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Abstract: In this study, we solve the Diophantine equation in the title in nonnegative integers m,n, and a . The
solutions are given by

F1 − F0 = F2 − F0 = F3 − F2 = F3 − F1 = F4 − F3 = 50

and
F5 − F0 = F6 − F4 = F7 − F6 = 5.

Then we give a conjecture that says that if a ≥ 2 and p > 7 is prime, then the equation Fn −Fm = pa has no solutions
in nonnegative integers m,n.
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1. Introduction
The Fibonacci sequence (Fn) and Lucas sequence (Ln) are defined as F0 = 0, F1 = 1 , L0 = 2, L1 = 1 and
Fn = Fn−1 + Fn−2, Ln = Ln−1 + Ln−2 for n ≥ 2 . The terms of the Fibonacci and Lucas sequences are called
Fibonacci and Lucas numbers, respectively. The Fibonacci and Lucas numbers for negative indices are defined by
F−n = (−1)n+1Fn and L−n = (−1)nLn for n ≥ 1. For a brief history of Fibonacci and Lucas sequences, one can
consult [8]. The Fibonacci and Lucas sequences have many interesting properties and they are the most studied
among the second-order recurrence sequences. In the last decade, some exponential Diophantine equations
containing the terms of second-order linear recursive sequences were studied by mathematicians. In 2014, the
Diophantine equation Ln + Lm = 2a was tackled in [4] by Bravo and Luca. Two years later, the same authors
solved the Diophantine equation Fn+Fm = 2a in [5]. Meanwhile, the equation Fn+Fm+Fl = 2a was solved by
Bravo and Bravo in [3]. Lastly, in [12], the authors dealt with the Diophantine equation Un+Um = wpz11 pz22 ···pzss
and they solved this equation in the case that w = 1, p1, p2, ..., p46 are all prime numbers less than 200 and
(Un) is the Fibonacci sequence or the Lucas sequence. Similar equations were tackled in [2] and [7]. In [2], the
equations Un = 2a+3b and Un = 2a+3b+5c were solved when (Un) is one of the sequences (Fn) , (Ln), (Pn) ,
or (Qn), where (Pn) and (Qn) are the Pell and Pell–Lucas sequences, respectively. In [7], it was shown that if
Fn + Fm + Fr = 2a + 2b, then max{n,m, r, a, b} ≤ 16. It was also shown that if Fn + Fm = 2a + 2b + 2c, then
max{n,m, a, b, c} ≤ 18. Luca and Patel, in [10], found that the Diophantine equation Fn−Fm = yp in integers
(n,m, y, p) with p ≥ 2 has solution either max {|n|, |m|} ≤ 36 or y = 0 and |n| = |m| if n ≡ m(mod2).
However, it is still an open problem for the case n ̸≡ m(mod2). In [13], the authors solved the equation
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Fn − Fm = 2a . They proved that all nonnegative integer solutions of the Diophantine equation Fn − Fm = 2a

are given by

(n,m, a) ∈ {(1, 0, 0) , (2, 0, 0) , (3, 0, 1), (6, 0, 3), (3, 1, 0), (4, 1, 1), (5, 1, 2), (3, 2, 0)}

and
(n,m, a) ∈ {(4, 3, 0) , (4, 2, 1) , (5, 2, 2), (9, 3, 5), (5, 4, 1), (7, 5, 3), (8, 5, 4), (8, 7, 3)} .

Furthermore, in an unpublished work, the authors proved that all solutions of the equation

Fn − Fm = 3a (1)

are given by

(n,m, a) ∈ {(1, 0, 0) , (2, 0, 0), (4, 0, 1), (3, 1, 0), (3, 2, 0), (4, 3, 0), (5, 3, 1), (6, 5, 1), (11, 6, 4)} .

Motivated by the above studies, in this study, we consider the Diophantine equation

Fn − Fm = 5a (2)

in nonnegative integers m,n, and a. Our work is a continuation of the previous studies on this subject. We
prove our main result following the approach and the method presented in [5]. In Section 2, we introduce
necessary lemmas and theorems. Then, in Section 3, we prove our main theorem.

2. Auxiliary results

In order to solve Diophantine equations of the form (2), we use Baker’s theory of lower bounds for a nonzero
linear form in logarithms of algebraic numbers. Since such bounds are very important in effectively solving
Diophantine equations, we start by recalling some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with the minimal polynomial

a0x
d + a1x

d−1 + ...+ ad = a0

d∏
i=1

(
x− η(i)

)
∈ Z[x],

where the ai ’s are relatively prime integers with a0 > 0 and the η(i) ’s are conjugates of η. Then

h(η) =
1

d

(
log a0 +

d∑
i=1

log
(

max
{
|η(i)|, 1

}))
(3)

is called the logarithmic height of η. If η = a/b is a rational number with gcd(a, b) = 1 and b > 1, then
h(η) = log (max {|a|, b}) .

The following properties of logarithmic height are found in many works stated in the references:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (4)

h(ηγ±1) ≤ h(η) + h(γ), (5)
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h(ηk) = |k|h(η). (6)

The following theorem can be deduced from Corollary 2.3 of Matveev [11], which provides a large upper bound
for the subscript n in equation (2) (also see Theorem 9.4 in [6]).

Theorem 1 Assume that γ1, γ2, ..., γt are positive real algebraic numbers in a real algebraic number field K of
degree D ; b1, b2, ..., bt are rational integers; and

Λ := γb1
1 ...γbt

t − 1

is not zero. Then
|Λ| > exp

(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2...At

)
,

where
B ≥ max {|b1|, ..., |bt|} ,

and
Ai ≥ max {Dh(γi), | log γi|, 0.16}

for all i = 1, ..., t.

The following lemma was proved by Dujella and Pethő [9], which is a variation of a lemma of Baker and
Davenport [1]. This lemma will be used to reduce the upper bound for the subscript n in equation (2). For a
real number x, ||x|| denotes the distance from x to the nearest integer . That is, ||x|| = min {|x− n| : n ∈ Z} .

Lemma 2 Let M be a positive integer, let p/q be a convergent of the continued fraction of the irrational number
γ such that q > 6M, and let A,B, µ be some real numbers with A > 0 and B > 1. Let ϵ := ||µq|| −M ||γq||.
If ϵ > 0, then there exists no solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ϵ)

logB .

It is well known that

Fn =
αn − βn

√
5

and Ln = αn + βn, (7)

where α = (1 +
√
5)/2 is the golden section and β =

−
α, which are the roots of the characteristic equation

x2 − x− 1 = 0. The relation between the Fibonacci number and Lucas number is given by

Fn+1 + Fn−1 = Ln, (8)

and an induction method shows that
αn−2 ≤ Fn ≤ αn−1 (9)

for n ≥ 1 . It is clear that 1 < α < 2 and −1 < β < 0.

The following theorem and lemma are given in [6] and [10], respectively.
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Theorem 3 The only perfect powers in the Fibonacci sequence are F0 = 0, F1 = F2 = 1, F6 = 8, and
F12 = 144. The only perfect powers in the Lucas sequence are L1 = 1 and L3 = 4.

Lemma 4 Assume that n ≡ m(mod2). Then

Fn − Fm =

{
F(n−m)/2L(n+m)/2 if n ≡ m(mod4),
F(n+m)/2L(n−m)/2 if n ≡ m+ 2(mod4).

3. Main theorem
Theorem 5 The only solutions of Diophantine equation (2) in nonnegative integers m < n, and a, are given
by

(n,m, a) ∈ {(1, 0, 0) , (2, 0, 0) , (5, 0, 1) , (3, 1, 0) , (3, 2, 0) , (4, 3, 0) , (6, 4, 1) , (7, 6, 1))} ,

namely,
F1 − F0 = F2 − F0 = F3 − F2 = F3 − F1 = F4 − F3 = 50

and
F5 − F0 = F6 − F4 = F7 − F6 = 5.

Proof Assume that equation (2) holds. Let n − m = 1 . Then we get Fm−1 = 5a . By Theorem 3, we
have (n,m, a) ∈ (1, 0, 0) , (3, 2, 0) , (4, 3, 0) , (7, 6, 1) . Similarly, in the case n − m = 2, we have (n,m, a) ∈
{(2, 0, 0) , (3, 1, 0) , (6, 4, 1)} . If m = 0, from Theorem 3, we get the solutions F1 − F0 = F2 − F0 = 1 and
F5 − F0 = 5. With the help of the Mathematica program, we obtain the other solutions in Theorem 5 for
1 ≤ m < n ≤ 200. This takes a little time. From now on, assume that n > 200,m ≥ 1 , and n−m ≥ 3. Using
the identity (9), we get the inequality

5a = Fn − Fm < Fn < αn < 5n,

which shows that a < n.

Rearranging equation (2) as αn

√
5
− 5a = Fm +

βn

√
5

and taking absolute values, we obtain

∣∣∣∣ αn

√
5
− 5a

∣∣∣∣ = ∣∣∣∣Fm +
βn

√
5

∣∣∣∣ ≤ Fm +
|β|n√

5
< αm +

1

2

by identity (9). If we divide both sides of the above inequality by αn

√
5
, we get

∣∣∣1− 5aα−n
√
5
∣∣∣ < √

5αm−n +

√
5

2
α−n =

√
5αm−n(1 +

α−m

2
) <

4

αn−m
. (10)

Now we apply Theorem 1 with γ1 := 5, γ2 := α, γ3 :=
√
5 and b1 := a, b2 := −n, b3 := 1. Note that the

numbers γ1, γ2, and γ3 are positive real numbers and elements of the field K = Q(
√
5), so D = 2. We

show that Λ1 := 5aα−n
√
5 − 1 is nonzero. Assume that Λ1 = 0 . Then we get α2n = 52a+1, which is

impossible since α2n is irrational. Moreover, since h(γ1) = log 5 = 1.60943..., h(γ2) =
logα
2

=
0.4812...

2
, and

h(γ3) = log
√
5 = 0.8047... by identity (3), we can take A1 := 3.22, A2 := 0.5, and A3 := 1.7. Since a < n, it
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follows that B := max {|b1|, |b2|, |b3|} = max {|a|, | − n|, 1} = n. Thus, taking into account inequality (10) and
using Theorem 1, we obtain

4

αn−m
> |Λ1| > exp

(
−1.4 · 306 · 34.5 · 22(1 + log 2)(1 + logn) (3.22) (0.5) (1.7)

)
.

From the last inequality, a quick computation with Mathematica gives us the inequality

(n−m) logα− log 4 < (1 + logn) · 2.65419 · 1012. (11)

Now we apply Theorem 1 again. Rearranging equation (2) as

αn

√
5
− αm

√
5
− 5a =

βn

√
5
− βm

√
5

and taking absolute values, we obtain∣∣∣∣αn(1− αm−n)√
5

− 5a
∣∣∣∣ = ∣∣∣∣ βn

√
5
− βm

√
5

∣∣∣∣ ≤ |β|n + |β|m√
5

<
1

3
,

where we used the fact that |β|n + |β|m < 2/3 for n > 200. Dividing both sides of the above inequality by
αn(1− αm−n)√

5
, we get

∣∣∣1− 5aα−n
√
5(1− αm−n)−1

∣∣∣ < √
5α−n(1− αm−n)−1

3
. (12)

Since

αm−n =
1

αn−m
<

1

α
<

2

3
,

it is seen that

1− αm−n >
1

3

and therefore
1

1− αm−n
< 3.

Then from (12), it follows that ∣∣∣1− 5aα−n
√
5(1− αm−n)−1

∣∣∣ < 3

αn
. (13)

Thus, taking γ1 := 5, γ2 := α, γ3 :=
√
5(1 − αm−n)−1 and b1 := a, b2 := −n, b3 := 1, we can apply Theorem

1. The numbers γ1, γ2, and γ3 are positive real numbers and elements of the field K = Q(
√
5), so D = 2. We

claim that Λ2 := 5aα−n
√
5(1− αm−n)−1 − 1 is nonzero. Because if Λ2 = 0, then we get

αn

√
5
− αm

√
5
= 5a = Fn − Fm =

αn

√
5
− αm

√
5
+

βm

√
5
− βn

√
5
,

which implies that βm = βn. However, this is impossible since n > m. Since h(γ1) = log 5 = 1.60943..., and

h(γ2) =
logα
2

=
0.4812...

2
by (3), we can take A1 := 3.22 and A2 := 0.5. On the other hand, using (4), (5), and
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(6), we get h(γ3) ≤ log 2
√
5 + (n−m)

logα
2

. A simple computation shows that | log γ3| < log 5 + (n−m) logα,

so we can take A3 := log 20 + (n − m) logα. Also, since a < n, it follows that B := max {|a|, | − n|, 1} = n.

Thus, taking into account inequality (13) and using Theorem 1, we obtain

3

αn
> |Λ2| > exp(−C)(1 + logn) (log 20 + (n−m) logα) ,

or
n logα− log 3 < C(1 + logn) (log 20 + (n−m) logα) , (14)

where C = 1.4 · 306 · 34.5 · 22 · (1 + log 2) (3.22) (0.5) . Substituting inequality (11) into the last inequality, we
get

n logα− log 3 < C(1 + logn)
(
log 20 + 2.65419 · 1012(1 + logn

)
+ log 4). (15)

With the help of Mathematica, it is seen that n < 3.85 · 1028 .
Let

z1 := a log 5− n logα+ log
√
5.

Then

|1− ez1 | < 4

αn−m

by (10). The inequality
αn

√
5
= Fn +

βn

√
5
> Fn − 1 ≥ Fn − Fm = 5a

implies that 5a
√
5α−n < 1. Therefore, we get z1 < 0. Since 4

αn−m
< 0.95 for n − m ≥ 3, it follows that

e|z1| < 20. Hence, since x < ex − 1 for x > 0 , we get

0 < |z1| < e|z1| − 1 = e|z1| |1− ez1 | < 80

αn−m
,

or

0 < |a log 5− n logα+ log
√
5| < 80

αn−m
.

Dividing this inequality by logα, we get

0 <

∣∣∣∣∣a
(

log 5
logα

)
− n+

log
√
5

logα

∣∣∣∣∣ < 80

logα · αn−m
. (16)

From (16), it follows that

0 <

∣∣∣∣∣a
(

log 5
logα

)
− n+

log
√
5

logα

∣∣∣∣∣ < 166.3 · α−(n−m). (17)

Now we can apply Lemma 2. Put

γ :=
log 5
logα /∈ Q, µ :=

log
√
5

logα ,A := 166.3, B := α, and w := n−m.
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Let M := 3.85 · 1028. Then the denominator of the 60th convergent of γ exceeds 6M. Furthermore,

ϵ := ||µq60|| −M ||γq60|| ≤ 0.496.

Thus, inequality (17) has no solutions for

n−m ≥ log (Aq60/ϵ)

logB ≥ 158.15.

A computer search with Mathematica yields n−m ≥ 158.15, so n−m ≤ 158. Substituting this upper bound
for n−m into (15), we obtain n < 9.7 · 1015.

Now we apply Lemma 2 to reduce the upper bound on n a little bit. Let

z2 := a log 5− n logα+ log
(√

5(1− αm−n)−1
)
.

In this case,

|1− ez2 | < 3

αn

by (13). If z2 > 0, then 0 < z2 < ez2 − 1 <
3

αn
<

1

2
. If z2 < 0, then |1− ez2 | = 1− ez2 <

3

αn
<

1

2
. From this,

we get e|z2| < 2 and so

0 < |z2| < e|z2| − 1 = e|z2| |1− ez2 | < 6

αn
.

Therefore, it is true that

0 < |z2| <
6

αn
.

That is,

0 <
∣∣∣a log 5− n logα+ log

(√
5(1− αm−n)−1

)∣∣∣ < 6

αn
.

Dividing both sides of the above inequality by logα, we get

0 <

∣∣∣∣∣a
(

log 5
logα

)
− n+

log
(√

5(1− αm−n)−1
)

logα

∣∣∣∣∣ < 13 · α−n. (18)

Let γ :=
log 5
logα and M := 9.7 · 1015 . Then the denominator of the 32nd convergent of γ exceeds 6M. Also,

taking

µ :=
log
(√

5(1− αm−n)−1
)

logα

with n−m ∈ [3, 158] and n−m ̸= 4, 56, 66, a quick computation with Mathematica gives us the inequality

ϵ := ϵ(µ) = ||µq32|| −M ||γq32|| ≤ 0.493272.
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Let A := 13, B := α, and w := n. Using Lemma 2, we can say that inequality (18) has no solution for

w = n ≥ log(Aq32/ϵ)
logB ≥ 91.3088

with n − m ̸= 4, 56, 66. That is, there are no solutions for n ≥ 91.3088 and therefore we get n ≤ 91. This
contradicts our assumption that n > 200. Now consider the cases n−m = 4, 56, 66 to complete the proof. If
n−m = 4, then we have the equation 5a = Fm+4 −Fm = Lm+2, which is impossible . If n−m = 56, then we
have the equation 5a = Fn−Fm = F28Lm+28 by Lemma 4. This is impossible . Lastly, assume that n−m = 66.

Then we have the equation 5a = Fn − Fm = Fm+33L33 by Lemma 4, which is impossible. This completes the
proof. 2

3.1. Concluding remarks

In [10], it was shown that if n ≡ m (mod 2) , then all solutions of the equation

Fn − Fm = yp, p ≥ 2, y ≥ 1 (19)

satisfy max{n,m} ≤ 36 . After that, the authors conjectured that all solutions of equation (19) are

F1 − F0 = 1, F2 − F0 = 1, F3 − F1 = 1, F3 − F2 = 1, F4 − F3 = 1, F5 − F1 = 22,

F5 − F2 = 22, F6 − F4 = 5, F7 − F5 = 23, F7 − F6 = 5,

F8 − F5 = 24, F8 − F7 = 23, F9 − F3 = 25, F11 − F6 = 92, F13 − F6 = 152,

F13 − F11 = 122, F14 − F9 = 73, F14 − F13 = 122, F15 − F9 = 242.

Consequently, it is true that the above conjecture holds for y = 2, 3, 5 by our result and the results in [13] and
unpublished work of the second author. It is reasonable to conjecture that:

Conjecture 6 If a ≥ 2 and p > 7 is prime, then the equation Fn − Fm = pa has no solutions in nonnegative
integers m,n.

References

[1] Baker A, Davenport H. The equations 3x2 − 2 = y2 and 8x2 − 7 = z2 . Quarterly Journal of Mathematics 1969; 20
(1): 129-137.

[2] Bertók C, Lajos H, Pink I, Rábai Z. Linear combinations of prime powers in binary recurrence sequences. Interna-
tional Journal of Number Theory 2017; 13 (2): 261-271.

[3] Bravo EF, Bravo JJ. Powers of two as sums of three Fibonacci numbers. Lithuanian Mathematical Journal 2015;
55 (3): 301-311.

[4] Bravo JJ, Luca F. Powers of two as sums of two Lucas numbers. Journal of Integer Sequences 2014; 17: 14.8.3.

[5] Bravo JJ, Luca F. On the Diophantine equation Fn + Fm = 2a . Quaestiones Mathematicae 2016; 39 (3): 391-400.

[6] Bugeaud Y, Mignotte M, Siksek S. Classical and modular approaches to exponential Diophantine equations I.
Fibonacci and Lucas perfect powers. Annals of Mathematics 2006; 163 (3): 969-1018.

[7] Chim K C, Ziegler V. On Diophantine equations involving sums of Fibonacci numbers and power of 2. Integers
2018; 18, Paper No. A99, 30 pp.

1122



ERDUVAN and KESKİN/Turk J Math

[8] Debnath L. A short history of the Fibonacci and golden numbers with their applications. International Journal of
Mathematical Education in Science and Technology 2011; 42 (3): 337-367.

[9] Dujella A, Pethő A. A generalization of a theorem of Baker and Davenport. Quarterly Journal of Mathematics
1998; 49 (3): 291-306.

[10] Luca F, Patel V. On perfect powers that are sums of two Fibonacci numbers. Journal of Number Theory 2018; 189:
90-98.

[11] Matveev EM. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers
II. Izvestiya Akademii Nauk Series Mathematics 2000; 64 (6): 125-180 (in Russian).

[12] Pink I, Ziegler V. Effective resolution of Diophantine equations of the form un+um = wpz11 pz22 · · ·pzss . Monatshefte
für Mathematik 2018; 185: 103-131.

[13] Şiar Z, Keskin R. On the equation Fn − Fm = 2a . Colloquium Mathematicum (in press).

1123


	Introduction
	Auxiliary results
	Main theorem
	Concluding remarks


