 −

nF

b4
s0r −

n

b4
rr00 + (n− 3)

F

b2
q0 − Fsm0;m − F 2

4
tmm

+
F

b2
bms0;m +

1

b2
bmr00;m +

1

b2
(Fs0 + r00)r

m
m − F 2

2b2
smsm. (3.6)

Now assume the Kropina metric is of weak PRic -curvature, by (1.2) and (3.6) we can obtain

0 = αRic − (n− 1)[
3θ

F
+ κ]F 2 + (n− 2)

[
1

b2
r0;0 +

1

b2
s0;0 −

1

b4
(r0 + s0)

2

]
+

2

b2
q00 + (n− 1)

F

b2
t0 −

nF

b4
s0r −

n

b4
rr00 + (n− 3)

F

b2
q0 − Fsm0;m

+
F

b2
bms0;m +

1

b2
bmr00;m +

1

b2
(Fs0 + r00)r

m
m − F 2

2b2
smsm − F 2

4
tmm.

Multiplying 4b4β2 on both sides of this equation to remove denominators yields

0 = 4b4β2αRic + 4β2(n− 2)
[
b2r0;0 + b2s0;0 − (r0 + s0)

2
]
− b4α4tmm

+ 4b2β(n− 1)α2t0 − 4nβα2s0r − 4nβ2rr00 + 4(n− 3)b2βα2q0

− 4b4βα2sm0;m + 4b2βα2bms0;m + 4b2β2bmr00;m + 4b2β2r00r
m
m

+ 4b2βα2s0r
m
m − 2b2α4smsm + 8β2b2q00 − 4b4(n− 1)κ(x)α4

− 12(n− 1)b4θβ. (3.7)

Equation (3.7) is equivalent to the following equation

Ξ4α
4 + Ξ2α

2 + Ξ0 = 0, (3.8)

where

Ξ4 = −2b2smsm − b4tmm − 4b4(n− 1)κ(x),

Ξ2 = 4β
{
b2(n− 1)t0 − ns0r + (n− 3)b2q0

−b4sm0;m + b2bms0;m + b2s0r
m
m − 3(n− 1)b4θ

}
, (3.9)

Ξ0 = 4β2
{
b4αRic + (n− 2)

[
b2r0;0 + b2s0;0 − (r0 + s0)

2
]

−nrr00 + 2b2q00 + b2bmr00;m + b2r00r
m
m

}
. (3.10)

By factoring of α2 we can rewrite equation (3.8) as

(Ξ4α
2 + Ξ2)α

2 + Ξ0 = 0. (3.11)
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Since α2 and β2 are relatively prime polynomials in y , then by (3.10) and (3.11), we can conclude that there
is scalar function µ = µ(x) in such a way that

µ(x)α2 = αRicb4 + (n− 2)
[
b2r0;0 + b2s0;0 − (r0 + s0)

2
]

−nrr00 + 2b2q00 + b2bmr00;m + b2r00r
m
m. (3.12)

Substitute (3.12) into (3.7) and simplify this equation, it yields

0 = α2
{
− 2b2smsm − b4tmm − 4b4(n− 1)κ(x)

}
+ 4β

{
b2(n− 1)t0 − ns0r + (n− 3)b2q0 − b4sm0;m

+ b2bms0;m + b2s0r
m
m − 3(n− 1)b4θ + µ(x)β

}
.

By the same way, α2 and β are relatively prime polynomials in y then equation mentioned above is equivalent

0 = −2b2smsm − b4tmm − 4b4(n− 1)κ(x), (3.13)

0 = b2(n− 1)t0 − ns0r + (n− 3)b2q0 − b4sm0;m

+b2bms0;m + b2s0r
m
m − 3(n− 1)b4θ + µ(x)β. (3.14)

By (3.13) we have

κ(x) =
−1

4b2(n− 1)
(2smsm + b2tmm). (3.15)

Differentiating both sides of (3.14) with respect to yi yields

0 = b2(n− 1)ti + (n− 3)b2qi − b4smi;m + b2bmsi;m

−nsir + b2sir
m
m − 3(n− 1)b4θi + µ(x)bi. (3.16)

Remark that for contracting this equation with bi its neccesary to know

biti = bismsmi = −smsm.

biqi = birmsmi = −rmsm.

bismi;m = (bismi );m − smi b
i
;m = −sm;m − qmm − tmm. (3.17)

bmbisi;m = bm[(sib
i);m − sib

i
;m] = sm(sm − rm).

Contraction (3.16) with bi implies that

0 = −b2(n− 1)smsm − (n− 3)b2rmsm + b4(sm;m + qmm + tmm)

+b2sm(sm − rm)− 3(n− 1)b4θib
i + µ(x)b2.

From this equation, it is easy to get

µ(x) = (n− 2)smsm + (n− 2)rmsm − b2(sm;m + qmm + tmm) + 3(n− 1)b2θib
i. (3.18)
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By replacing (3.15) into (3.18) we can obtain

µ(x) = −b2(sm;m + qmm − (n− 1)[3θib
i + 4κ]) + nsmsm + (n− 2)smrm. (3.19)

By the above calculation, we get classifying equation for weak PRic-curvature Kropina metric.

Theorem 3.4 Let F = α2/β be the non-Riemannian Kropina metric on manifold M . Then F is a weak
projective Ricci curvature metric if and only if α and β satisfies

0 = b2
{
(n− 1)[t0 − 3b2θ] + (n− 3)q0 − b2sm0;m

+bms0;m + s0r
m
m

}
− ns0r + µ(x)β,

αRic =
1

b4

{
α2µ(x)− (n− 2)

[
b2r0;0 + b2s0;0 − (r0 + s0)

2
]

+r00(nr − b2rmm)− 2b2q00 − b2bmr00;m

}
.

where

µ(x) = −b2(sm;m + qmm − (n− 1)[3θmbm + 4κ]) + nsmsm + (n− 2)smrm,

and θ = θiy
i is a 1− form and κ = κ(x) is scalar function on M .

By replacing θ = 0 into equations above, we can charactrize isotropic PRic-curvature of Kropina metrics,

Corollary 3.5 Let F = α2/β be the non-Riemannian Kropina metric on manifold M . Then F is of isotropic
projective Ricci curvature metric if and only if α and β satisfies

0 = b2(n− 1)t0 − ns0r + (n− 3)b2q0 − b4sm0;m

+b2bms0;m + b2s0r
m
m + µ(x)β, (3.20)

αRic =
1

b4

{
α2µ(x)− (n− 2)

[
b2r0;0 + b2s0;0 − (r0 + s0)

2
]

+nrr00 − 2b2q00 − b2bmr00;m − b2r00r
m
m

}
, (3.21)

where
µ(x) = −b2(sm;m + qmm − 4(n− 1)κ) + nsmsm + (n− 2)smrm. (3.22)

In [6] Cheng gave a formula for the PRic flat Kropina metric. However, we find some errors in his
formula. Let F be the Kropina metric with PRic = 0 then (3.15) must be as follows

tmm = − 2

b2
smsm. (3.23)

By replacing quantity above into (3.18), we can get Corollary 3.6

Corollary 3.6 Let F = α2/β be the non-Riemannian Kropina metric on manifold M . Then F is projective
Ricci flat PRic = 0 if and only if α and β satisfy 3.20 and 3.21, where

µ(x) = −b2(sm;m + qmm) + nsmsm + (n− 2)smrm.
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4. Proof of theorems
Proof of theorem 1.2: Suppose that C-reducible Finsler metric has vanishing Douglas curvature.

It is shown that Randers metric is Douglas metric if and only if sij = 0 [9]. By this assumption, (3.4)
must be as follows:

κβ = 0.

This means κ = 0 and PRic-curvature must be flat. Moreover, by (3.5) Ricci curvature of α is

αRic = (n− 1)
{
(
−r0
1− b2

);0 − (
r0

1− b2
)2
}
.

In [13], Matsumoto shows that Kropina metric is a Douglas metric if and only if

sij =
1

b2
(bisj − bjsi).

It is easy to see that s0 = sm0 = 0 . Replacing these vanishing quantities in corollary (3.5), by (3.20) we
get µ(x) = 0 . According to the definition of this scalar function (3.22), we see that κ = 0 i.e. isotropic
PRic-curvature of Douglas Kropina metric must be PRic flat, and by (3.21) Ricci curvature of α must be as
follows

αRic =
1

b4

{
− (n− 2)

[
b2r0;0 − r20

]
+ nrr00 − b2bmr00;m − b2r00r

m
m

}
.

Berwald spaces are subspaces of Douglas space, then we can conclude that C-reducible Berwald metric
of isotropic PRic-curvature must be projective Ricci flat.

Corollary 4.1 Randers Berwald metric of isotropic PRic-curvature must be projective Ricci flat and αRic
flat.

Let Randers metric be Berwaldian, then β is parallel with respect to α i.e. rij = sij = 0 . by (3.4) we
see that κ = 0 and PRic = 0 , and by (3.5) we can get αRic = 0 .

Corollary 4.2 Kropina Berwald metric of isotropic PRic-curvature must be projective Ricci flat and Ricci
curvature of α satisfies

αRic =
−(n− 2)

b4

{
c0b

2β + c2(b2α2 + β2)
}
. (4.1)

It was proved that Kropina metric is a Berwald metric if and only if (see [21])

sij =
1

b2
(bisj − bjsi), rij = c(x)aij .

By simple computation we see that

s0 = 0, sm0 = 0, q0 = rmsm0 = 0, q00 = 0,

rmm = nc(x), r00 = c(x)α2, r = c(x)b2,
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r0 = c(x)β, r0;0 = c0β + c2(x)α2.

We put the above values in corollary (3.5) and get κ = µ(x) = 0 . Kropina Berwald metric of isotropic PRic
curvature reduces to PRic flat. By replacing above quantities in (3.21), we can get (4.1).

Proof of theorem 1.3: Shen and Yildirim classified Randers metrics of scalar flag curvature [18] and
proved this theorem

Theorem 4.3 Let F = α + β be a Randers metric on an n-dimensional manifold M . F is of scalar flag
curvature K = σ(x, y) , if and only if the Riemann curvature of α and the covariant derivatives of β satisfy
the following equations:

αRi
k = κ(α2δik − yky

i) + α2tik + t00δ
i
k − tk0y

i − ti0 − 3si0sk0,

sij;k =
1

n− 1
(aiks

m
j;m − ajks

m
i;m). (4.2)

Equation (4.2) is equivalent to the following relation (see Lemma 5.4.4 in [9])

α2sij;0 = si0;0yj − sj0;0yi. (4.3)

Multiplying both sides of equality mentioned above by aim and using equation (3.4), we obtain this relation

0 = α2(κbjy
m − ρ0s

m
j) + ρ0s

m
0yj − ρ0sj0y

m.

Contracting above equation by bjbm yields κb2α2β = 0 , κ must be vanished.

Scalar flag curvature Kropina metrics were studied by Ceyhan and Civi [4] and they showed that Kropina
metric F = α2/β with dimension n > 2 is of scalar flag curvature if the following conditions hold

r00 = cα2, (c =
n− 1

n− 2
), (4.4)

s0 = 0, srjsri = 0. (4.5)

By using (4.4) and (4.5), we can get

r = cb2, r0 = cβ, rmm = nc, r0;0 = c2α2,

si = 0, t0 = 0, r00;m = 0, qmm = q00 = q0 = 0. (4.6)

Replace above quantities into (3.20) and (3.22), then we get

0 = 4(n− 1)κβ − b2sm0;m.

This equation is equivalent to

0 = 4(n− 1)κ− bismi;m.

By (3.17) and (4.6), we see that bismi;m = 0 , then by equation mentioned above, κ must be zero and Ricci
curvature of α has the following form

αRic =
n− 1

b4(n− 2)
{β2 − b2α2}.

This completes the proof of theorem 1.3.
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