Some Sufficient conditions for a group to be abelian

Gary L. WALLS* ${ }^{*}$
Mathematics Faculty, Southeastern Louisiana University, Louisiana, USA

Received: 02.01.2019 \quad Accepted/Published Online: 30.04.2019 \quad Final Version: 29.05 .2019

Abstract

A group is said to satisfy a word w in the symbols $\left\{x, x^{-1}, y, y^{-1}\right\}$ provided that if the ' x ' and ' y ' are replaced by arbitrary elements of the group then the equation $w=1$ is satisfied. This paper studies certain equations in words, as above, which together with other conditions imply that groups which satisfy these equations and conditions must be abelian.

Key words: Group laws, commutators, abelian groups

1. Introduction

A word w in the symbols of $X=\left\{x_{1}, x_{2}, \cdots\right\}$ is an element of the free group $\operatorname{Fr}(X)$. We say that a group G satisfies the word w provided whenever the elements x_{1}, x_{2}, \cdots are replaced by arbitrary elements of G, we obtain the equation $w=1$ in G. In that case, we say that w is a law for G. In this paper we often consider words in the symbols x, y, that is elements of $\operatorname{Fr}(\{x, y\})$, and sometimes we use x, y for elements of a group G. It should be clear from the context which is implied.

A variety is an "equationally defined" class of groups. If W is a set of words in the set $\left\{x_{1}, x_{2}, \cdots\right\}$ we denote the variety determined by W as $V(W)=\{G \mid G$ is a group and all the elements of G
satisfy all the words of $W\}$. For example, if $W=\left\{[x, y]:=x^{-1} y^{-1} x y\right\}$, then $V(W)$ is the class of all abelian groups. This paper is concerned with words and conditions that force a group to be abelian. Similar results are contained in [1, 2] and [4].

2. Some notation and some identities

We will use the following notations.

1. For all $x, y \in G,[x, y]:=x^{-1} y^{-1} x y$
2. For all $x_{1}, x_{2}, \cdots x_{n} \in G, n \geq 3,\left[x_{1}, x_{2}, \cdots x_{n}\right]:=\left[\left[x_{1}, x_{2}, \cdots x_{n-1}\right], x_{n}\right]$. This is a left-normed commutator of weight n.
3. For all $x, y \in G, x^{y}:=y^{-1} x y$.
4. If A and B are words we write $A \Longleftrightarrow B$ in a group G to mean G satisfies the law $[A, B]$.
*Correspondence: gary.walls@selu.edu
2010 AMS Mathematics Subject Classification: 20E30, 20F12

WALLS/Turk J Math

We will use the following identities.
5. For all $x, y, z \in G[x y, z]=[x, z]^{y}[y, z]$ and $[x, y z]=[x, z][x, y]^{z}$.
6. For all $x, y \in G,[x, y]=x^{-1} x^{y}$.

We make frequent use of the following theorem by Higman [2].

Theorem 2.1 Let G be a 2-generated group which satisfies the law

$$
[x, y] \Longleftrightarrow\left[x, y^{-1}\right]
$$

then G must be metabelian.
and the following lemma by Gupta [1]
Theorem 2.2 Let G be a group satisfying the law

$$
[x, y]=C_{n}
$$

where C_{n} is a left-normed commutator of weight $n, n \geq 2$, with entries from the set $\left\{x, x^{-1}, y, y^{-1}\right\}$. Then, if G is solvable or if G is finite, then G is abelian.

3. Main results

We begin with the following lemma.

Lemma 3.1 Suppose that G satisfies the law

$$
[x, y]^{2}=[x, \underbrace{y, y, \cdots, y}_{n}], n \geq 2
$$

then
(i) every 2-generated subgroup of G is metabelian, and
(ii) for all $x, y \in G,[x, y]^{4}=1$.

In particular, if G^{\prime} contains no elements of order 2 , then G must be abelian.
Proof Now replacing ' x ' in the above formula by ${ }^{\prime}[x, y]^{\prime}$ gives

$$
[x, y, y]^{2}=[x, \underbrace{y, y, \cdots y}_{n+1}]=\left[[x, y]^{2}, y\right]=[x, y, y]^{[x, y]}[x, y, y]
$$

It follows that $[x, y, y]=[x, y, y]^{[x, y]}$. Thus, we have the following:

$$
\begin{aligned}
{[x, y, y] } & \Longleftrightarrow[x, y] \\
{[x, y]^{-1}[x, y]^{y} } & \Longleftrightarrow[x, y]
\end{aligned}
$$

$$
\begin{gathered}
{[x, y]^{y} \Longleftrightarrow[x, y] \text { so }} \\
{[x, y] \Longleftrightarrow\left([x, y]^{y^{-1}}\right)^{-1}=\left[x, y^{-1}\right] .}
\end{gathered}
$$

Now by Higman's result (Theorem 2.1) all 2-generated subgroups of G must be metabelian.
Now assume that G is metabelian and let $z \in G^{\prime}$. It follows that

$$
[x, z]^{2}=[x, z, \cdots, z]=1
$$

and so $\left[x, z^{2}\right]=[x, z][x, z]^{z}=[x, z]^{2}=1$. Therefore, $z^{2} \in Z(G)$ and thus for all $x, y \in G$, we have $[x, y]^{2} \in Z(G)$. It follows that

$$
1=\left[[x, y]^{2}, y, \cdots, y\right]=[x, y, \cdots, y]^{2}=[x, y]^{4}
$$

as required.

Theorem 3.2 Let G be a group. Then, the following are equivalent:
(i) G satisfies the law $[x, y]^{2}=[x, y, y]$
(ii) $G / Z(G)$ is an elementary abelian 2-group and G^{\prime} is an elementary abelian 2-group.

Proof By lemma 3.1 every 2 -generated subgroup of G is metabelian and for all $x, y \in G$, we have $[x, y]^{4}=1$. From the above law $[x, y]^{2}=[x, y]^{-1}[x, y]^{y}$. It follows that $[x, y]^{-1}=[x, y]^{3}=[x, y]^{y}$ and thus, $\left[x, y^{2}\right]=[x, y][x, y]^{y}=[x, y][x, y]^{-1}=1$. Thus, for all $y \in G$, we have $y^{2} \in Z(G)$. Hence, $G / Z(G)$ is an elementary abelian 2 -group. Thus, G has nilpotence class ≤ 2. Thus, $[x, y]^{2}=[x, y, y]=1$. Hence, $G^{\prime} \subseteq Z(G)$ and hence G^{\prime} has exponent 2 .

The other direction is clear.
The next result is similar to a result of Gupta [1]. It also follows from Higman's result (Theorem 2.1).

Theorem 3.3 Let G be a group which satisfies

$$
[x, y]=[x, \underbrace{y^{2}, y^{2}, \cdots, y^{2}}_{n}] n \geq 2 .
$$

Then, G must be abelian.
Proof To make the notation easier to follow we define the commutator $[x, y ; n]:=[x, \underbrace{y, y, \cdots, y}_{n}]$ for $n \geq 1$.
Using this notation our condition becomes $[x, y]=\left[x, y^{2} ; n\right]$.Replacing ' x^{\prime} by ' $\left[x, y^{2}\right]^{\prime}$ gives

$$
\left[x, y^{2}, y\right]=\left[x, y^{2} ; n+1\right] .
$$

It follows that

$$
\left[x, y^{2}\right]^{-1}\left[x, y^{2}\right]^{y}=\left[\left[x, y^{2} ; n\right], y^{2}\right]=\left[x, y, y^{2}\right] .
$$

Hence,

$$
\left([x, y][x, y]^{y}\right)^{-1}\left[x, y^{2}\right]^{y}=[x, y]^{-1}[x, y]^{y^{2}}
$$

WALLS/Turk J Math

And thus,

$$
\left([x, y]^{y}\right)^{-1}[x, y]^{-1}\left([x, y][x, y]^{y}\right)^{y}=[x, y]^{-1}[x, y]^{y^{2}}
$$

Hence,

$$
\left([x, y]^{y}\right)^{-1}[x, y]^{-1}[x, y]^{y}[x, y]^{y^{2}}=[x, y]^{-1}[x, y]^{y^{2}}
$$

And thus,

$$
\left([x, y]^{y}\right)^{-1}[x, y]^{-1}[x, y]^{y}=[x, y]^{-1}
$$

Thus, we see that

$$
[x, y] \Longleftrightarrow[x, y]^{y}
$$

and hence

$$
\left[x, y^{-1}\right]=\left([x, y]^{y^{-1}}\right)^{-1} \Longleftrightarrow[x, y]
$$

Again by Higman's result (Theorem 2.1) we must have $\langle x, y\rangle$ metabelian. Now let $y \in G^{\prime}$. Then, $[x, y]=1$, as $\left[x, y^{2}, y^{2}\right]=1$. It follows that $\langle x, y\rangle$ is nilpotent of class ≤ 2. Hence, for all $x, y \in G$ we get that $[x, y]=1$ and G is abelian as required.
A similar proof gives the following result.
Theorem 3.4 Suppose that G is a finite group and that $\phi_{1}(x, y), \phi_{2}(x, y), \cdots, \phi_{n}(x, y)$ are words in $\left\{x, y, x^{-1}, y^{-1}\right\}, n>2$ so that for all $a \in G, b \in G^{\prime}$ we have $\phi_{3}(a, b) \in G^{\prime}$. Then, if G satisfies the law

$$
[x, y]=\left[\phi_{1}(x, y), \phi_{2}(x, y), \cdots, \phi_{n}(x, y)\right]
$$

then G is abelian.
Proof First, suppose that G is metabelian and $y \in G^{\prime}$. Now for all $x \in G$, since $y \in G^{\prime}$, arguing as in the above proof we get $[x, y]=1$ and thus, G is nilpotent of class ≤ 2. It follows that for all $x, y \in G$, we have $[x, y]=1$. Hence, in this case G must be abelian.

Next assume that G is solvable and satisfies the above law. It follows that $\frac{G}{G^{\prime \prime}}$ is metabelian and satisfies the given law. Hence, $\frac{G}{G^{\prime \prime}}$ must be abelian. Thus, $G^{\prime}=G^{\prime \prime}$. As G is solvable, then $G^{\prime}=1$ and G is abelian.

Now assume that G is a minimal counter-example to the theorem. It follows that all proper subgroups of G are abelian. Thus, G must be solvable and hence abelian by the above remarks.

Note that if in the above result we had assumed that G is solvable, we could see that G is abelian without the assumption that G is finite.

Acknowledgements

The author would like to thank the referee for his valuable comments and criticisms.

References

[1] Gupta ND. Some group-laws equivalent to the commutative law. Archiv der Mathematik 1966; 17: 97-102.
[2] Higman G. Some remarks on varieties of groups. Quarterly Journal of Mathematics 1959; 10: 165-178
[3] Kappe L-C, Tomkinson MJ. Some conditions implying that an infinite group is abelian. Algebra Colloquium 1996; 3: 199-212.

WALLS/Turk J Math
[4] Moravec P. Some commutator laws equivalent to the commutative law. Communications in Algebra 2002; 30 (2): 671-691.
[5] Robinson DJS. A Course in The Theory of Group. New York, NY, USA: Springer-Verlag, 1982.

