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Abstract: Projective Ricci curvature is a projective invariant quantity in Finsler geometry which is introduced by Z.
Shen. In this paper, we study special projective Ricci curvature of C-reducible Finsler metrics. The necessary and
sufficient conditions of these metrics, which cause these metrics to be weak or isotropic projective Ricci curvature, are
found and it is proved that C-reducible Douglas metric of isotropic PRic-curvature must be PRic flat. The same theorem

for C-reducible metrics of scalar flag curvature is also investigated.
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1. Introduction

There are some well-known projective invariants of Finsler metrics namely Douglas curvature, Weyl curvature
[2], generalized Douglas-Weyl curvature [3], and another projective invariant by Akbar-Zadeh [1] (For another
special projective invariant, see [15, 19]). Recently, Z. Shen [17] defined the concept of projective Ricci curvature

PRic for a Finsler metric F as

PRic := Ric + (n — 1){S.y™ + S°},

where Ric and S denote the Ricci curvature and S-curvature and ““|” is the horizontal covariant derivative

with respect to the Berwald connection (or the Chern connection), and

_ 1
= S.
n+1

A Finsler metric is called projective Ricci flat if PRic = 0. It is remarkable that the S-curvature is a non-
Riemannian quantity and plays an important role in Finsler geometry, which was introduced by Shen [16]. In

[8], Cheng-Shen-Ma rewrote the projective Ricci curvature as

nol g (1.1)

n—1 -
PRic = Ric + ——S,,,,y" + ———5S".
ic 1c+n+1 my -+ CESE

Moreover, they completely classified projective Ricci flat Randers metrics. In [22], Zhu and Zhang studied
the projective Ricci curvature and characterized projective Ricci flat spherically symmetric Finsler metrics.

Recently, Rezaei et al. defined the concept of weak, isotropic and constant PRic-curvature®.
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Definition 1.1 Let F' be a Finsler metric on n-dimensional manifold M and PRic denote the projective Ricci

curvature of F'.

e I is of weak PRic-curvature if

PRic= (n— 1)[‘%9 + K] F?, (1.2)

where 0 = 0,3 is a 1— form and k = k(x) is scalar function on M ;
o F is of isotropic PRic-curvature if 0 =0 i.e. PRic= (n—1)x(x)F?;
o F is of constant PRic-curvature if PRic = (n — 1)cF?, where ¢ is a real constant;
e F is called PRic flat if PRic=0.

(a, B)-metrics are a rich and important class of Finsler metrics. The Randers, Kropina, and Matsumoto metrics
are special («, )-metrics. The second author and others classified Matsumoto metric of weak projective Ricci
curvature and they showed that projective Ricci flat Matsumoto metrics with constant length one-forms reduces

to Ricci flat metric'.

There is a class of Finsler metrics which is called C-reducible Finsler metrics. These spaces first were
introduced by Matsumoto [12] and were classified by special form of Cartan torsion. In [14] Matsumoto and
Hojo proved that a Finsler space is C-reducible if and only if the space is either a Randers or a Kropina space.

In this paper, we study special projective Ricci curvature of Randers and Kropina metrics and we prove:

Theorem 1.2 C-reducible Douglas metric of isotropic PRic-curvature on a manifold M with dimension n > 2

must be projective Ricci flat.

The flag curvature in Finsler geometry is a natural extension of the sectional curvature in Riemannian
geometry. The flag curvature of a Finsler metric F' is a function K = K(P,y) of a two-dimensional plane called
“flag? P C T, M and a “flagpole” y € P\ {0}. A Finsler metric F is said to be of scalar flag curvature if
K = K(z,y) is independent of P containing y € T,,M . This quantity tells us how curved the space is. Finsler
metric of scalar flag curvature has vanishing weyl curvature. X. Cheng showed that F is of scalar flag curvature
and of vanishing S-curvature if and only if the flag curvature K = 0 and F is a Berwald metric. In this case, F

is a locally Minkowski metric [5]. In this paper, we prove the following theorem:

Theorem 1.3 Let F be a C-reducible Finsler metric of isotropic PRic-curvature on a manifold M with

dimension n > 2. If F is of scalar flag curvature, then it is projective Ricci flat.

2. Preliminaries
Let M be an n-dimensional C'°° manifold. Denote by T,M the tangent space at = € M, and by
TM = UzenmT, M the tangent bundle of M. Each element of TM has the form (z,y), where z € M and
yeT,M. Let TMy=TM\{0}. The natural projection 7 : TM — M is given by w(z,y) = x. The pull-back
tangent bundle 7*TM is a vector bundle over T'My whose fiber 7;TM at v € TMy is just T,M, where
7w(v) = x. Then
7" TM = {(z,y,v)|y € TyMo,v € T, M}.

fRezaei B, Tayebi A, Gabrani M. On projective Ricci curvature of Finsler metrics. (submitted)
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A Finsler metric on a manifold M is a function F : TM — [0,00) which has the following properties:
(i) F is C* on TMoy;

(i) F(z,Ay) = AF(z,y) A>0;

(iii) For any tangent vector y € T, M , the vertical Hessian of F?/2 given by

1
gij(xvy) = |:2F2:| )
yryl

is positive definite. The non-Riemannian quantity C = Cjjrdz’ ® da’ ®dx* is a tensor on TM which is defined

by fundamental tensor

lagij - 1 83F2
29yt 4 0yioyi oy’

Cijr =

and called the Cartan tensor. A Finsler space of dimension n > 2 is called C-reducible if the Cartan tensor

Ciji satisfies

Ciji = (hi;Cr + hjiCi + hyi Cy),

1
n+1
where h;; = F % is called angular metric tensor and C; = Cijkgjk.

For a Finsler metric F = F(x,y), its geodesics are characterized by the system of differential equations

¢ +2G(¢) = 0, where the local functions G* = G*(z,y) are called the spray coefficients and are given by

i1y
G' = Zgl [F2]:1:kylyk - [FQ]:J:’};

where y € T, M and (g¥) := (gi;)"*.

Berwald curvature B = B ;kl% ® dz? @ da* @ dz! is defined by spray geodesic coefficients as B ;-kl =
%. The Finsler space is called Berwald space if B = 0.

The tensor D = Dijkl% ® dr’ ® do® @ dx', where

. o3 ) 1 oG™
D=2 @
TR By oyt oy ( n+1 oym 4

"
is called Douglas curvature tensor. Finsler metric called Douglas if D = 0. It is easy to see that Berwald spaces

are subspace of Douglas spaces.

The Riemann curvature R, = R’ k% @ dx* of F is defined by

i 207 920 Vel
0G PG e DG 9G1OG

Ry = 2%  dxidyk dyioyk Byl oyk-

When F(z,y) = \/a;j(z)y’y! is a Riemannian metric, R, = Rijkl(a:)yjyl, where Rijkl(x) denotes

the coefficients of the usual Riemannian curvature tensor. Thus, the quantity R, in Finsler geometry is still
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called the Riemann curvature [20]. The Ricci curvature Ric is defined by Ric := R',. By definition, the Ricci
curvature is a positively homogeneous function of degree two in y € TM .

The flag curvature is a natural extension of the sectional curvature of Riemannian metrics. Let (z,y) €
T, M and u be an arbitrary vector in T, M such that P = span{y,u} C T, M, Then

gy (u, Ry (u))
9y (Y, v) gy (u, u) — gy (y, u)?’

K(Py) =

is called flag curvature. F is of scalar flag curvature if K(P,y) is independent of P C T, M, Tt is known that
F is of scalar flag curvature if and only if in a standard local coordinate system

R, = K(F?§'), — FFy').

For a Finsler metric F, the Busemann—Hausdorff volume form dVppy := op H(a:)wl A Aw™, is defined
by

Vol(B™(1))
OBH ‘— ) 5
VOZ{(yl) €R" | F(z,y' 57

D}

Here Vol{.} denotes the Euclidean volume function and B™(1) denotes the unit ball on R™. When F(x,y) =
gij(x)y'y’ is a Riemannian metric, then opg(z) = /det(gi;). There is a notion of distortion 7 = 7(z,y) on

TM associated with the Busemann—Hausdorff volume form dVgg := JBH(x)oJl A AwWh, e

7(z,y) :=1n ldet(gu(x,y))] .

O‘BH(J,‘)

The S—curvature is defined by

S(z,) 1= lr(elt), €0)] o

where ¢(t) is the geodesic with ¢(0) = = and ¢(0) = y [16]. From the definition, we see that the S-curvature
measures the rate of change of the distortion on (7, M, F,) in the direction y € T, M . For a Finsler metric F,
the S-curvature is given by following:

oG™

- _ymmim[mm]. (2.1)

The class of («, 8)-metrics forms a special and important class of Finsler metrics which can be expressed in
the form F = ad(s), s = B/a, where a = a(z,y) = v/a;;(x)y'y’ is a Riemannian metric, 3 := B(y) = b;(z)y’
isa 1-form on M, and ¢(s) is a C* positive function on some open interval. In particular, when ¢(s) = 1+s,
the Finsler metrics F' = a + [ is called Randers metrics, which were introduced and studied by Randers. If
#(s) = 1/s, the Finsler metric F' = o?/f3 is called a Kropina metric. Kropina metrics were first introduced by
Berwald in connection with a two-dimensional Finsler space with rectilinear extremal and were investigated by
Kropina [11].
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For generic (a, 8)-metric usually use the following notations

1 1
rij = 5 (big +bya)s sij = 5 (big — b,

.

where ”;” denotes the covariant derivative with respect to the Levi-Civita connection of «. Further, put

r'=a"Tyy, s

f =a""spy, 15 =0Ty, 85 =08y, Ti=1ri0"V =V,

j
m m moogiogl o ym

e - m R X) _ N X _
Qij = TimS"j, tij = SimS"j, @5 = b'qij = rms Tty = b'ti; = sms T 8t s

where (a™/) := (a;;)"* and b’ := a*b;. Let us define:
Ti0 = Tijyj7 Si0 = SijZ/Ja oo ‘= TijY Yy, roi=mryt, S0 = syt

3. Weak projective Ricci curvature of C-reducible Finsler metrics

Now we study special PRic-curvature of Randers metrics. Projective Ricci curvature of Randers metrics is as

follows
PRic = “Ric + 2as",,,, — 2too — o*t",, + (n — 1) {20(pms"§) — poso + £5 } -

where p,, = —™45% and py = p,y™ (see [8]). Let Randers metrics be of weak isotropic PRic-curvature,

then by (1.2) we have

0
0 = “Ric—(n— 1)[3? + K]F? + 208", — 2too
— ™t 4 (n = 1) {2a(pms"5) — poo + P } -

We can sort equation mentioned above by « as follows

Asa® + Aja+ Ag = 0, (3.1)
where
Ay = —(n—=1)Kk—t"pn,
Ay = (n—1)[=30 = 268 + 2pps"5] + 285
Ay = “Ric+ (n - 1)[—396 — Hﬂ2 — poo + pg] — 2tgo.

From 3.1 we obtain two fundamental equations:

A; =0, (3.2)
Aga® + Ay = 0. (3.3)

From (3.2) and (3.3) we can get equations that characterize Randers metric of weak projective Ricci curvature.
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Theorem 3.1 Let F' = o + 8 be the non-Riemannian Randers metric on manifold M. Then F is a weak

projective Ricci curvature metric if and only if o and B satisfies..

o = (1= D204 88— pso},

s

“Ric = (n-— 1){&&2 + 308 + kB2 + £0:0 — pg} + ™02 + 2top.

If F=a«a+ S is of isotropic PRic— curvature then # = 0 and these classifing equations are changed as

follows
St = (=D {RB = pms)}, (3.4)
“Ric = (n-— 1){/{(@2 + 5% + £0:0 — pg} + ™02 + 2too. (3.5)

PRic flat Randers metric had been studied by Cheng et al. [8], later Cheng and Rezaei wrote the
modification to this paper and corrected the results [7]. It is easy to get the same classifing theorem in [7] by

putting § =0 and £ =0 In theorem 3.1.

Example 3.2 For a constant number a € R", let us define the Randers metirc F = a+ (3 by

V(= laPfz)y? + (22 <a,y > 2 <a,x >< 2,y >)?
1—faf*[z[* ’

lz|? < a,y > -2 <a,x><x,9y >
1—laf?||*

This Randers metric satisfies following equations

S = (n+1)cF,
Ric = (n—1)(3¢oF +6F?),

where
— .7 m o 2 21,.12
c:=<a,x>, ¢p:i=Cemy”, 0:=3<a,x> =2|a|*|z|.

For more details see [10]. Then by (1.1) we can see
. 400 2 2
PRic= (n— 1)[? +c” +8)F°.

Therefore, F is of weak projective Ricci curvature with 6 = 4% and k= c® +6.

Cheng et al. compute the PRic-curvature of Kropina metrics in [6], but some terms of this curvature were

missing. We added these terms and stated this theorem completely as:
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Theorem 3.3 Let F' = o?/3 be a Kropina metric on an n-dimensional manifold M. Then the projective

Ricci curvature of F is given by

, Q. 1 1 1 F
PRic = “Ric+(n—2) 2700 7350 bj(ro+so)2 —I—(n—l)b—zto
2 nF n F m 2 m
+ g0 = g sor — 1370 + (n 3)b7qo — Fs"8,, — 4
F 1 ) F?
+ bjbmso;m 02 — roo;m + o 12 (FSO + ’I"o()) no— WS Sm - (36)

Now assume the Kropina metric is of weak PRic-curvature, by (1.2) and (3.6) we can obtain

30 1 1
0 = O‘Ric—(n—l)[F—i—&]FQ—&—(n—Q) 53700 T 3 50; b—4(r0+50)2
2 F nkF n F
+ pz 400 +(n - 1)b7t0 T pa 0T T a0 +(n— 3)b—2qo — Fs'§.,
r 1 1 m 1 m F2 m F2 m
=+ b72b S0;m + b72b T00;m + b?(FSO + 7'00)7’ m @3 Sm — Tt me

Multiplying 4b*5% on both sides of this equation to remove denominators yields

0 = 4b'B**Ric+48%(n —2) [b?roo + b*so0 — (ro + s0)°] — b'a™t™,
+ 4b?B(n — 1)ty — 4nBa’ser — 4nB3rrog + 4(n — 3)b*Ba’qo
— 46 Ba’s",,, 4+ 4b° Bt som + 467 B0 ™ roosm + 4b° B2 roor,
+  4b*Balser™, — 2b%a*s™ s, + 86%b%qoo — 4b*(n — 1)k(z)a’

— 12(n — 1)b%65. (3.7)

Equation (3.7) is equivalent to the following equation

H404 += 20( + =9 =0, (38)

where

[1]

4 = —2b%5Ms,, — b —4bt(n — 1)k(z),

= 4B{b%(n — 1)to — nsor + (n — 3)b%qo

[1
N}
|

—b*s" D2V S0 + b sor, — 3(n — 1)b%60}, (3.9)

= 462{b4aRiC + (’I’L — 2) [bQTO;Q + b280;0 — (T‘O + 80)2]

[1
<}
|

—nrroo + 2620 + b2 T00.m + b3roor™, b (3.10)
By factoring of a? we can rewrite equation (3.8) as
(E40® +E2)a® + 55 = 0. (3.11)

1736



GHASEMNEZHAD et al./Turk J Math

Since a? and 3% are relatively prime polynomials in ¥, then by (3.10) and (3.11), we can conclude that there

is scalar function p = p(z) in such a way that

wlx)a? = “Ricb* + (n —2) [bQ’Fo;O + b250;0 — (ro+ 50)2}

—nrrog + 26%qoo + bzbmroo;m + bProor™.. (3.12)

Substitute (3.12) into (3.7) and simplify this equation, it yields

0 = o?{—2b%s"s,, — b, — 4b'(n— 1)k(z)}
+ 48{b*(n — 1)to — nsor + (n — 3)b?qo — b*s"§,,,
+ V" S0y + bPsor™, — 3(n — 1)b%0 + p(z) B}

By the same way, o® and j are relatively prime polynomials in y then equation mentioned above is equivalent

0 = —20%5"s,, — b —4b*(n — 1)k(z), (3.13)
0 = b*(n— 1)ty —nser + (n — 3)b?qy — b4s"8;m
+020" 80, + b2 sor™, — 3(n — 1)b*0 + p(z)B. (3.14)
By (3.13) we have
_ -1 m 2.m
k(z) = 2= 1) (25 s + b°t"). (3.15)

Differentiating both sides of (3.14) with respect to y* yields

0 = b*(n—1)t;+ (n—3)b*q — b%f;ﬁm + 20" 8im,

—ns;T + bQSiT"fn —3(n — 1)b*0; + p(z)b;. (3.16)

Remark that for contracting this equation with b® its neccesary to know

bit, = bisms"; = —s,,5".
blg = birms"{ = —r;,s".
bis";m = (bis"});m — sbem = =S = Gm — tm- (3.17)
bmbisi;m = bm[(sibi);m — sibfm} = sm(s™ —1™).

Contraction (3.16) with b implies that

0 = —0*(n—1)sps™ — (n—3)b*rps™ + b (s, + ¢ +t™,)

+b%5,, (8™ — ™) — 3(n — 1)b*0;b" + p(z)b?.
From this equation, it is easy to get

() = (n—2)s5m8™ 4 (n = 2)rms™ — b2 (", 4+ q'p +t7,) + 3(n — 1)b26;". (3.18)
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By replacing (3.15) into (3.18) we can obtain
wlx) = —b2(s".}m +q", — (n—1)[30;b" + 4rK]) + ns™ s + (0 — 2)8™ 7y, (3.19)
By the above calculation, we get classifying equation for weak PRic-curvature Kropina metric.

Theorem 3.4 Let F = o?/B3 be the non-Riemannian Kropina metric on manifold M. Then F is a weak

projective Ricci curvature metric if and only if a and B satisfies
0 = b?{(n —1)[to — 36%6] + (n — 3)qo — bs",

+b™ s0.m + sor";bn} —nsor + p(z)B,

] 1
*“Ric = bj{az,u(ac) —(n-2) [b2r0;0 + bzso;o —(ro+ 50)2]

+roo(nr — b%r,) — 2b%qoo — bzmeoo;m}
where
w(x) = 7()2(5n?m +qy — (n—1)[30:,™ 4+ 4K]) + ns™ s + (n — 2)s" T,
and 0 = 0;y" is a 1—form and k = k() is scalar function on M .

By replacing 6 = 0 into equations above, we can charactrize isotropic PRic-curvature of Kropina metrics,

Corollary 3.5 Let F = a?/f be the non-Riemannian Kropina metric on manifold M. Then F is of isotropic

projective Ricci curvature metric if and only if o and B satisfies

0= b%(n — 1)tg — nsor + (n — 3)b%qo — b4sr%;m
+b20™ S + b2 sor™, + u(w)B, (3.20)
“Ric = b%{cﬁu(x) — (n—2) [b?ro0 + b*s0;0 — (ro + S0)?]
+nrrog — 26200 — b0 ro0m — bQTOOT”;Ln}, (3.21)
where
p(x) = —bQ(S"fm +47 —4(n—1)K) +ns" sy + (0 — 2)s" 1. (3.22)

In [6] Cheng gave a formula for the PRic flat Kropina metric. However, we find some errors in his

formula. Let F' be the Kropina metric with PRic = 0 then (3.15) must be as follows
" = ——=8"5m. (3.23)
By replacing quantity above into (3.18), we can get Corollary 3.6

Corollary 3.6 Let F = a?/f3 be the non-Riemannian Kropina metric on manifold M. Then F is projective
Ricci flat PRic =0 if and only if a and B satisfy 5.20 and 3.21, where

w(x) = —bQ(s”?m +q7)+ns" sy + (n—2)s"ry,.
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4. Proof of theorems
Proof of theorem 1.2: Suppose that C-reducible Finsler metric has vanishing Douglas curvature.
It is shown that Randers metric is Douglas metric if and only if s;; = 0 [9]. By this assumption, (3.4)

must be as follows:
kB =0.
This means x = 0 and PRic-curvature must be flat. Moreover, by (3.5) Ricci curvature of « is

-0

1 —b2)?° -3 —Ob2)2}'

In [13], Matsumoto shows that Kropina metric is a Douglas metric if and only if

“Ric = (n— 1){(

1
Sij = b—z(bls] — bJSl)

It is easy to see that sg = sy = 0. Replacing these vanishing quantities in corollary (3.5), by (3.20) we
get p(z) = 0. According to the definition of this scalar function (3.22), we see that x = 0 i.e. isotropic
PRic-curvature of Douglas Kropina metric must be PRic flat, and by (3.21) Ricci curvature of « must be as

follows

L] 1 m m
“Ric = bj{ —(n—-2) [b2r0;0 — 7"3] + nrroo — b2 00.m — b2r0T m}.

Berwald spaces are subspaces of Douglas space, then we can conclude that C-reducible Berwald metric

of isotropic PRic-curvature must be projective Ricci flat.

Corollary 4.1 Randers Berwald metric of isotropic PRic-curvature must be projective Ricci flat and “Ric

flat.

Let Randers metric be Berwaldian, then § is parallel with respect to a i.e. r;j = s;; = 0. by (3.4) we

see that k = 0 and PRic =0 , and by (3.5) we can get *Ric = 0.

Corollary 4.2 Kropina Berwald metric of isotropic PRic-curvature must be projective Ricci flat and Ricci

curvature of o satisfies

A —(n—2
“Ric = %{colﬂﬂ + A (b*a? + 52)}. (4.1)
It was proved that Kropina metric is a Berwald metric if and only if (see [21])
1
sij = be(bZSj — bjsi), {rij = c(x)aij.

By simple computation we see that

50:07 8%207 qozrmSW(L):O7 q00:O7

m

™ = ne(x), Too = c(x)a?, T = c(z)b?,
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ro = c(2)B, 0.0 = cof + A (w)a’.
We put the above values in corollary (3.5) and get x = p(z) = 0. Kropina Berwald metric of isotropic PRic

curvature reduces to PRic flat. By replacing above quantities in (3.21), we can get (4.1).

Proof of theorem 1.3: Shen and Yildirim classified Randers metrics of scalar flag curvature [18] and

proved this theorem

Theorem 4.3 Let ' = o+ 8 be a Randers metric on an n-dimensional manifold M. F is of scalar flag
curvature K = o(x,y), if and only if the Riemann curvature of « and the covariant derivatives of 8 satisfy

the following equations:
Ry = k(a®0, —yryt) + Pty 4 teod’), — troy — t'y — 35%0Sko,

1
n—1

Sijik (aiks";-;m — kS8 ) (4.2)
Equation (4.2) is equivalent to the following relation (see Lemma 5.4.4 in [9])
a23ij;0 = 5i0;0Y5 — Sj0;0Yi- (4~3)
Multiplying both sides of equality mentioned above by a®™ and using equation (3.4), we obtain this relation
0 = a®(kbjy™ — pos") + possy; — posjoy™.

Contracting above equation by b, yields xkb?a?8 = 0, x must be vanished.

Scalar flag curvature Kropina metrics were studied by Ceyhan and Civi [4] and they showed that Kropina

metric F' = o?/f with dimension n > 2 is of scalar flag curvature if the following conditions hold

n—1
ro = e, (e=-——), (4.4)
so = 0, s";sri = 0. (4.5)
By using (4.4) and (4.5), we can get
r= cb2, ro=cB, r’, =nc, Tro0= 02a2,
s; =0, to=0, 700;m =0, ¢ =dqo0=¢qo=0. (4.6)

Replace above quantities into (3.20) and (3.22), then we get
0=4(n—1)kB — b5}, -
This equation is equivalent to

0=4(n—1)k—b's"

i;m*

By (3.17) and (4.6), we see that b's™

w.m = 0, then by equation mentioned above, x must be zero and Ricci
curvature of a has the following form
*Ric = L{BQ —bv?a?).
bt(n —2)

This completes the proof of theorem 1.3.
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