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An involution of reals, discontinuous on rationals, and whose derivative vanishes
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Abstract: We study the involution of the real line, induced by Dyer’s outer automorphism of PGL(2,Z). It is continuous
at irrationals with jump discontinuities at rationals. We prove that its derivative exists almost everywhere and vanishes
almost everywhere.

Key words: Involution, PGL, projective general linear group, continued fraction, derivative, discontinuity

1. Introduction
It is known that a function discontinuous on a dense subset of [0, 1] cannot be differentiable everywhere on the
complementary set; such a function can be differentiable at most on a meager set (i.e. a countable union of
nowhere dense sets); see [1]. On the other hand, meager does not mean negligible: there are meager sets of full
Lebesgue measure, and in [1] a function discontinuous at rationals and yet differentiable on a set of full measure
was demonstrated.

In this paper we show that the involution J (Jimm) of R introduced by us in [4] is another function of
this kind. Here, we shall work with the restriction of J to the unit interval [0, 1] . Our result is also valid for
its extension to R .

This involution is induced by the outer automorphism of the projective general linear group PGL2(Z)

over Z and satisfies a set of functional equations of modular type. Furthermore, it preserves the set of quadratic
irrationals commuting with the Galois conjugation on them. It induces a duality of Beatty partitions of the
set of positive integers. It conjugates the Gauss continued fraction map to the so-called Fibonacci map [3].
We refer the reader to [4] and to [5] for a wider perspective about J and for its connection to Dyer’s outer
automorphism.

2. Introducing the involution

As usual, denote the continued fraction 1/(n1 + 1/ . . . ) by [0, n1, n2, . . . ] . Let x = [0, n1, n2, . . . ] be a number
with 2 ≤ n1, n2 · · · < ∞ . Then the value that J takes on x is defined as

J(x) = J([0, n1, n2, . . . ]) := [0, 1n1−1, 2, 1n2−2, 2, 1n3−2, . . . ], (1)
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where 1k denotes the sequence 1, 1, . . . , 1 of length k . This formula extends to all irrational numbers, i.e. those
with x = [0, n1, n2, . . . ] satisfying 1 ≤ n1, n2 · · · < ∞ , if the emerging 1−1 s are eliminated in accordance with
the rule [. . .m, 1−1, n, . . . ] = [. . .m+ n− 1, . . . ] and 10 with the rule [. . .m, 10, n, . . . ] = [. . .m, n, . . . ] .

See [4] for a computation of some values of J .
From its definition it is readily seen that J sends ultimately periodic continued fractions (i.e. quadratic

irrationals) to itself, with one exception: if ni is constantly 1 from some point on, i.e. x = [0, n1, n2, . . . , nk, 1∞]

with nk > 1 , then J(x) = [0, . . . , 1nk−2,∞] ∈ Q , i.e. noble numbers are sent to rationals under J . For example,
when x = [0, 1∞] , then the definition gives

J(x) = [0, 10, 2, 1−1, 2, 1−1, 2, . . . ],

and applying the simplification rules we get

J(x) = [0, 2, 1−1, 2, . . . ] = [0, 3, 1−1, 2, . . . ] = [0, 4, 1−1, 2, . . . ] = · · · = [0,∞] = 0.

J([0, 3, 1∞]) = [0, 12, 2, 1−1, 2, 1−1, 2, . . . ] = [0, 1, 1,∞] = 1/2, and

J([0, 1, 2, 1∞]) = [0, 10, 2, 10, 2, 1−1, 2, 1−1, 2, . . . ] = [0, 2,∞] = 1/2.

In a similar manner, it is easy to see that J is two-to-one on the set of noble numbers in [0, 1] (except that
J−1(0) = [0, 1∞] and J−1(1) = [0, 2, 1∞]). It is bijective and involutive on the set [0, 1]\Q ∪N , where N
denotes the set of noble numbers (see [4]).

2 Introducing the involution

As usual, denote the continued fraction 1/(n1 + 1/ . . . ) by [0, n1, n2, . . . ]. Let
x = [0, n1, n2, . . . ] be a number with 2 ≤ n1, n2 · · · < ∞. Then the value that J
takes on x is defined as

J(x) = J([0, n1, n2, . . . ]) := [0, 1n1−1, 2, 1n2−2, 2, 1n3−2, . . . ], (1)

where 1k denotes the sequence 1, 1, . . . , 1 of length k. This formula extends to all
irrational numbers, i.e. those with x = [0, n1, n2, . . . ] satisfying 1 ≤ n1, n2 · · · <∞,
if the emerging 1−1’s are eliminated in accordance with the rule [. . .m, 1−1, n, . . . ] =
[. . .m+ n− 1, . . . ] and 10 with the rule [. . .m, 10, n, . . . ] = [. . .m, n, . . . ].

See [4] for a computation of some values of J.

From its definition it is readily seen that J sends ultimately periodic continued
fractions (i.e. quadratic irrationals) to itself, with one exception: if ni is constantly
1 from some point on, i.e. x = [0, n1, n2, . . . , nk, 1∞] with nk > 1, then J(x) =
[0, . . . , 1nk−2,∞] ∈ Q, i.e. noble numbers are sent to rationals under J. For
example, when x = [0, 1∞], then the definition gives

J(x) = [0, 10, 2, 1−1, 2, 1−1, 2, . . . ]

and applying the simplification rules we get

J(x) = [0, 2, 1−1, 2, . . . ] = [0, 3, 1−1, 2, . . . ] = [0, 4, 1−1, 2, . . . ] = · · · = [0,∞] = 0.

J([0, 3, 1∞]) = [0, 12, 2, 1−1, 2, 1−1, 2, . . . ] = [0, 1, 1,∞] = 1/2, and

J([0, 1, 2, 1∞]) = [0, 10, 2, 10, 2, 1−1, 2, 1−1, 2, . . . ] = [0, 2,∞] = 1/2.

In a similar manner, it is easy to see that J is two-to-one on the set of noble
numbers in [0, 1] (except that J−1(0) = [0, 1∞] and J−1(1) = [0, 2, 1∞]). It is
bijective and involutive on the set [0, 1]\Q ∪N , where N denotes the set of noble
numbers (see [4]).

Figure. The graph of J lies inside the smaller (and darker) boxes.
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Figure. The graph of J lies inside the smaller (and darker) boxes.

If x = [0, n1, n2, . . . ] is an irrational and xk = [0, nk
1 , n

k
2 , . . . ] is a sequence tending to x , then for every N ,

there exists an M such that nk
i = ni for k > N and i < M . This implies that longer and longer initial segments

of [0, ℓk1 , ℓ
k
2 , . . . ] coincide with those of [0, ℓ1, ℓ2, . . . ] , where J(x) = [0, ℓ1, ℓ2, . . . ] and J(xk) = [0, ℓk1 , ℓ

k
2 , . . . ] .

Hence, J(xk) → J(x) , i.e. our involution J is continuous at every irrational x .
If x = [0, n1, n2, . . . , nm,∞] is a rational with m odd, let xk = [0, nk

1 , n
k
2 , . . . ] be a sequence tending to

x from below. Then there exists an N such that nk
i = ni for k > N , i ≤ m , and nk

m+1 → ∞ . This implies
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that longer and longer initial segments of [0, ℓk1 , ℓ
k
2 , . . . ] coincide with those of J−(x) := [0, ℓ1, ℓ2, . . . ] , where

J(xk) = [0, ℓk1 , ℓ
k
2 , . . . ] and

[0, ℓ1, ℓ2, . . . ] = [0, 1n1−1, 2, 1n2−2, 2, 1n3−2, . . . , 2, 1nm−2, 2, 1∞].

Hence, J(xk) → J−(x) , i.e. J is continuous from the left at x .
On the other hand, if xk ↓ x , then let [0, p1, p2, . . . , pr,∞] be the other representation of x as a continued

fraction (which is [0, n1, n2, . . . , nm − 1, 1,∞] if nm > 1 and [0, n1, n2, . . . , nm−1 + 1,∞] if nm = 1). Then
there exists an N such that nk

i = pi for k > N , i ≤ r , and nk
r+1 → ∞ . This implies that longer and longer

initial segments of [0, ℓk1 , ℓ
k
2 , . . . ] coincide with those of J+(x) := [0, ℓ1, ℓ2, . . . ] , where

[0, ℓ1, ℓ2, . . . ] = [0, 1p1−1, 2, 1p2−2, 2, 1p3−2, . . . , 2, 1pr−2, 2, 1∞]

and J(xk) = [0, ℓk1 , ℓ
k
2 , . . . ] . Hence, J is continuous from the right at x . Similar arguments show that J is

continuous from left and right for m even as well.

3. The derivative of Jimm.
It is known that for almost all x , the arithmetic mean of partial quotients of x tends to infinity, i.e. if
x = [0, n1, n2, . . . ] then

lim
k→∞

n1 + · · ·+ nk

k
= ∞ (2)

almost everywhere (see [2]). In other words, the set of numbers in the unit interval such that the above limit is
infinite is of full Lebesgue measure. Denote this set by A . Now since the first k partial quotients of x give rise
to at most n1 + · · ·+ nk − k partial quotients of J(x) and at least n1 + · · ·+ nk − 2k of these are 1s, one has

n1 + · · ·+ nk − k

n1 + · · ·+ nk − 2k
→ 1 as k → ∞.

This shows that the density of 1s in the continued fraction expansion of J(x) equals 1 a.e., and therefore the
partial quotient averages (2) of J(x) tend to 1 a.e. We conclude that J(A) is a set of zero measure.

Suppose x = [0, n1, n2, . . . ] is an irrational satisfying (2). Then for every constant M , there is some k

with n1 + · · ·+ nk > kM . However, then the J -transform of the initial length-k segment of x is of length at
least kM − k . Hence, if y is any number whose continued fraction expansion coincides with that of x up to
place k , then the continued fraction J(y) coincides with that of J(x) at least up to place kM−k . Since kM−k

is arbitrarily big compared to k , and since longer continued fractions give exponentially better approximations,
we see that, a.e., J(y) is much closer to J(x) than y is to x . Hence, we have the idea of the following theorem.

Theorem 1 The derivative of J(a) exists almost everywhere and vanishes almost everywhere.

To prove this, we need to show that, for almost all a ,

lim
x→a

J(a)− J(x)
a− x

= 0.

Assume that x is irrational or equivalently its continued fraction expansion is nonterminating.
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Let a := [0, n0, n1, . . . ] and let x ∈ [0, 1] with 0 < |x − a| < δ for some δ . Then there is a
number k = kδ , such that the continued fractions of a and x coincide up to the k th element. Hence, x =

[0, n1, n2, . . . nk,mk+1, . . . ] with mk+1 ̸= nk+1. Note that this latter condition also guarantees that 0 < |x− a| .
Now let

Mk(z) := [n1, n2, . . . , nk−1, nk + z] =
αkz + βk

γkz + θk

and put ak := [0, nk+1, nk+2, . . . ], xk := [0,mk+1,mk+2, . . . ]. Then one has 0 < ak < 1 (with strict inequality
since a is irrational) and 0 ≤ xk < 1 for every k = 1, 2, . . . . One has

a = Mk(ak), x = Mk(xk) and det(Mk) = (−1)k.

Lemma 2 Let a := [0, n0, n1, . . . ] and suppose that the continued fractions of a and x coincide up to place k

(but not k + 1), where x ∈ [0, 1] . Put Nk :=
∑k

i=1 ni , and µk := Nk/k . Then

|a− x| > 1

24
(2µk+3)

−2(k+3).

Proof One has

|a− x| = |Mk(ak)−Mk(xk)| =
∣∣∣∣αkak + βk

γkak + θk
− αkxk + βk

γkxk + θk

∣∣∣∣ = |ak − xk|
(γkak + θk)(γkxk + θk)

.

Since

Mi+1(z) = Mi

(
1

ni+1 + z

)
=

βiz + (αi + ni+1βi)

θiz + (γ + ni+1θi)
,

one has γi+1 = θi and θi+1 = γi + ni+1θi . Hence, θi+1 > γi+1 =⇒ θi+1 > θi(1 + ni+1) . This implies

θi < (1 + n1)(1 + n2) . . . (1 + ni),

γi < (1 + n1)(1 + n2) . . . (1 + ni−1).

Since 0 ≤ ak, xk < 1 , this implies

γkak + θk < γk + θk < 2(1 + n1)(1 + n2) . . . (1 + nk),

γkxk + θk < γk + θk < 2(1 + n1)(1 + n2) . . . (1 + nk).

Hence, we get

|a− x| > |ak − xk|
4(1 + n1)2(1 + n2)2 . . . (1 + nk)2

.

To estimate |ak − xk| , consider

ak − xk =
1

nk+1 + ak+1
− 1

mk+1 + xk+1
=

mk+1 − nk+1 + xk+1 − ak+1

(nk+1 + ak+1)(mk+1 + xk+1)

>
mk+1 − nk+1 + xk+1 − ak+1

(1 + nk+1)(1 +mk+1)
.
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Now, if mk+1 < nk+1 , then set mk+1 = nk+1 − t with t ≥ 1 . Then one has

|ak − xk| >
| − t+ xk+1 − ak+1|

(1 + nk+1)(1 + nk+1 − t)
>

ak+1

(1 + nk+1)2
.

On the other hand, if 3nk+1 ≥ mk+1 > nk+1 then

|ak − xk| >
|1 + xk+1 − ak+1|

(1 + nk+1)(1 + 3nk+1)
>

1− ak+1

3(1 + nk+1)2
,

and if mk+1 > 3nk+1 then

|ak − xk| =
1− nk+1

mk+1
+ xk+1

mk+1
− ak+1

mk+1

(1 + nk+1)(1 +
1

mk+1
)

>
1

6(1 + nk+1)
.

Thus, one has

|ak − xk| >
ak+1(1− ak+1)

6(1 + nk+1)2
,

which gives the estimation from below,

|a− x| > ak+1(1− ak+1)

24(1 + n1)2(1 + n2)2 . . . (1 + nk)2(1 + nk+1)2
,

an estimation obtained under the assumption that the continued fraction expansions of x and a coincide up
until the k th term and differ for the k + 1th term.

Now we have the crude estimate

1

nk+2 +
1

nk+3 + 1

> ak+1 >
1

1 + nk+2
=⇒ ak+1(1− ak+1) >

1

(1 + nk+2)2
1

(1 + nk+3)2
,

which gives

|a− x| > 1

24(1 + n1)2(1 + n2)2 . . . (1 + nk+2)2(1 + nk+3)2
.

Now put Nk :=
∑k

i=1 ni , and µk := Nk/k . Then

(1 + n1)
2(1 + n2)

2 . . . (1 + nk)
2 ≤ (1 + µk)

2k ≤ (2µk)
2k.

The last inequality follows from the fact that µk ≥ 1 for all k , since ni ≥ 1 for all i . We finally obtain the
estimate

|a− x| > 1

24
(2µk+3)

−2(k+3) =
1

24
exp{−2(k + 3) log 2µk+3}.

2

On the other hand, if the c.f. expansions of a and x coincide up to the k = k(x)th place, then the c.f.
expansions of J(a) and J(xi) coincide up to place Nk , and by Binet’s formula we have

|J(a)− J(x)| < F−2
Nk

<
√
5ϕ−2Nk =

√
5 exp{−2kµk logϕ}
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(this estimate should be close to optimal (a.e.), since the density of 1s in the c.f. expansion of J(a) equals one
a.e.) This gives ∣∣∣∣J(a)− J(x)

a− x

∣∣∣∣ < 24
√
5 exp k{2(1 + 3/k) log 2µk+3 − 2µk logϕ} =⇒

∣∣∣∣J(a)− J(x)
a− x

∣∣∣∣ < A exp
{
2k logϕ

(
B log 2µk+3 − µk

)}
,

where A is some absolute constant and B = (1 + 3/k)/ logϕ can be taken arbitrarily close to 1/ logϕ < 2.08

by assuming k is big enough.
We see immediately that, if a = [0, n, n, n, n, . . . ] , then µk is constant = n , and if n is taken big enough

so that 2.08 log 2n−n < 0 , then the derivative exists and is zero. This is true for n > 4 . We do not claim that
our estimations are optimal in this respect, however.

On the other hand, since µk → ∞ almost surely, we see that B log 2µk+3−µk < 0 for k sufficiently big and
the derivative exists and vanishes. This is because by choosing a sufficiently small neighborhood {|x− a| < δ} ,
we can guarantee that k = k(x) is always greater than a given number for any x in this neighborhood. This
concludes the proof of the theorem.

Note that if µk → ∞ then the average partial quotient of J(a) tends to 1, and J is not differentiable
at J(a) . In other words, J is almost surely not differentiable at J(a) . In the same vein, the derivative of J at
a = [0, n, n, n, n, . . . ] vanishes for n > 4 , and we see that J is not differentiable at J(a) = [0, 1n−1, 2, n− 2] or
at best it will be of infinite slope at this point.

It is of interest to know about other points where J admits a nonzero finite derivative.
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