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Abstract: In this note, we consider a thin-film equation including a diffusion term, a fourth order term and a nonlocal
source term under the periodic boundary conditions. In particular, a finite time blow-up result is established for the
case of positive initial energy provided that

π2

a2
≤ 2

p− 1
,

where a is the length of the interval and p > 1 is the power of nonlinear force term. Also upper and lower blow-up
times are estimated.
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1. Introduction
In this note we consider the following initial and periodic boundary value problem :

ut − uxx + uxxxx = |u|p−1u− 1

a

∫ a

0

|u|p−1u dx, x ∈ R, t > 0, (1.1)

u(x, t) = u(x+ a, t), for all x ∈ R, and t > 0, (1.2)

u(x, 0) = u0(x) x ∈ R, (1.3)

where p > 1, u0 ∈ Ḣ2
per(Ω), Ω = (0, a) and

∫ a

0

u0(x)dx = 0 with u0 ̸≡ 0 . The novelty in the problem above is

the existence of the diffusion term and the periodic boundary conditions which are natural boundary conditions
for this type models [9].

The following general fourth-order reaction diffusion equation

ut +A1∆u+A2∆
2u+A3∇ · (|∇u|2∇u) +A4∆|∇u|2 = g(x, t) + η(x, t), (1.4)

arises in theories such as the thin film theory, lubrication theory, phase transitions etc. (see [12]). In (1.4), u(x, t)
and A1∆u denote the height of a film in epitaxial growth and the diffusion due to evaporation condensation,
respectively. The terms A2∆

2u and A3∇·(|∇u|2∇u) are the capilarity-driven surface diffusion and the hopping
∗Correspondence: mpolat@yeditepe.edu.tr
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of atoms, respectively. The term A4∆|∇u|2 describes motion of an atom to a neighbouring kink. The functions
g(x, t) and η(x, t) represent the mean deposition flux, and some Gaussian noise, respectively. For a detailed
description of this model we refer the readers to [9].

In [12], Qu and Zhou considered 1D form of the equation in (1.4) and derived a threshold result of
global existence and nonexistence of solutions when A1 = A3 = A4 = 0 . In this work, the flux term is the
nonlocal-source term

g(x, t) = |u|p−1v − 1

a

∫ a

0

|u|p−1u

and boundary conditions are

ux(0, t) = ux(a, t) = 0, uxxx(0, t) = uxxx(a, t) = 0.

In [7], using potential well theory, Zhou established a blow-up result for the same problem in [12] assuming
that the initial energy is positive. Also, he derived an upper bound for the blow-up time. Existence of blow up
solutions is a long standing topic in the study of nonlinear models of partial differential equations. Interested
readers may refer to some or all of the references [1, 3–6, 8, 9, 13, 14]. In this work, using the potential well
method the existence of finite time blow up solutions will be studied under the assumption 0 < J(u0) < Em

and 0 < I(u0) where

J(u) =
1

2
∥ux∥2 +

1

2
∥uxx∥2 −

1

p+ 1
∥u∥p+1

p+1, (1.5)

I(u) = ∥ux∥2 + ∥uxx∥2 − ∥u∥p+1
p+1, (1.6)

and Em is the potential well depth given below in (1.8). The existence of blow-up solutions and lower bounds
for their blow-up times will be estimated. By the zero average of initial function from (1.1), we obtain that
d
dt

∫ a

0
u dx = 0 .

Now we present some notations and mathematical tools which we shall need:

Let us denote the L2(Ω) -inner product and the L2(Ω) -norm by (u, v) =
∫ a

0
u(x)v(x) dx by ∥ · ∥ ,

respectively. Let Ḣ2
per(Ω) :=

{
u ∈ H2

per(Ω) :

∫
Ω

u dx = 0

}
. The pair

(
Ḣ2

per(Ω), ∥ · ∥Ḣ2
per(Ω)

)
is a Hilbert space

with the inner product and the norm (u, v)Ḣ2
per(Ω) =

∫ a

0
uxvx dx+

∫ a

0
uxxvxx dx , ∥u∥2

Ḣ2
per(Ω)

:= ∥ux∥2+∥uxx∥2 ,

respectively.

By the Sobolev embedding theorem, the inclusion Ḣ1
per(Ω) ↪→ Lp+1(Ω) is continuous, so there exists an

optimal embedding constant B such that:

∥u∥p+1 ≤ B∥ux∥. (1.7)

In the rest of this text, we shall use B as the optimal embedding constant. Define the function

g(α) :=
1

2

(
a2 + π2

a2

)
α2 − 1

p+ 1
(Bα)p+1.
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It is obvious that g(α) has a critical point at

α1 =

[
a2 + π2

a2

] 1
p−1

B− p+1
p−1 ,

and attains its maximum value at this point as

Em :=
p− 1

2(p+ 1)

[
a2 + π2

a2

] p+1
p−1

B
−2(p+1)

p−1 =

(
a2 + π2

a2

)
p− 1

2(p+ 1)
α2
1, (1.8)

because g(α) is increasing on (0, α1) and is decreasing on (α1,∞) with lim
α→∞

g(α) = −∞ .

The rest of this note is organized as follows: Section 2 is devoted to a local existence result and a regularity
theorem. In Section 3 a blow-up result is established. In Section 4 a lower blow-up time is estimated.

2. Local Existence
Definition 2.1 A function u(x, t) is called a weak solution of (1.1) if

u ∈ L∞(0, T, Ḣ2
per(Ω)) and ut ∈ L2(0, T, L2(Ω))

and satisfies ∫ t

0

∫
Ω

[
utϕ+ uxϕx + uxxϕxx −

(
|u|p−1u−

∫
Ω

|u|p−1u

)
ϕ

]
dxds = 0, (2.1)

for all ϕ ∈ Ḣ2
per(Ω) .

Now we give the following existence result for weak solutions and its proof:

Theorem 2.2 Assume that p > 1 , u0 ∈ Ḣ2
per(Ω) , and I(u0) > 0 then the problems (1.1)-(1.3) has a unique

local solution u(x, t) with u ∈ L∞([0, T ]; Ḣ2
per(Ω)) and u′ ∈ L∞([0, T ];L2(Ω)) .

Proof Let {ωn}n∈N be the set of eigenfunctions of the problem

−uxx = λu, u(x+ a) = u(x).

The eigenvalues of this has the property λn ≤ λn+1, for all n ∈ N , and lim→∞ λn = ∞ . The eigenfunctions
are orthogonal in the spaces Ḣ2

per(Ω) , Ḣ1
per(Ω) , and L2(Ω) . We normalize the eigenfunctions in L2(Ω) :

(ωi, ωj) = δij .

We proceed by constructing approximate solutions um :=

m∑
i=1

gim(t)ωi(x)

satisfying
(u̇m, ωj) + (umxx, ωjxx) + (umx, ωjx) = (f(um), ωj), (2.2)

and

um(x, 0) = u0m(x) =

m∑
i=1

(u0, ωi)ωi, (2.3)
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where f(um) = |um|p−1um − 1

a

∫ a

0

|um|p−1um dx . The problem (2.2)–(2.3) is equivalent to the following initial

value problem of a system of first order ordinary differential equations for {gjm(t)}mj=1 :

g′jm(t) = (λ2
j + λj)gjm(t) + fjm(t), gjm(0) = (u0, wj). (2.4)

For p > 1 , the function fjm(t) is a continuously differentiable function of gjm . Thus, the problem (2.4) has a
unique local solution gjm(t) on [0, T1] for j = 1, 2, · · · ,m .

Now we multiply (2.2) by g′jm(t) and sum from 1 to m

∥u′
m(t)∥2 + d

dt

[
1

2
∥umxx∥2 +

1

2
∥umx∥2 −

1

p+ 1
|um|p+1

p+1

]
= 0. (2.5)

Integrating from 0 to t we obtain ∫ t

0

∥u′
m(τ)∥2 dτ + J(um) = J(u0m). (2.6)

By the convergence of um(x, 0) → u0(x) in Ḣ2
per(Ω) , we get J(um(x, 0)) → J(u0) < d . Then for sufficiently

large m , we have ∫ t

0

∥u′
m(τ)∥2 dτ + J(um) < d

for 0 ≤ t ≤ T1 . By the assumption I(u0) > 0 , I(um(t)) is positive on some interval [0, T2] . Let T be the
minimum of T1 and T2 . By

J(um) =
p− 1

2(p+ 1)

(
∥umxx∥2 + ∥mmx∥2

)
+

1

p+ 1
I(um),

for sufficiently large m and any t ∈ [0, T ] , we obtain∫ t

0

∥u′
m(τ)∥2 dτ +

p− 1

2(p+ 1)
∥umxx∥2 < d.

Hence, we obtain the following a priori estimates

∫ t

0
∥u′

m(τ)∥2 dτ < d, for t ∈ [0, T ],

sup
[0,T ]

∥u′
m(t)∥2 < d,

∥umxx∥2 < ( 2(p+1)
p−1 d)

1
2 , for t ∈ [0, T ],

∥um∥pp+1 ≤ Bp∥umxx∥p < Bp( 2(p+1)
p−1 d)

p
2 , for t ∈ [0, T ].

Therefore, the sequence {um} has a subsequence, which is denoted by itself has the following convergence
properties:

(∗)



u′
m

w→ u′, in L2
(
[0, T ];L2(Ω)

)
,

u′
m

w∗→ u′, in L∞([0, T ];L2(Ω)),

um
w∗→ u, in L∞([0, T ]; Ḣ2

per(Ω)),

um
st→ u, in C([0, T ]; Ḣ1

per(Ω)),

|um|p−1um
w∗→ |u|p−1u, in L∞ (

[0, T ];L2(Ω)
)
,

Hence, the problem admits a unique local weak solution on [0, T ] . 2

1800



POLAT/Turk J Math

Now we adapt the following regularity theorem for the smoothness of weak solutions from [2](Chapter
6.3, Theorem 4):

Theorem 2.3 Suppose f ∈ L2(Ω) and and the boundary ∂Ω is C2 and u ∈ Ḣ1
per(Ω) is a weak solution of the

elliptic boundary value problem {
−uxx = f in (0, a)

u(x) = u(x+ a)

Then u ∈ Ḣ2
per(Ω) and ∥u∥2

Ḣ2
per(Ω)

≤ C(∥f∥2 + ∥u∥2
Ḣ1

per(Ω)
) , where C depends on Ω .

Theorem 2.4 Let u0 ∈ Ḣ2
per(Ω), f ∈ L2([0, T ];L2(Ω)) and u ∈ L∞([0, T ]; Ḣ2

per(Ω)) be a weak solution of

(1.1)-(1.3). Then u ∈ Ḣ4
per(Ω) .

Proof For a.e t we have the identity

(u′, v) + (uxxxx, v)− (uxx, v) = (f, v) for each v ∈ Ḣ2
per(Ω).

We rewrite (uxxxx, v) = (h, v) for h = f + uxx − u′ for a.e. t in [0, T ] . By (∗) h ∈ L2([0, T ];L2(Ω)) and hence
u ∈ Ḣ4

per(Ω) follows from the previous theorem. 2

3. main result
For the establishment of blow-up solution and an upper bound for the blow-up time we have the following result:

Theorem 3.1 Assume that 0 < J(u0) < Em and ∥u0x∥ > α1 , then the solution u(x, t) of (1.1)-(1.3) blows up
at a finite time

T∗ ≤ Tmax =
2
(
∥u0∥2 + ∥u0x∥2

)− p−1
2

C(p+ 1)
,

where C = C1/C2 with

C1 =
p− 1

p+ 1
[1− (

α1

α2
)p+1] and C2 = (2−

p+1
2 )(a

p−1
2 )

and Tmax is the an upper bound for the blow up time.

First we introduce the following lemmata which are analogous to the ones in [7] and are necessary for
the proof of this theorem.

Lemma 3.2 The potential energy functional functional J(u)(t) given in (1.5) is nonincreasing in t because of
J ′(u(t)) = −∥ut∥2 ≤ 0 and

J(u) = J(u0)−
∫ t

0

∥us∥2 ds.

This lemma is a corollary of Theorem 2.2. However, we shall include the proof of the following lemma because
its use differs slightly in our case:
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Lemma 3.3 Assume that the axioms of Theorem 3.1 hold. Then there exists a positive constant α2 > α1 such
that

∥ux(., t)∥ ≥ α2, for all t ≥ 0, (3.1)

and
∥ux(., t)∥p+1 ≥ Bα2, for all t ≥ 0. (3.2)

Proof Let α = ∥ux∥ . Using the Wirtinger’s inequality and Sobolev imbedding theorem we deduce that

J(u) =
1

2
∥ux∥2 +

1

2
∥uxx∥2 −

1

p+ 1
∥u∥p+1

p+1

≥ 1

2

(
a2 + π2

a2

)
∥ux∥2 −

1

p+ 1
(B∥u∥)p+1

p+1 (3.3)

=
1

2

(
a2 + π2

a2

)
α2 − 1

p+ 1
(Bα)

p+1

=: g(α).

Since J(u0) < Em , there exists α2 > α1 > 0 such that J(u0) = g(α2) . Let α0 = ∥u0x∥ > α1 . By (3.3),
we have g(α0) ≤ J(u0) = g(α2) . Since α0, α2 ≥ α1 , we obtain α0 ≥ α2 . Hence, (3.1) is true for t = 0 .

To prove that (3.1) is true for t > 0 we assume that (3.1) is not true for some t0 . Using the continuity
of ∥ux(., t)∥ , which follows from (∗) , and α1 < α2 we may choose t0 so that α1 < ∥ux(., t0)∥ < α2 . Then from
(3.3) it follows that

J(u0) = g(α2) < g(∥ux(., t0)∥) ≤ J(u)(t0)

which contradicts the fact that J(u)(t) is nonincreasing.
From Lemma 3.2 it follows that J(u0) ≥ J(u) . When this is combined with (3.3) we find

1

p+ 1
∥u∥p+1

p+1 ≥ 1

2
∥ux∥2 +

1

2
∥uxx∥2 − J(u0)

≥ 1

2

(
a2 + π2

a2

)
α2
2 − J(u0)

=
1

2

(
a2 + π2

a2

)
α2
2 − g(α2) (3.4)

=
1

p+ 1
(Bα2)

p+1.

Hence, (3.2) follows. 2

Lemma 3.4 Under the assumptions of Theorem 3.4 we have

α2

α1
≥

[
(p+ 1)

(
a2 + π2

2a2
− J(u0)

α2
1

)] 1
p−1

> 1 +
π2

a2
. (3.5)
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Proof Let β = α2

α1
> 1 . Now we have

J(u0) = g(α2) = g(α1β) = (α1β)
2

[
a2 + π2

a2
− 1

p+ 1
Bp+1(βα1)

p−1

]

= (α1β)
2

(
a2 + π2

2a2
− 1

p+ 1
βp−1

)
. (3.6)

Dividing both sides the previous equality by (α1β)
2 , we obtain

(
a2 + π2

2a2
− 1

p+ 1
βp−1

)
=

J(u0)

(βα1)

2

<
J(u0)

α2
1

.

By this inequality, we have

(p+ 1)
1

p−1

[
a2 + π2

2a2
− J(u0)

α2
1

] 1
p−1

≤ β =
α2

α1
.

Since J(u0) < Em =
(

a2+π2

a2

)
p−1

2(p+1)α
2
1 ,

J(u0)

α2
1

≤ a2 + π2

2a2
p− 1

p+ 1
.

So

(p+ 1)

[
a2 + π2

2a2

](
1− p− 1

p+ 1

)
=

a2 + π2

a2
.

2

Lemma 3.5 Let H(u) = Em − J(u) . Under the assumptions of Theorem 3.1 the functions H(u) enjoys the
property

0 < H(u0) ≤ H(u) ≤ 1

p+ 1
∥u∥p+1

p+1, (3.7)

provided that π2

a2
≤ 2

p− 1
.

Proof Since J(u) is nonincreasing in t , H(u)(t) is nondecreasing in t . By the assumption J(u0) < Em , we
have

0 < Em − J(u0) = H(u0) ≤ H(u). (3.8)
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Now, for α2 > α1 and by the help of (3.1), we derive

H(u) = Em − 1

2
∥ux∥2 −

1

2
∥uxx∥2 +

1

p+ 1
∥u∥p+1

p+1

≤ Em − 1

2

(
a2 + π2

a2

)
∥ux∥2 +

1

p+ 1
∥u∥p+1

p+1

≤ Em − 1

2
α2
1 +

1

p+ 1
∥u∥p+1

p+1

=

(
a2 + π2

a2

)
p− 1

2(p+ 1)
α2
1 −

1

2
α2
1 +

1

p+ 1
∥u∥p+1

p+1 (3.9)

=

((
a2 + π2

a2

)
p− 1

2(p+ 1)
− 1

2

)
α2
1 +

1

p+ 1
∥u∥p+1

p+1

≤ 1

p+ 1
∥u∥p+1

p+1.

Since π2

a2
≤ 2

p− 1
, the inequality (3.7) follows. 2

Now we can prove our main result:

Proof Define ϕ(t) = 1
2

∫ a

0
u2 dx . Then

ϕ′(t) = −∥ux∥2 − ∥uxx∥2 + ∥u∥p+1
p+1

= −2J(u)− 2

p+ 1
∥u∥p+1

p+1 + ∥u∥p+1
p+1

= 2H(u)− 2Em +
p− 1

p+ 1
∥u∥p+1

p+1. (3.10)

Now, using

Em :=
p− 1

2(p+ 1)

[
a2 + π2

a2

] p+1
p−1

B
−2(p+1)

p−1

and (3.2) we have

2Em =
p− 1

p+ 1

[
a2 + π2

a2

] p+1
p−1

B−2 p+1
p−1 =

p− 1

p+ 1

[
a2 + π2

a2

] p+1
p−1

(BB− p+1
p−1 )p+1

=
p− 1

p+ 1
(Bα1)

p+1 =
p− 1

p+ 1

(
α1

α2

)p+1

(Bα2)
p+1 (3.11)

≤ p− 1

p+ 1

(
α1

α2

)p+1

∥u∥p+1
p+1.

Hence, we obtain

ϕ′(t) ≥ C1∥u∥p+1
p+1 + 2H(u), (3.12)
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where

C1 =
p− 1

p+ 1

[
1− (

α1

α2
)p+1

]
,

is a positive number. On the other hand, by Hölder’s inequality, we have

ϕ
p+1
2 (t) ≥ C2∥u∥p+1

p+1, (3.13)

where C2 = (2−
p+1
2 )(a

p−1
2 ) . Combining (3.12) and (3.13), we obtain

ϕ′(t) ≥ Cϕ
p+1
2 (t),

where C = C1/C2 , and

ϕ(t) ≥
(
ϕ− p−1

2 (0)− p− 1

2
Ct

)− 2
p−1

, (3.14)

with ϕ(0) = 1
2∥u0∥2 . Let

Tmax :=
2

p+1
2

C(p− 1)
∥u0∥−(p−1). (3.15)

Hence, ϕ(t) blows up at some finite time T∗ ≤ Tmax . By (3.15) and (3.5), we easily estimate T∗ as

T∗ ≤ Tmax =
2

p+1
2 ∥u0∥−(p−1)

C(p− 1)
=

a
p−1
2 ∥u0∥−(p−1)(p+ 1)

(p− 1)2
(
1− (α1

α2
)p+1

) . (3.16)

2

4. A lower blow-up time

In this section by adapting a result of Phillipin[10] we will obtain a lower blow-up time estimate. Our goal is
to show the existence of a time interval (0, T0) in which ∥u∥2

Ḣ2
per(Ω)

remains bounded. Here is our result:

Theorem 4.1 Let u(x, t) be a solution of the problem (1.1)–(1.3). Assume that the constant p > 1 . Then

ϕ(t) =

∫ a

0

(uxx)
2 dx,

remains bounded for t ∈ (0, Tmin) such that

Tmin =
1

ϕp−1(0)(p− 1)γ
, (4.1)

where γ is the best optimal constant of the Kondrachov inequality.

In the proof of this theorem we will use uxxx, uxxxx ∈2 (0, a) due to Theorem 2.4.
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Proof Differentiating ϕ(t) , we obtain

ϕ′(t) = 2

∫ a

0

uxxuxxt dx =

∫ a

0

utuxxxx dx.

Plugging ut = uxx − uxxxx + |u|p−1u− 1
a

∫ a

0
|u|p−1u dx into above equality and using integration by parts, we

obtain

ϕ′(t) = −∥uxxx∥2 − ∥uxxxx∥2 +
∫ a

0

u|u|p−1uxxxx dx. (4.2)

Applying the arithmetic-geometric mean inequality to the last term above, we obtain∫ a

0

u|u|p−1uxxxx dx ≤ 1

4

∫ a

0

|u|2p dx+

∫ a

0

(uxx)
2 dx. (4.3)

Thus, we have

ϕ′(t) ≤ 1

4

∫ a

0

|u|2p dx.

Thanks to Kondrachov inequality
∫ a

0
|u|2p dx ≤ γ∥uxx∥2p, for p > 1 . Thus,

ϕ′(t) ≤ γ(ϕ(t))p, p > 1.

Solving the previous inequality we obtain:

ϕ1−p(t) ≥ ϕ1−p(0)− (p− 1)γt. (4.4)

Hence, (4.1) follows from (4.4). 2
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