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Abstract: Using the Krasnosel’skii’s fixed point theorem, we establish the existence and multiplicity of positive T-
periodic solutions of second-order semipositone system

{
x′′(t) + a(t)x(t) = λf(t, x(t)),
x(0) = x(T), x′(0) = x′(T),

where x = (x1, x2, · · · , xn) , f(t, x) = (f1(t, x), f2(t, x), · · · , fn(t, x)) is bounded below.
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1. Introduction
In this paper, we are concerned with the existence and multiplicity of positive T-periodic solutions of the
second-order semipositone differential equation

{
x′′(t) + a(t)x(t) = λf(t, x(t)),
x(0) = x(T), x′(0) = x′(T),

(1.1)

where λ > 0 is a parameter, a(t) = (a1(t), · · · , an(t)) , x(t) = (x1(t), · · · , xn(t)) , f(t, x) = (f1(t, x), f2(t, x), · · · ,
fn(t, x)) . We say that the differential equation

x′′ + a(t)x = λf(t, x(t))

is semipositone if a vector-valued function f may be negative and bounded from below, which means that f

satisfies the following condition:

(F0 ) f : [0,T]× Rn
+ → Rn is continuous, periodic in t with period T, and

fi(t, x) ≥ −ei(t), for (t, x) ∈ [0,T]× Rn
+,

where ei : [0,T] → R+ is continuous and ei(t) ̸≡ 0 on [0,T] .
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To the best of our knowledge, existence and multiplicity of nontrivial solutions of (1.1) have been widely
studied using the variational method [2, 15, 26], the method of upper and lower solutions [3, 4], fixed point
theorems [9, 10, 12, 16–18], alternative principle of Leray–Schauder [5] or topological degree theory [23]. In
general, in order to ensure the positivity of the solutions of the boundary value problems, one of the crucial
assumptions is that the nonlinearity f is nonnegative. We refer the readers to [7, 8, 19–21] and the references.
For the BVP (1.1), there is little literature that has referred to the existence of positive solutions when the
nonlinearity can take a negative value. In [22], Wang used a well-known fixed point theorem in a cone to
establish the existence of T-periodic solution of a class of nonautonomous second-order systems{

x′′(t) + µx(t) + V (t, x(t)) = 0,
x(0) = x(T), x′(0) = x′(T),

(1.2)

where x = (x1, x2, · · · , xn) , V (t, x) = (v1(t, x), v2(t, x), · · · , vn(t, x)) . The main result is

Theorem 1.1 [22] Assume that lim|x|→∞
vi(t,x)

|x| = 0 , i = 1, . . . , n , uniformly in t ∈ [0,T] .

(a) If µ ∈ (−∞, 0) and V (t, x) is bounded below, then (1.2) has a solution x(t) .

(b) If µ ∈ (0, ( πT )2) and V (t, x) is bounded above, then (1.2) has a solution x(t) .

However, the author finds sufficient conditions under which the semipositone BVP (1.2) has a solution,
which is not necessarily positive.

Inspired by these references, using a well-known fixed point theorem, the purpose of this paper is to study
the existence and multiplicity of positive periodic solutions of the semipositone BVP (1.1) under some suitable
assumptions, which guarantee that a positive solution of the semipositone BVP (1.1) here simply requires that
all component of the solution is positive. Compared to the results in [19–22], our work presented in this paper
has the following new features. Firstly, we find some new conditions,which differ from those in the majority
of papers as we know. Secondly, the nonlinear term f may take a negative value. Thirdly, instead of the
constant M by any continuous function e(t) on [0,T] , which has been used in [6]. Fourthly, the existence and
multiplicity of positive solutions obtained here for suitable λ > 0 .

The paper is organized as follows: in Section 2, we give some preliminaries and an appropriate transfor-
mation, which are usually used in semipositone problems such as [1, 6, 13, 14, 24, 25]; in Section 3, we give
the main results and the corresponding proof. In addition, some examples are given to illustrate the existence
results.

2. Preliminaries
Different from the ordinary boundary value problems, we cannot write the specific Green function of the more
general linear equation x′′+k(t)x = 0 . Therefore, we first consider the following second-order linear differential
equation {

x′′(t) + k(t)x(t) = h(t),
x(0) = x(T), x′(0) = x′(T),

(2.1)

where k(t) , h(t) are continuous, positive and T-periodic. In addition, k(t) satisfies the following assumption

0 < k∗ = min
t∈[0,T]

k(t) < k∗ = max
t∈[0,T]

k(t) < (
π

T )2.
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From [22], the scalar periodic boundary value problems

{
x′′(t) + k∗x(t) = h(t),
x(0) = x(T), x′(0) = x′(T)

has a unique positive solution

x(t) =

∫ T

0

G(t, s)h(s)ds,

where

G(t, s) =


sin

√
k∗(t−s)+sin

√
k∗(T−t+s)

2
√
k∗(1−cos

√
k∗t)

,

sin
√
k∗(s−t)+sin

√
k∗(T−s+t)

2
√
k∗(1−cos

√
k∗t)

.

Furthermore,

0 < m = min
0≤s,t≤T

G(t, s) < M = max
0≤s,t≤T

G(t, s).

Secondly, let

Ah(t) =

∫ T

0

G(t, s)h(s)ds,

Bx = (k∗ − k(t))x.

It is obvious that ∥A∥ = 1
k∗ and ∥B∥ ≤ (k∗ − k∗) . Then, (2.1) can be rewritten as

x′′(t) + k∗x(t) = [k∗ − k(t)]x(t) + h(t).

Namely,

x(t) = Ah(t) +A ◦Bx(t).

Since ∥A ◦B∥ ≤ 1
k∗ (k

∗ − k∗) < 1 , (2.1) has a unique positive solution

x(t) = (I −A ◦B)−1Ah(t) = Ph(t).

Finally, we show that the operator P is completely continuous, positive and it satisfies

m|h|L1 ≤ Ph(t) ≤ Mk∗

k∗
|h|L1 .

On the one hand, by the expansion of P

P = (I −A ◦B)−1A

= (I +AB + (AB)2 + · · ·+ (AB)n + · · · )A

= A+ (AB)A+ (AB)2A+ · · ·+ (AB)nA+ · · · ,
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it is clear that P is completely continuous since A is completely continuous ([22]). On the other hand, since
the operators A and B are positive, we have

m|h|L1 ≤ Ah(t) ≤ Ph(t)

= (I −A ◦B)−1Ah(t)

= (I +AB + (AB)2 + · · ·+ (AB)n + · · · )Ah(t)

= [A+ (AB)A+ (AB)2A+ · · ·+ (AB)nA+ · · · ]h(t)

≤ ∥(I −A ◦B)−1∥ · |Ah(t)|∞

≤ 1

1− ∥A ◦B∥
· |Ah(t)|∞

≤ k∗

k∗
|Ah|L1 ≤ Mk∗

k∗
|h|L1 .

Therefore, throughout this paper, we always assume that the following condition is satisfied:

(H) The function ai is continuous, positive, T-periodic and the linear equation x′′+ai(t)x = 0 has a positive
Green’s function Gi(t, s), i.e.

Gi(t, s) > 0 for all (t, s) ∈ [0,T]× [0,T].

We denote
mi = min

0≤s,t≤T
Gi(t, s), Mi = max

0≤s,t≤T
Gi(t, s), δi = mi/Mi.

Obviously, Mi > mi > 0 and 0 < δi < 1 (see [19]).

Lemma 2.1 [19] Assume that (H) and (F0) hold. Then

x′′ + a(t)x = e(t). (2.2)

has the unique solution ω(t) = (ω1(t), · · · , ωn(t)) and each component of the solution ω(t) can be expressed by

ωi(t) =

∫ T

0

Gi(t, s)ei(s)ds.

Furthermore, ωi(t) satisfies the estimates

mi

∫ T

0

ei(t)dt ≤ ωi(t) ≤ Mi

∫ T

0

ei(t)dt.

From (1.1) and (2.2), we have

d2

dt2
(x+ λω) + a(t)(x+ λω) = λ[f(t, x) + e(t)]. (2.3)

Let u = x+ λω , then we rewrite (2.3) as

u′′ + a(t)u = λ[f(t, u− λω) + e(t)]. (2.4)
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Let H(t) denote the Heaviside function of a single real variable:

H(t) =

{
1, t ≥ 0,

0, t < 0.

Lemma 2.2 Assume that (H) and (F0) hold. Then x(t) is a positive solution of (1.1) if only if u(t) is a
positive solution of the following system

u′′ + a(t)u = λf̃(t, u− λω) (2.5)

with ui(t) ≥ λωi(t) . Here

f̃(t, u− λω) = f̄(t, u, ω) + e(t),

f̄(t, u, ω) = f(t,H(u1 − λω1)(u1 − λω1), . . . , H(un − λωn)(un − λωn)).

Proof If x(t) is a positive solution of (1.1), then from the transform process, it yields that u(t) = x(t)+λω(t)

is a solution of (2.5). Since λ , ei(t) , Gi(t, s) and x(t) are nonnegative, it is clear that each component of u(t)

is positive and satisfies ui(t) ≥ λωi(t) .
On the other hand, if u(t) is a positive solution of (2.5) with ui(t) ≥ λωi(t) , then H(ui − λωi) ≡ 1 ,

which implies that

f̃(t, u− λω) = f(t, u1 − λω1, . . . , un − λωn) + e(t).

From the transform x = u− λω , we have that x(t) is a positive solution of (1.1). 2

Let E denote the Banach space
n︷ ︸︸ ︷

C[0,T]× · · · × C[0,T] with the norm

∥x∥ = max
i=1,...,n

{|xi|∞},

where |xi|∞ = maxt∈[0,T] |xi(t)| . Define a cone K ⊂ E by

K = K1 ×K2 × · · · ×Kn,

where Ki = {xi(t) ∈ C[0,T] : xi(t) ≥ δi|xi|∞} . Also, for r > 0 , define Kr and ∂Kr by

Kr = {x(t) ∈ K : ∥x∥ < r}, ∂Kr = {x(t) ∈ K : ∥x∥ = r}.

Define an operator T by T(u)(t) = (T1(u)(t), · · · ,Tn(u)(t)) , where

Ti(u)(t) = λ

∫ T

0

Gi(t, s)f̃i(s, u(s)− λω(s))ds.

Now solutions of (2.5) can be rewritten as fixed points of T in Banach space E .

Lemma 2.3 Assume that (H) and (F0) hold. Then T(K) ⊆ K and T : K → K is completely continuous.
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Proof Firstly, we show that T(K) ⊆ K .
For any u(t) ∈ K , we have

Ti(u)(t) = λ

∫ T

0

Gi(t, s)f̃i(s, u(s)− λω(s))ds

≥ λmi

∫ T

0

f̃i(s, u(s)− λω(s))ds

= λ
mi

Mi

∫ T

0

Mif̃i(s, u(s)− λω(s))ds

= λδi max
t∈[0,T]

∫ T

0

Gi(t, s)f̃i(s, u(s)− λω(s))ds,

namely, Ti(u)(t) ≥ δi|Ti(u)|∞ , which implies that

T(K) ⊆ K.

Secondly, we show that T maps bounded set into itself. Suppose that c > 0 is a constant and u ∈ Kc .
From the the continuity of ei and f , there exists a constant L such that

f̃i(t, u− λω) = fi(t,H(u1 − λω1)(u1 − λω1), . . . , H(un − λωn)(un − λωn)) + ei(t) ≤ L,

for t ∈ [0,T] , i = 1, . . . , n . Let M = λLT maxi=1,...,n{Mi} . Then, we have

|Ti(u)(t)|∞ = |λ
∫ T

0

Gi(t, s)f̃i(s, u(s)− λω(s))ds|∞

≤ λMiLT,

which implies that T(Kc) is uniformly bounded.
Thirdly, from the elementary properties of Green��s function and discussion in [19], let Γ = maxi=1,...,n{Γi} ,

where Γi = max0≤s,t≤T |∂Gi(t,s)
∂t | . For t1, t2 ∈ [0,T] , we have

|Tiu(t2)− Tiu(t1)| = |λ
∫ T

0

Gi(t2, s)f̃i(s, u(s)− λω(s))ds

−λ

∫ T

0

Gi(t1, s)f̃i(s, u(s)− λω(s))ds|

= |λ
∫ T

0

[Gi(t2, s)−Gi(t1, s)]f̃i(s, u(s)− λω(s))ds|

≤ λLΓT|t2 − t1|.

Therefore, by applying the Arzela-Ascoli theorem [11], we can find that Ti(Kc) is relatively compact, namely,
T(Kc) is relatively compact.

Finally, we claim that T : Kc → K is continuous. Assume that {un}∞n=1 ⊂ Kc which converges to
u0(t) uniformly on [0,T] . Since {(Tun)(t)}∞n=1 is uniformly bounded and equicontinuous on [0,T] , from the
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Arzela-Ascoli theorem it follows that there exists a uniformly convergent subsequence in {(Tun)(t)}∞n=1 . Let
{(Tun(m))(t)}∞m=1 be a subsequence which converges to v(t) uniformly on [0,T] . Observe that

Tiu
n(m)(t) = λ

∫ T

0

Gi(t, s)f̃i(s, u
n(m)(s)− λω(s))ds.

Furthermore, by Lebesgue��s dominated convergence theorem and letting m → ∞ , we have

vi(t) = λ

∫ T

0

Gi(t, s)f̃i(s, u
0(s)− λω(s))ds = Tiu

0(t),

namely, v(t) = Tu0(t) . This shows that each subsequence of {(Tun)(t)}∞n=1 uniformly converges to Tu0(t) .
Therefore, the sequence {(Tun)(t)}∞n=1 uniformly converges to Tu0(t) . This means that T is continuous at
u0 ∈ Kc . So, T is continuous on Kc since u0 is arbitrary. Thus, T is completely continuous. The proof is
completed. 2

Lemma 2.4 [11] Let E be a Banach space, and K ⊂ E be a cone in E . Assume that Ω1 , Ω2 are open
subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2 , and let T : K ∩ (Ω2 \ Ω1) → K be a completely continuous operator such
that either

(i) ∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥, u ∈ K ∩ ∂Ω2 ; or

(ii) ∥Tu∥ ≥ ∥u∥, u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ω2 .

Then T has a fixed point in K ∩ (Ω2 \ Ω1) .

3. Existence results
For convenience, define the height functions

Φi(ρ) = min{fi(t, x) : (t, x) ∈ [0,T]× R+ × · · · ×
i︷︸︸︷

[0, ρ]× · · · × R+}.

Ψi,j(t, ρ) = min{fi(t, x) : (x1, . . . , xj , . . . , xn) ∈ R+ × · · · ×

j︷ ︸︸ ︷
[δjρ, ρ]× · · · × R+}.

Theorem 3.1 Assume that (H) and (F0) hold. In addition, the functions fi(i = 1, . . . , n) satisfy the following
assumptions:

(F1) Φi(r) ≥ 0 , where r = maxi∈{1,...,n}
M2

i T
mi

.
(F2)

lim
xk(i)→+∞

fi(t, x1, . . . , xn)

xk(i)
= +∞, uniformly, t ∈ [0,T], xk(j),

where k(i) ∈ {1, . . . , n} and k(i) ̸= k(j) for i ̸= j .
Then there exists a λ∗ > 0 such that (1.1) has at least one positive solution for 0 < λ < λ∗ .

Remark 3.2 (1) The index k(i) is related to the index i of fi ;

(2) The index k(i) may be equal to the index i of fi or not.
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Proof of Theorem 3.1. Let

Ni = sup{fi(t, x) + e(t) : t ∈ [0,T], 0 ≤ x1, . . . , xn ≤ r}.

For any u ∈ ∂Kr , it is clear that

0 ≤ H(ui(t)− λωi(t))(ui(t)− λωi(t)) ≤ r.

Furthermore, we get

Ti(u)(t) = λ

∫ T

0

Gi(t, s)f̃i(s, u(s)− λω(s))ds

≤ λNiMiT

≤ MiT
1

δi
=

M2
i T
mi

≤ r,

for 0 < λ < λ∗ = mini∈{1,...,n}

{
1
Ni

, T∫ T
0

ei(t)dt

}
.

Thus, we have

∥T(u)∥ = max
i∈{1,...,n}

|Ti(u)|∞ < r = ∥u∥, for u ∈ ∂Kr, 0 < λ < λ∗.

Since limxk(i)→+∞
fi(t,x)
xk(i)

= +∞ , then there exist two positive constants L and X such that

fi(t, x) ≥ Lxk(i), ∀ xk(i) > X, uniformly, t ∈ [0,T], xk(j) ∈ R+, j ̸= i,

where L satisfies LλT
2 mini∈{1,...,n} miδk(i) > 1 .

Take

R = 1 + r + 2 max
i∈{1,...,n}

{
λ
M2

i

mi

∫ T

0

ei(s)ds,
X

δi

}
.

For any u ∈ ∂KR , by the definition of ∥u∥ , there exists an index k(i) such that ∥u∥ = |uk(i)|∞ = R . Since

λωk(i)(t) = λ

∫ T

0

Gk(i)(t, s)ek(i)(s)ds

≤ λMk(i)

∫ T

0

ek(i)(s)ds

= λMk(i)

∫ T

0

ek(i)(s)ds
Mk(i)

mk(i)
δk(i)

≤ λ

∫ T

0

ek(i)(s)ds
M2

k(i)

mk(i)

uk(i)

R
,
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we have

uk(i) − λωk(i) ≥ uk(i) − λ

∫ T

0

ek(i)(s)ds
M2

k(i)

mk(i)

uk(i)

R

= (1− λ

∫ T

0

ek(i)(s)ds
M2

k(i)

mk(i)

1

R
)uk(i)

≥ 1

2
uk(i) ≥

1

2
δk(i)|uk(i)|∞ =

1

2
δk(i)R

> X.

Furthermore, for any u ∈ ∂KR with ∥u∥ = |uk(i)|∞ = R , we have

Ti(u)(t) = λ

∫ T

0

Gi(t, s)f̃i(s, u(s)− λω(s))ds

≥ λmiLT[uk(i) − λωk(i)]

≥ λmiLT1

2
δk(i)R > R = ∥u∥.

Thus, we have
∥T(u)∥ = max

i∈{1,...,n}
|Ti(u)|∞ > R = ∥u∥, for u ∈ ∂KR.

Therefore, by Lemma 2.4, T has at least one fixed point u = (u1, · · · , un) with r < ∥u∥ < R for
0 < λ < λ∗ .

Finally, we verify that u(t) ≥ λω(t) , namely, ui(t) ≥ λωi(t) .
Without loss of generality, if r < ∥u∥ = |u1|∞ < R , we get

u1(t) ≥ δ1|u1|∞ > δ1
M2

1 T
m1

> λ
m1

M1

∫ T

0

e1(s)ds
M2

1

m1
= λ

∫ T

0

M1e1(s)ds

> λ

∫ T

0

G1(t, s)e1(s)ds = λω1(t).

For i ̸= 1 , there are two cases :(I) |ui|∞ > r ; (II) |ui|∞ < r.

Case (I): Since |ui|∞ > r , we also have

ui(t) ≥ δi|ui|∞ > δi
M2

i T
mi

> λ
mi

Mi

∫ T

0

ei(s)ds
M2

i

mi
= λ

∫ T

0

Miei(s)ds

> λ

∫ T

0

Gi(t, s)ei(s)ds = λωi(t).
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Case (II): Let

Ω1i = {t ∈ [0,T] : ui(t) ≥ λωi(t)}, Ω2i = {t ∈ [0,T] : ui(t) < λωi(t)}.

It is clear that Ω11 = [0,T] . Observe that

ui(t) = λ

∫ T

0

Gi(t, s)f̃i(t, u(s)− λω(s))ds

= λ

∫ T

0

Gi(t, s)fi(s, u1 − λω1,H(u2 − λω2)(u2 − λω2), . . . , H(un − λωn)(un − λωn))ds

+λ

∫ T

0

Gi(t, s)ei(s)ds

= λ

[∫
Ω11∩Ω1i

Gi(t, s)f̄i(s, u, ω)ds+

∫
Ω11∩Ω2i

Gi(t, s)f̄i(s, u, ω)ds

]
(For n=2,i=2)

+λ

∫ T

0

Gi(t, s)ei(s)ds

= λ

[∫
Ω11∩Ω1i∩Ω12

Gi(t, s)f̄i(s, u, ω)ds+

∫
Ω11∩Ω1i∩Ω22

Gi(t, s)f̄i(s, u, ω)ds

+

∫
Ω11∩Ω2i∩Ω12

Gi(t, s)f̄i(s, u, ω)ds+

∫
Ω11∩Ω2i∩Ω22

Gi(t, s)f̄i(s, u, ω)ds

]
(For n=3,i=3)

+λ

∫ T

0

Gi(t, s)ei(s)ds

= λ

[∫
Ω11∩Ω1i∩Ω12∩Ω13

Gi(t, s)f̄i(s, u, ω)ds+

∫
Ω11∩Ω1i∩Ω12∩Ω23

Gi(t, s)f̄i(s, u, ω)ds

+

∫
Ω11∩Ω1i∩Ω22∩Ω13

Gi(t, s)f̄i(s, u, ω)ds+

∫
Ω11∩Ω1i∩Ω22∩Ω23

Gi(t, s)f̄i(s, u, ω)ds

+

∫
Ω11∩Ω2i∩Ω12∩Ω13

Gi(t, s)f̄i(s, u, ω)ds+

∫
Ω11∩Ω2i∩Ω12∩Ω23

Gi(t, s)f̄i(s, u, ω)ds

+

∫
Ω11∩Ω2i∩Ω22∩Ω13

Gi(t, s)f̄i(s, u, ω)ds+

∫
Ω11∩Ω2i∩Ω22∩Ω23

Gi(t, s)f̄i(s, u, ω)ds

]
(For n=4,i=4)

+λ

∫ T

0

Gi(t, s)ei(s)ds.

For n = 4, i = 3 , The decomposition [0,T] is

Ω11 ∩ Ω13 ∩ Ω12 ∩ Ω14, Ω11 ∩ Ω13 ∩ Ω12 ∩ Ω24,

Ω11 ∩ Ω13 ∩ Ω22 ∩ Ω14, Ω11 ∩ Ω13 ∩ Ω22 ∩ Ω24,

Ω11 ∩ Ω23 ∩ Ω12 ∩ Ω14, Ω11 ∩ Ω23 ∩ Ω12 ∩ Ω24,

1790



WANG and YANG/Turk J Math

Ω11 ∩ Ω23 ∩ Ω22 ∩ Ω14, Ω11 ∩ Ω23 ∩ Ω22 ∩ Ω24.

As the same decomposition rule, we have

ui(t) = λ[

∫
Ωi

1

Gi(t, s)f̄i(s, u, ω)ds+ . . .+

∫
Ωi

2n−1

Gi(t, s)f̄i(s, u, ω)ds]

+λ

∫ T

0

Gi(t, s)ei(s)ds,

where Ωi
j = (j = 1, . . . , 2n−1) denote the decomposition chain with

∑2n−1

j=1 Ωi
j = [0,T] . Furthermore, (F1) can

yield
∫
Ωi

j
Gi(t, s)f̄i(s, u, ω)ds > 0(j = 1, 2, . . . , 2n−1) , which implies that

ui(t) > λ

∫ T

0

Gi(t, s)ei(s)ds = λωi(t).

Therefore, (1.1) has at least one positive solution x = (x1, . . . , xn) = (u1 − λω1, . . . , un − λωn) . 2

Remark 3.3 The structure of Ωi
j can be expressed by

Ωi
j =

{
Ω11 ∩ Ω1i ∩ Ωk2l2 ∩ Ωk3l3 ∩ · · ·Ωki−1li−1

∩ Ωki+1li+1
∩ · · ·Ωknln , or

Ω11 ∩ Ω2i ∩ Ωk2l2 ∩ Ωk3l3 ∩ · · ·Ωki−1li−1
∩ Ωki+1li+1

∩ · · ·Ωknln ,

where kp = {1, 2} and lp = p , for p = 2, 3 . . . , i− 1, i+ 1, . . . , n .

Theorem 3.4 Assume that (H) and (F0) hold. In addition, the functions fi(i = 1, . . . , n) satisfy the following
assumptions:

(F3) there exists a R > maxi∈{1,...,n}
M3

i T
m2

i
such that

Φi(R) ≥ 0

and
max

i=1,...,n

R

miδi
∫ T
0
Ψi,j(t, R)dt

< min
i=1,...,n

{
1,

1

Ni
,

T∫ T
0
ei(t)dt

}
.

(F4)

lim
xk(i)→+∞

fi(t, x)

xk(i)
= 0, uniformly, t ∈ [0,T], xk(j).

Then there exist λ∗ , λ∗ such that (1.1) has at least two positive solutions for λ∗ < λ < λ∗ .

Proof From the assumption (F3) , it is clear that R > r = maxi∈{1,...,n}
M2

i T
mi

. By the proof of Theorem 3.1,
we have

∥T(u)∥ = max
i∈{1,...,n}

|Ti(u)|∞ < r = ∥u∥, for u ∈ ∂Kr, 0 < λ < λ∗,

where λ∗ = mini∈{1,...,n}

{
1
Ni

, T∫ T
0

ei(t)dt

}
.
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For any u ∈ ∂KR̄ , by the definition of ∥u∥ , there exists an index j0 such that ∥u∥ = |uj0 |∞ = R̄ . From
the assumption (F3) , we have

Ti0(u)(t) = λ

∫ T

0

Gi0(t, s)f̃i0(s, u(s)− λω(s))ds

≥ λmi0

∫ T

0

Ψi0,j0(t, R̄)dt

= λ
mi0

∫ T
0
Ψi0,j0(t, R̄)dt

R̄
R̄

> R̄ = ∥u∥,

for λ > λ∗ = maxi=1,...,n
R

mi

∫ T
0

Ψi,j(t,R)dt
. By (F3) and λ∗ , it is easy to see that λ∗ < λ∗ .

By the definition of limxk(i)→+∞
fi(t,x)
xk(i)

= 0 , then there exist two positive constants ϵ > 0 and X̃ such

that

fi(t, x) ≤ ϵxk(i), ∀ xk(i) > X̃, uniformly, t ∈ [0,T], xk(j) ∈ R+, j ̸= i,

where ϵ satisfies ϵλT maxi=1,...,n{Mi, λMi|ωk(i)|∞} < 1
2 .

Take

R = R̄+ 2 max
i∈{1,...,n}

{
λ
M2

i

mi

∫ T

0

ei(s)ds,
X

δi

}
.

For any u ∈ ∂KR , by the definition of ∥u∥ , there exists an index k(i) such that ∥u∥ = |uk(i)|∞ = R . Since

λωk(i)(t) = λ

∫ T

0

Gk(i)(t, s)ek(i)(s)ds

≤ λMk(i)

∫ T

0

ek(i)(s)ds

= λMk(i)

∫ T

0

ek(i)(s)ds
Mk(i)

mk(i)
δk(i)

≤ λ

∫ T

0

ek(i)(s)ds
M2

k(i)

mk(i)

uk(i)

R
,

we have

uk(i) − λωk(i) ≥ uk(i) − λ

∫ T

0

ek(i)(s)ds
M2

k(i)

mk(i)

uk(i)

R

= (1− λ

∫ T

0

ek(i)(s)ds
M2

k(i)

mk(i)

1

R
)uk(i)

≥ 1

2
uk(i) ≥

1

2
δk(i)|uk(i)|∞ =

1

2
δk(i)R

> X.
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Furthermore, for any u ∈ ∂KR with ∥u∥ = |uk(i)|∞ = R , we have

Ti(u)(t) = λ

∫ T

0

Gi(t, s)f̃i(s, u(s)− λω(s))ds

≤ λMiϵT[uk(i) − λωk(i)]

≤ ϵλTMi[R+ λ|ωk(i)|∞] < R = ∥u∥.

So, we have
∥T(u)∥ = max

i∈{1,...,n}
|Ti(u)|∞ < R = ∥u∥, for u ∈ ∂KR.

Therefore, by Lemma 2.4, T has at least one fixed point u1 ∈ K ∩ (ΩR̄ \ Ωr) and u2 ∈ K ∩ (ΩR \ ΩR̄)

for λ∗ < λ < λ∗ . As the similar proof of theorem 3.1, we also verify that ui(t) ≥ λω(t) . 2

Corollary 3.5 Assume that (H) , (F0) , (F1) , and (F4) hold. In addition, the functions fi(i = 1, . . . , n) satisfy
the following assumptions:

(F5) there exists a R > maxi∈{1,...,n}
M3

i T
m2

i
such that

max
i=1,...,n

R

miδi
∫ T
0
Ψi,j(t, R)dt

< min
i=1,...,n

{
1,

1

Ni
,

T∫ T
0
ei(t)dt

}
.

Then there exist λ∗ , λ∗ such that (1.1) has at least two solutions for λ∗ < λ < λ∗ , one is positive, the
other is not necessarily positive.

4. Examples
Now we give two examples to illustrate our main results.

Example 4.1 Let us consider the following system
x′′
1(t) + a(t)x1(t) = λ[cos2( m

4M2x1) + x3
2 + x2

3 − 1
2 sin2 t],

x′′
2(t) + a(t)x2(t) = λ[x

3
2
1 + cot2( m

8M2x2) + x3 − 1
6 sin2 t cos4 t],

x′′
3(t) + a(t)x3(t) = λ[x

3
2
1 ++x3

2 + cos2( m
16M2x3)− 1

3 sin2 2t],
x(0) = x(π), x′(0) = x′(π).

(4.1)

Let

e1(t) = sin2 t, e2(t) =
1

3
sin2 t cos4 t, e3(t) =

1

3
sin2 2t.

It is obvious that (F0) holds. Since r = maxi∈{1,2,3}
M2

i T
mi

= M2π
m , we have m

4M2x1 ∈ [0, π
4 ] . Furthermore, we

get f1(t, x1, x2, x3) = cos2( m
4M2x1) + x3

2 + x2
3 − 1

2 sin2 t ≥ 0 , for (t, x1, x2, x3) ∈ [0, π]× [0, r]×R+ ×R+ . Thus,
f1 satisfies (F1) . In the similar way, we can also verify that f2 and f3 satisfy (F1) . Finally, it is easy to
verify that

lim
x3→+∞

f1(t, x1, x2, x3)

x3
= lim

x3→+∞

cos2( m
4M2x1) + x3

2 + x2
3 − 1

2 sin2 t

x3

= +∞, uniformly, t ∈ [0,T], x1, x2 ∈ R+,
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lim
x1→+∞

f2(t, x1, x2, x3)

x1
= lim

x1→+∞

x
3
2
1 + cot2( m

8M2x2) + x3 − 1
6 sin2 t cos4 t

x1

= +∞, uniformly, t ∈ [0,T], x2, x3 ∈ R+

and

lim
x2→+∞

f3(t, x1, x2, x3)

x2
= lim

x2→+∞

x
3
2
1 + x3

2 + cos2( m
16M2x3)− 1

3 sin2 2t

x2

= +∞, uniformly, t ∈ [0,T], x1, x3 ∈ R+.

Therefore, by Theorem 3.1, there exists a λ∗ > 0 such that (3.1) has at least one positive solution for
0 < λ < λ∗ .

Example 4.2 Let us consider the following system
x′′
1(t) + a(t)x1(t) = λ[cos2( m2

4M3x1) + x3
2 + x

2
5
3 − 1

3 cos2 t],
x′′
2(t) + a(t)x2(t) = λ[x

1
2
1 + cot2( m2

8M3x2) + x2
3 − 1

6 sin2 t],

x′′
3(t) + a(t)x3(t) = λ[x

4
3
1 ++x

2
3
2 + cos2( m2

16M3x3)− 1
8 sin2 2t],

x(0) = x(π), x′(0) = x′(π).

(4.2)

Let

e1(t) = cos2 t, e2(t) =
1

3
sin2 t, e3(t) =

1

3
sin2 2t.

It is obvious that (F0) holds. Choose R̄ = M3π
m2 > r . Then it is easy to verify that Φ(R̄) ≥ 0 . Since

Ψ1,2(t, R̄) = min{f1(t, x) : (x1, x2, x3) ∈ R+ × [δ2R̄, R̄]× R+}

= (δ2R̄
3)− 1

3
cos2 t,

for sufficiently large R̄ , we have

R

m1δ1
∫ T
0
(δ2R̄)3 − 1

3 cos2 tdt
< min

i=1,2,3

{
1,

1

Ni
,

T∫ T
0
ei(t)dt

}
.

In the similar way, we conclude that (F3) holds.
Finally, it is easy to verify that

lim
x3→+∞

f1(t, x1, x2, x3)

x3
= lim

x3→+∞

cos2( m2

4M3x1) + x3
2 + x

2
5
3 − 1

3 cos2 t
x3

= 0, uniformly, t ∈ [0,T], x1, x2 ∈ R+,

lim
x1→+∞

f2(t, x1, x2, x3)

x1
= lim

x1→+∞

x
1
2
1 + cot2( m2

8M3x2) + x2
3 − 1

6 sin2 t

x1

= 0, uniformly, t ∈ [0,T], x2, x3 ∈ R+
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and

lim
x2→+∞

f3(t, x1, x2, x3)

x2
= lim

x2→+∞

x
4
3
1 ++x

2
3
2 + cos2( m2

16M3x3)− 1
8 sin2 2t

x2

= 0, uniformly, t ∈ [0,T], x1, x3 ∈ R+.

Therefore, by Theorem 3.2, (1.1) has at least two positive solutions for λ∗ < λ < λ∗ .
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