Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2019) 43: 1797 - 1807
© TÜBİTAK
doi:10.3906/mat-1806-35

A blow-up result for nonlocal thin-film equation with positive initial energy

Mustafa POLAT* ${ }^{*}$
Department of Mathematics, Faculty of Arts and Sciences, Yeditepe University, İstanbul, Turkey

Received: 06.06.2018

- Accepted/Published Online: 07.05.2019

Final Version: 29.05.2019

Abstract

In this note, we consider a thin-film equation including a diffusion term, a fourth order term and a nonlocal source term under the periodic boundary conditions. In particular, a finite time blow-up result is established for the case of positive initial energy provided that $$
\frac{\pi^{2}}{a^{2}} \leq \frac{2}{p-1}
$$ where a is the length of the interval and $p>1$ is the power of nonlinear force term. Also upper and lower blow-up times are estimated.

Key words: Nonlinear thin film equation, positive initial energy, blow up, periodic boundary condition, Non-local source term

1. Introduction

In this note we consider the following initial and periodic boundary value problem :

$$
\begin{gather*}
u_{t}-u_{x x}+u_{x x x x}=|u|^{p-1} u-\frac{1}{a} \int_{0}^{a}|u|^{p-1} u d x, \quad x \in \mathbb{R}, t>0 \tag{1.1}\\
u(x, t)=u(x+a, t), \quad \text { for all } x \in \mathbb{R}, \text { and } t>0 \tag{1.2}\\
u(x, 0)=u_{0}(x) \quad x \in \mathbb{R} \tag{1.3}
\end{gather*}
$$

where $p>1, u_{0} \in \dot{H}_{p e r}^{2}(\Omega), \Omega=(0, a)$ and $\int_{0}^{a} u_{0}(x) d x=0$ with $u_{0} \not \equiv 0$. The novelty in the problem above is the existence of the diffusion term and the periodic boundary conditions which are natural boundary conditions for this type models [9].

The following general fourth-order reaction diffusion equation

$$
\begin{equation*}
u_{t}+A_{1} \Delta u+A_{2} \Delta^{2} u+A_{3} \nabla \cdot\left(|\nabla u|^{2} \nabla u\right)+A_{4} \Delta|\nabla u|^{2}=g(x, t)+\eta(x, t) \tag{1.4}
\end{equation*}
$$

arises in theories such as the thin film theory, lubrication theory, phase transitions etc. (see [12]). In (1.4), $u(x, t)$ and $A_{1} \Delta u$ denote the height of a film in epitaxial growth and the diffusion due to evaporation condensation, respectively. The terms $A_{2} \Delta^{2} u$ and $A_{3} \nabla \cdot\left(|\nabla u|^{2} \nabla u\right)$ are the capilarity-driven surface diffusion and the hopping

[^0]of atoms, respectively. The term $A_{4} \Delta|\nabla u|^{2}$ describes motion of an atom to a neighbouring kink. The functions $g(x, t)$ and $\eta(x, t)$ represent the mean deposition flux, and some Gaussian noise, respectively. For a detailed description of this model we refer the readers to [9].

In [12], Qu and Zhou considered $1 D$ form of the equation in (1.4) and derived a threshold result of global existence and nonexistence of solutions when $A_{1}=A_{3}=A_{4}=0$. In this work, the flux term is the nonlocal-source term

$$
g(x, t)=|u|^{p-1} v-\frac{1}{a} \int_{0}^{a}|u|^{p-1} u
$$

and boundary conditions are

$$
u_{x}(0, t)=u_{x}(a, t)=0, \quad u_{x x x}(0, t)=u_{x x x}(a, t)=0
$$

In [7], using potential well theory, Zhou established a blow-up result for the same problem in [12] assuming that the initial energy is positive. Also, he derived an upper bound for the blow-up time. Existence of blow up solutions is a long standing topic in the study of nonlinear models of partial differential equations. Interested readers may refer to some or all of the references $[1,3-6,8,9,13,14]$. In this work, using the potential well method the existence of finite time blow up solutions will be studied under the assumption $0<J\left(u_{0}\right)<E_{m}$ and $0<I\left(u_{0}\right)$ where

$$
\begin{gather*}
J(u)=\frac{1}{2}\left\|u_{x}\right\|^{2}+\frac{1}{2}\left\|u_{x x}\right\|^{2}-\frac{1}{p+1}\|u\|_{p+1}^{p+1} \tag{1.5}\\
I(u)=\left\|u_{x}\right\|^{2}+\left\|u_{x x}\right\|^{2}-\|u\|_{p+1}^{p+1} \tag{1.6}
\end{gather*}
$$

and E_{m} is the potential well depth given below in (1.8). The existence of blow-up solutions and lower bounds for their blow-up times will be estimated. By the zero average of initial function from (1.1), we obtain that $\frac{d}{d t} \int_{0}^{a} u d x=0$.

Now we present some notations and mathematical tools which we shall need:

Let us denote the $L^{2}(\Omega)$-inner product and the $L^{2}(\Omega)$-norm by $(u, v)=\int_{0}^{a} u(x) v(x) d x$ by $\|\cdot\|$, respectively. Let $\dot{H}_{p e r}^{2}(\Omega):=\left\{u \in H_{p e r}^{2}(\Omega): \int_{\Omega} u d x=0\right\}$. The pair $\left(\dot{H}_{p e r}^{2}(\Omega),\|\cdot\|_{\dot{H}_{p e r}^{2}(\Omega)}\right)$ is a Hilbert space with the inner product and the norm $(u, v)_{\dot{H}_{p e r}^{2}(\Omega)}=\int_{0}^{a} u_{x} v_{x} d x+\int_{0}^{a} u_{x x} v_{x x} d x,\|u\|_{\dot{H}_{\text {per }}^{2}(\Omega)}^{2}:=\left\|u_{x}\right\|^{2}+\left\|u_{x x}\right\|^{2}$, respectively.

By the Sobolev embedding theorem, the inclusion $\dot{H}_{p e r}^{1}(\Omega) \hookrightarrow L^{p+1}(\Omega)$ is continuous, so there exists an optimal embedding constant B such that:

$$
\begin{equation*}
\|u\|_{p+1} \leq B\left\|u_{x}\right\| \tag{1.7}
\end{equation*}
$$

In the rest of this text, we shall use B as the optimal embedding constant. Define the function

$$
g(\alpha):=\frac{1}{2}\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right) \alpha^{2}-\frac{1}{p+1}(B \alpha)^{p+1}
$$

It is obvious that $g(\alpha)$ has a critical point at

$$
\alpha_{1}=\left[\frac{a^{2}+\pi^{2}}{a^{2}}\right]^{\frac{1}{p-1}} B^{-\frac{p+1}{p-1}}
$$

and attains its maximum value at this point as

$$
\begin{equation*}
E_{m}:=\frac{p-1}{2(p+1)}\left[\frac{a^{2}+\pi^{2}}{a^{2}}\right]^{\frac{p+1}{p-1}} B^{\frac{-2(p+1)}{p-1}}=\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right) \frac{p-1}{2(p+1)} \alpha_{1}^{2} \tag{1.8}
\end{equation*}
$$

because $g(\alpha)$ is increasing on $\left(0, \alpha_{1}\right)$ and is decreasing on $\left(\alpha_{1}, \infty\right)$ with $\lim _{\alpha \rightarrow \infty} g(\alpha)=-\infty$.
The rest of this note is organized as follows: Section 2 is devoted to a local existence result and a regularity theorem. In Section 3 a blow-up result is established. In Section 4 a lower blow-up time is estimated.

2. Local Existence

Definition 2.1 A function $u(x, t)$ is called a weak solution of (1.1) if

$$
u \in L^{\infty}\left(0, T, \dot{H}_{p e r}^{2}(\Omega)\right) \text { and } u_{t} \in L^{2}\left(0, T, L^{2}(\Omega)\right)
$$

and satisfies

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega}\left[u_{t} \phi+u_{x} \phi_{x}+u_{x x} \phi_{x x}-\left(|u|^{p-1} u-\int_{\Omega}|u|^{p-1} u\right) \phi\right] d x d s=0 \tag{2.1}
\end{equation*}
$$

for all $\phi \in \dot{H}_{p e r}^{2}(\Omega)$.
Now we give the following existence result for weak solutions and its proof:
Theorem 2.2 Assume that $p>1, u_{0} \in \dot{H}_{p e r}^{2}(\Omega)$, and $I\left(u_{0}\right)>0$ then the problems (1.1)-(1.3) has a unique local solution $u(x, t)$ with $u \in L^{\infty}\left([0, T] ; \dot{H}_{p e r}^{2}(\Omega)\right)$ and $u^{\prime} \in L^{\infty}\left([0, T] ; L^{2}(\Omega)\right)$.

Proof Let $\left\{\omega_{n}\right\}_{n \in \mathbb{N}}$ be the set of eigenfunctions of the problem

$$
-u_{x x}=\lambda u, \quad u(x+a)=u(x)
$$

The eigenvalues of this has the property $\lambda_{n} \leq \lambda_{n+1}$, for all $n \in \mathbb{N}$, and $\lim _{\rightarrow \infty} \lambda_{n}=\infty$. The eigenfunctions are orthogonal in the spaces $\dot{H}_{p e r}^{2}(\Omega), \dot{H}_{p e r}^{1}(\Omega)$, and $L^{2}(\Omega)$. We normalize the eigenfunctions in $L^{2}(\Omega)$: $\left(\omega_{i}, \omega_{j}\right)=\delta_{i j}$.
We proceed by constructing approximate solutions $u_{m}:=\sum_{i=1}^{m} g_{i m}(t) \omega_{i}(x)$
satisfying

$$
\begin{equation*}
\left(\dot{u}_{m}, \omega_{j}\right)+\left(u_{m x x}, \omega_{j x x}\right)+\left(u_{m x}, \omega_{j x}\right)=\left(f\left(u_{m}\right), \omega_{j}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{m}(x, 0)=u_{0 m}(x)=\sum_{i=1}^{m}\left(u_{0}, \omega_{i}\right) \omega_{i} \tag{2.3}
\end{equation*}
$$

POLAT/Turk J Math

where $f\left(u_{m}\right)=\left|u_{m}\right|^{p-1} u_{m}-\frac{1}{a} \int_{0}^{a}\left|u_{m}\right|^{p-1} u_{m} d x$. The problem (2.2)-(2.3) is equivalent to the following initial value problem of a system of first order ordinary differential equations for $\left\{g_{j m}(t)\right\}_{j=1}^{m}$:

$$
\begin{equation*}
g_{j m}^{\prime}(t)=\left(\lambda_{j}^{2}+\lambda_{j}\right) g_{j m}(t)+f_{j m}(t), \quad g_{j m}(0)=\left(u_{0}, w_{j}\right) . \tag{2.4}
\end{equation*}
$$

For $p>1$, the function $f_{j m}(t)$ is a continuously differentiable function of $g_{j m}$. Thus, the problem (2.4) has a unique local solution $g_{j m}(t)$ on $\left[0, T_{1}\right]$ for $j=1,2, \cdots, m$.

Now we multiply (2.2) by $g_{j m}^{\prime}(t)$ and sum from 1 to m

$$
\begin{equation*}
\left\|u_{m}^{\prime}(t)\right\|^{2}+\frac{d}{d t}\left[\frac{1}{2}\left\|u_{m x x}\right\|^{2}+\frac{1}{2}\left\|u_{m x}\right\|^{2}-\frac{1}{p+1}\left|u_{m}\right|_{p+1}^{p+1}\right]=0 . \tag{2.5}
\end{equation*}
$$

Integrating from 0 to t we obtain

$$
\begin{equation*}
\int_{0}^{t}\left\|u_{m}^{\prime}(\tau)\right\|^{2} d \tau+J\left(u_{m}\right)=J\left(u_{0 m}\right) \tag{2.6}
\end{equation*}
$$

By the convergence of $u_{m}(x, 0) \rightarrow u_{0}(x)$ in $\dot{H}_{\text {per }}^{2}(\Omega)$, we get $J\left(u_{m}(x, 0)\right) \rightarrow J\left(u_{0}\right)<d$. Then for sufficiently large m, we have

$$
\int_{0}^{t}\left\|u_{m}^{\prime}(\tau)\right\|^{2} d \tau+J\left(u_{m}\right)<d
$$

for $0 \leq t \leq T_{1}$. By the assumption $I\left(u_{0}\right)>0, I\left(u_{m}(t)\right)$ is positive on some interval $\left[0, T_{2}\right]$. Let T be the minimum of T_{1} and T_{2}. By

$$
J\left(u_{m}\right)=\frac{p-1}{2(p+1)}\left(\left\|u_{m x x}\right\|^{2}+\left\|m_{m x}\right\|^{2}\right)+\frac{1}{p+1} I\left(u_{m}\right),
$$

for sufficiently large m and any $t \in[0, T]$, we obtain

$$
\int_{0}^{t}\left\|u_{m}^{\prime}(\tau)\right\|^{2} d \tau+\frac{p-1}{2(p+1)}\left\|u_{m x x}\right\|^{2}<d
$$

Hence, we obtain the following a priori estimates

$$
\left\{\begin{array}{l}
\int_{0}^{t}\left\|u_{m}^{\prime}(\tau)\right\|^{2} d \tau<d, \quad \text { for } \quad t \in[0, T], \\
\sup \left\|u_{m}^{\prime}(t)\right\|^{2}<d, \\
[0, T]] \\
\left\|u_{m x x}\right\|^{2}<\left(\frac{2(p+1)}{p-1} d\right)^{\frac{1}{2}}, \quad \text { for } \quad t \in[0, T], \\
\left\|u_{m}\right\|_{p+1}^{p} \leq B^{p}\left\|u_{m x x}\right\|^{p}<B^{p}\left(\frac{2(p+1)}{p-1} d\right)^{\frac{p}{2}}, \quad \text { for } \quad t \in[0, T] .
\end{array}\right.
$$

Therefore, the sequence $\left\{u_{m}\right\}$ has a subsequence, which is denoted by itself has the following convergence properties:

$$
(*) \begin{cases}u_{m}^{\prime} \xrightarrow{w} u^{\prime}, & \text { in } L^{2}\left([0, T] ; L^{2}(\Omega)\right), \\ u_{m}^{\prime} \xrightarrow{w *} u^{\prime}, & \text { in } L^{\infty}\left([0, T] ; L^{2}(\Omega)\right), \\ u_{m} \xrightarrow[\rightarrow]{w *} u, & \text { in } L^{\infty}\left([0, T] ; \dot{H}_{p e r}^{2}(\Omega)\right), \\ u_{m} \xrightarrow{\text { st }} u, & \text { in } C\left([0, T] ; \dot{H}_{p e r}^{1}(\Omega)\right), \\ \left|u_{m}\right|^{p-1} u_{m} \xrightarrow{w *}|u|^{p-1} u, & \text { in } L^{\infty}\left([0, T] ; L^{2}(\Omega)\right),\end{cases}
$$

Hence, the problem admits a unique local weak solution on $[0, T]$.

Now we adapt the following regularity theorem for the smoothness of weak solutions from [2](Chapter 6.3, Theorem 4):

Theorem 2.3 Suppose $f \in L^{2}(\Omega)$ and and the boundary $\partial \Omega$ is C^{2} and $u \in \dot{H}_{p e r}^{1}(\Omega)$ is a weak solution of the elliptic boundary value problem

$$
\left\{\begin{array}{l}
-u_{x x}=f \quad \text { in }(0, a) \\
u(x)=u(x+a)
\end{array}\right.
$$

Then $u \in \dot{H}_{p e r}^{2}(\Omega)$ and $\|u\|_{\dot{H}_{p e r}^{2}(\Omega)}^{2} \leq C\left(\|f\|^{2}+\|u\|_{\dot{H}_{p e r}^{1}(\Omega)}^{2}\right)$, where C depends on Ω.

Theorem 2.4 Let $u_{0} \in \dot{H}_{p e r}^{2}(\Omega), \quad f \in L^{2}\left([0, T] ; L^{2}(\Omega)\right)$ and $u \in L^{\infty}\left([0, T] ; \dot{H}_{p e r}^{2}(\Omega)\right)$ be a weak solution of (1.1)-(1.3). Then $u \in \dot{H}_{p e r}^{4}(\Omega)$.

Proof For a.e t we have the identity

$$
\left(u^{\prime}, v\right)+\left(u_{x x x x}, v\right)-\left(u_{x x}, v\right)=(f, v) \quad \text { for each } v \in \dot{H}_{p e r}^{2}(\Omega)
$$

We rewrite $\left(u_{x x x x}, v\right)=(h, v)$ for $h=f+u_{x x}-u^{\prime}$ for a.e. t in $[0, T]$. By $(*) h \in L^{2}\left([0, T] ; L^{2}(\Omega)\right)$ and hence $u \in \dot{H}_{\text {per }}^{4}(\Omega)$ follows from the previous theorem.

3. main result

For the establishment of blow-up solution and an upper bound for the blow-up time we have the following result:
Theorem 3.1 Assume that $0<J\left(u_{0}\right)<E_{m}$ and $\left\|u_{0 x}\right\|>\alpha_{1}$, then the solution $u(x, t)$ of (1.1)-(1.3) blows up at a finite time

$$
T_{*} \leq T_{\max }=\frac{2\left(\left\|u_{0}\right\|^{2}+\left\|u_{0 x}\right\|^{2}\right)^{-\frac{p-1}{2}}}{C(p+1)}
$$

where $C=C_{1} / C_{2}$ with

$$
C_{1}=\frac{p-1}{p+1}\left[1-\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{p+1}\right] \text { and } C_{2}=\left(2^{-\frac{p+1}{2}}\right)\left(a^{\frac{p-1}{2}}\right)
$$

and $T_{m a x}$ is the an upper bound for the blow up time.
First we introduce the following lemmata which are analogous to the ones in [7] and are necessary for the proof of this theorem.

Lemma 3.2 The potential energy functional functional $J(u)(t)$ given in (1.5) is nonincreasing in t because of $J^{\prime}(u(t))=-\left\|u_{t}\right\|^{2} \leq 0$ and

$$
J(u)=J\left(u_{0}\right)-\int_{0}^{t}\left\|u_{s}\right\|^{2} d s
$$

This lemma is a corollary of Theorem 2.2. However, we shall include the proof of the following lemma because its use differs slightly in our case:

Lemma 3.3 Assume that the axioms of Theorem 3.1 hold. Then there exists a positive constant $\alpha_{2}>\alpha_{1}$ such that

$$
\begin{equation*}
\left\|u_{x}(., t)\right\| \geq \alpha_{2}, \quad \text { for all } t \geq 0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{x}(., t)\right\|_{p+1} \geq B \alpha_{2}, \quad \text { for all } t \geq 0 \tag{3.2}
\end{equation*}
$$

Proof Let $\alpha=\left\|u_{x}\right\|$. Using the Wirtinger's inequality and Sobolev imbedding theorem we deduce that

$$
\begin{align*}
J(u) & =\frac{1}{2}\left\|u_{x}\right\|^{2}+\frac{1}{2}\left\|u_{x x}\right\|^{2}-\frac{1}{p+1}\|u\|_{p+1}^{p+1} \\
& \geq \frac{1}{2}\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right)\left\|u_{x}\right\|^{2}-\frac{1}{p+1}(B\|u\|)_{p+1}^{p+1} \tag{3.3}\\
& =\frac{1}{2}\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right) \alpha^{2}-\frac{1}{p+1}(B \alpha)^{p+1} \\
& =g(\alpha) .
\end{align*}
$$

Since $J\left(u_{0}\right)<E_{m}$, there exists $\alpha_{2}>\alpha_{1}>0$ such that $J\left(u_{0}\right)=g\left(\alpha_{2}\right)$. Let $\alpha_{0}=\left\|u_{0 x}\right\|>\alpha_{1}$. By (3.3), we have $g\left(\alpha_{0}\right) \leq J\left(u_{0}\right)=g\left(\alpha_{2}\right)$. Since $\alpha_{0}, \alpha_{2} \geq \alpha_{1}$, we obtain $\alpha_{0} \geq \alpha_{2}$. Hence, (3.1) is true for $t=0$.

To prove that (3.1) is true for $t>0$ we assume that (3.1) is not true for some t_{0}. Using the continuity of $\left\|u_{x}(., t)\right\|$, which follows from $(*)$, and $\alpha_{1}<\alpha_{2}$ we may choose t_{0} so that $\alpha_{1}<\left\|u_{x}\left(., t_{0}\right)\right\|<\alpha_{2}$. Then from (3.3) it follows that

$$
J\left(u_{0}\right)=g\left(\alpha_{2}\right)<g\left(\left\|u_{x}\left(., t_{0}\right)\right\|\right) \leq J(u)\left(t_{0}\right)
$$

which contradicts the fact that $J(u)(t)$ is nonincreasing.
From Lemma 3.2 it follows that $J\left(u_{0}\right) \geq J(u)$. When this is combined with (3.3) we find

$$
\begin{align*}
\frac{1}{p+1}\|u\|_{p+1}^{p+1} & \geq \frac{1}{2}\left\|u_{x}\right\|^{2}+\frac{1}{2}\left\|u_{x x}\right\|^{2}-J\left(u_{0}\right) \\
& \geq \frac{1}{2}\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right) \alpha_{2}^{2}-J\left(u_{0}\right) \\
& =\frac{1}{2}\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right) \alpha_{2}^{2}-g\left(\alpha_{2}\right) \tag{3.4}\\
& =\frac{1}{p+1}\left(B \alpha_{2}\right)^{p+1}
\end{align*}
$$

Hence, (3.2) follows.

Lemma 3.4 Under the assumptions of Theorem 3.4 we have

$$
\begin{equation*}
\frac{\alpha_{2}}{\alpha_{1}} \geq\left[(p+1)\left(\frac{a^{2}+\pi^{2}}{2 a^{2}}-\frac{J\left(u_{0}\right)}{\alpha_{1}^{2}}\right)\right]^{\frac{1}{p-1}}>1+\frac{\pi^{2}}{a^{2}} \tag{3.5}
\end{equation*}
$$

Proof Let $\beta=\frac{\alpha_{2}}{\alpha_{1}}>1$. Now we have

$$
\begin{align*}
J\left(u_{0}\right)=g\left(\alpha_{2}\right)=g\left(\alpha_{1} \beta\right)=\left(\alpha_{1} \beta\right)^{2} & {\left[\frac{a^{2}+\pi^{2}}{a^{2}}-\frac{1}{p+1} B^{p+1}\left(\beta \alpha_{1}\right)^{p-1}\right] } \\
& =\left(\alpha_{1} \beta\right)^{2}\left(\frac{a^{2}+\pi^{2}}{2 a^{2}}-\frac{1}{p+1} \beta^{p-1}\right) \tag{3.6}
\end{align*}
$$

Dividing both sides the previous equality by $\left(\alpha_{1} \beta\right)^{2}$, we obtain

$$
\left(\frac{a^{2}+\pi^{2}}{2 a^{2}}-\frac{1}{p+1} \beta^{p-1}\right)=\frac{J\left(u_{0}\right)^{2}}{\left(\beta \alpha_{1}\right)}<\frac{J\left(u_{0}\right)}{\alpha_{1}^{2}}
$$

By this inequality, we have

$$
(p+1)^{\frac{1}{p-1}}\left[\frac{a^{2}+\pi^{2}}{2 a^{2}}-\frac{J\left(u_{0}\right)}{\alpha_{1}^{2}}\right]^{\frac{1}{p-1}} \leq \beta=\frac{\alpha_{2}}{\alpha_{1}}
$$

Since $J\left(u_{0}\right)<E_{m}=\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right) \frac{p-1}{2(p+1)} \alpha_{1}^{2}$,

$$
\frac{J\left(u_{0}\right)}{\alpha_{1}^{2}} \leq \frac{a^{2}+\pi^{2}}{2 a^{2}} \frac{p-1}{p+1}
$$

So

$$
(p+1)\left[\frac{a^{2}+\pi^{2}}{2 a^{2}}\right]\left(1-\frac{p-1}{p+1}\right)=\frac{a^{2}+\pi^{2}}{a^{2}}
$$

Lemma 3.5 Let $H(u)=E_{m}-J(u)$. Under the assumptions of Theorem 3.1 the functions $H(u)$ enjoys the property

$$
\begin{equation*}
0<H\left(u_{0}\right) \leq H(u) \leq \frac{1}{p+1}\|u\|_{p+1}^{p+1} \tag{3.7}
\end{equation*}
$$

provided that $\frac{\pi^{2}}{a^{2}} \leq \frac{2}{p-1}$.

Proof Since $J(u)$ is nonincreasing in $t, H(u)(t)$ is nondecreasing in t. By the assumption $J\left(u_{0}\right)<E_{m}$, we have

$$
\begin{equation*}
0<E_{m}-J\left(u_{0}\right)=H\left(u_{0}\right) \leq H(u) \tag{3.8}
\end{equation*}
$$

POLAT/Turk J Math

Now, for $\alpha_{2}>\alpha_{1}$ and by the help of (3.1), we derive

$$
\begin{align*}
H(u) & =E_{m}-\frac{1}{2}\left\|u_{x}\right\|^{2}-\frac{1}{2}\left\|u_{x x}\right\|^{2}+\frac{1}{p+1}\|u\|_{p+1}^{p+1} \\
& \leq E_{m}-\frac{1}{2}\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right)\left\|u_{x}\right\|^{2}+\frac{1}{p+1}\|u\|_{p+1}^{p+1} \\
& \leq E_{m}-\frac{1}{2} \alpha_{1}^{2}+\frac{1}{p+1}\|u\|_{p+1}^{p+1} \\
& =\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right) \frac{p-1}{2(p+1)} \alpha_{1}^{2}-\frac{1}{2} \alpha_{1}^{2}+\frac{1}{p+1}\|u\|_{p+1}^{p+1} \tag{3.9}\\
& =\left(\left(\frac{a^{2}+\pi^{2}}{a^{2}}\right) \frac{p-1}{2(p+1)}-\frac{1}{2}\right) \alpha_{1}^{2}+\frac{1}{p+1}\|u\|_{p+1}^{p+1} \\
& \leq \frac{1}{p+1}\|u\|_{p+1}^{p+1}
\end{align*}
$$

Since $\frac{\pi^{2}}{a^{2}} \leq \frac{2}{p-1}$, the inequality (3.7) follows.
Now we can prove our main result:
Proof Define $\phi(t)=\frac{1}{2} \int_{0}^{a} u^{2} d x$. Then

$$
\begin{align*}
\phi^{\prime}(t) & =-\left\|u_{x}\right\|^{2}-\left\|u_{x x}\right\|^{2}+\|u\|_{p+1}^{p+1} \\
& =-2 J(u)-\frac{2}{p+1}\|u\|_{p+1}^{p+1}+\|u\|_{p+1}^{p+1} \\
& =2 H(u)-2 E_{m}+\frac{p-1}{p+1}\|u\|_{p+1}^{p+1} \tag{3.10}
\end{align*}
$$

Now, using

$$
E_{m}:=\frac{p-1}{2(p+1)}\left[\frac{a^{2}+\pi^{2}}{a^{2}}\right]^{\frac{p+1}{p-1}} B^{\frac{-2(p+1)}{p-1}}
$$

and (3.2) we have

$$
\begin{align*}
2 E_{m} & =\frac{p-1}{p+1}\left[\frac{a^{2}+\pi^{2}}{a^{2}}\right]^{\frac{p+1}{p-1}} B^{-2 \frac{p+1}{p-1}}=\frac{p-1}{p+1}\left[\frac{a^{2}+\pi^{2}}{a^{2}}\right]^{\frac{p+1}{p-1}}\left(B B^{-\frac{p+1}{p-1}}\right)^{p+1} \\
& =\frac{p-1}{p+1}\left(B \alpha_{1}\right)^{p+1}=\frac{p-1}{p+1}\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{p+1}\left(B \alpha_{2}\right)^{p+1} \tag{3.11}\\
& \leq \frac{p-1}{p+1}\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{p+1}\|u\|_{p+1}^{p+1}
\end{align*}
$$

Hence, we obtain

$$
\begin{equation*}
\phi^{\prime}(t) \geq C_{1}\|u\|_{p+1}^{p+1}+2 H(u) \tag{3.12}
\end{equation*}
$$

where

$$
C_{1}=\frac{p-1}{p+1}\left[1-\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{p+1}\right]
$$

is a positive number. On the other hand, by Hölder's inequality, we have

$$
\begin{equation*}
\phi^{\frac{p+1}{2}}(t) \geq C_{2}\|u\|_{p+1}^{p+1}, \tag{3.13}
\end{equation*}
$$

where $C_{2}=\left(2^{-\frac{p+1}{2}}\right)\left(a^{\frac{p-1}{2}}\right)$. Combining (3.12) and (3.13), we obtain

$$
\phi^{\prime}(t) \geq C \phi^{\frac{p+1}{2}}(t)
$$

where $C=C_{1} / C_{2}$, and

$$
\begin{equation*}
\phi(t) \geq\left(\phi^{-\frac{p-1}{2}}(0)-\frac{p-1}{2} C t\right)^{-\frac{2}{p-1}}, \tag{3.14}
\end{equation*}
$$

with $\phi(0)=\frac{1}{2}\left\|u_{0}\right\|^{2}$. Let

$$
\begin{equation*}
T_{\text {max }}:=\frac{2^{\frac{p+1}{2}}}{C(p-1)}\left\|u_{0}\right\|^{-(p-1)} . \tag{3.15}
\end{equation*}
$$

Hence, $\phi(t)$ blows up at some finite time $T_{*} \leq T_{\text {max }}$. By (3.15) and (3.5), we easily estimate T_{*} as

$$
\begin{equation*}
T_{*} \leq T_{\max }=\frac{2^{\frac{p+1}{2}}\left\|u_{0}\right\|^{-(p-1)}}{C(p-1)}=\frac{a^{\frac{p-1}{2}}\left\|u_{0}\right\|^{-(p-1)}(p+1)}{(p-1)^{2}\left(1-\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{p+1}\right)} . \tag{3.16}
\end{equation*}
$$

4. A lower blow-up time

In this section by adapting a result of Phillipin[10] we will obtain a lower blow-up time estimate. Our goal is to show the existence of a time interval $\left(0, T_{0}\right)$ in which $\|u\|_{\dot{H}_{p e r}^{2}(\Omega)}^{2}$ remains bounded. Here is our result:

Theorem 4.1 Let $u(x, t)$ be a solution of the problem (1.1)-(1.3). Assume that the constant $p>1$. Then

$$
\phi(t)=\int_{0}^{a}\left(u_{x x}\right)^{2} d x,
$$

remains bounded for $t \in\left(0, T_{\text {min }}\right)$ such that

$$
\begin{equation*}
T_{\min }=\frac{1}{\phi^{p-1}(0)(p-1) \gamma}, \tag{4.1}
\end{equation*}
$$

where γ is the best optimal constant of the Kondrachov inequality.
In the proof of this theorem we will use $u_{x x x}, u_{x x x x} \in^{2}(0, a)$ due to Theorem 2.4.

Proof Differentiating $\phi(t)$, we obtain

$$
\phi^{\prime}(t)=2 \int_{0}^{a} u_{x x} u_{x x t} d x=\int_{0}^{a} u_{t} u_{x x x x} d x
$$

Plugging $u_{t}=u_{x x}-u_{x x x x}+|u|^{p-1} u-\frac{1}{a} \int_{0}^{a}|u|^{p-1} u d x$ into above equality and using integration by parts, we obtain

$$
\begin{equation*}
\phi^{\prime}(t)=-\left\|u_{x x x}\right\|^{2}-\left\|u_{x x x x}\right\|^{2}+\int_{0}^{a} u|u|^{p-1} u_{x x x x} d x \tag{4.2}
\end{equation*}
$$

Applying the arithmetic-geometric mean inequality to the last term above, we obtain

$$
\begin{equation*}
\int_{0}^{a} u|u|^{p-1} u_{x x x x} d x \leq \frac{1}{4} \int_{0}^{a}|u|^{2 p} d x+\int_{0}^{a}\left(u_{x x}\right)^{2} d x . \tag{4.3}
\end{equation*}
$$

Thus, we have

$$
\phi^{\prime}(t) \leq \frac{1}{4} \int_{0}^{a}|u|^{2 p} d x
$$

Thanks to Kondrachov inequality $\int_{0}^{a}|u|^{2 p} d x \leq \gamma\left\|u_{x x}\right\|^{2 p}$, for $\quad p>1$. Thus,

$$
\phi^{\prime}(t) \leq \gamma(\phi(t))^{p}, \quad p>1
$$

Solving the previous inequality we obtain:

$$
\begin{equation*}
\phi^{1-p}(t) \geq \phi^{1-p}(0)-(p-1) \gamma t \tag{4.4}
\end{equation*}
$$

Hence, (4.1) follows from (4.4).

Acknowledgements

We would like to thank the reviewer for helpful comments that served to improve the paper.

References

[1] Cao Y, Liu CH. Global existence and non-extinction of solutions to a fourth-order parabolic equation. Applied Mathematics Letters 2016; 61: 20-25.
[2] Evans LC. Partial Differential Equations. Providence, RI; USA: American Mathematical Society, 1998.
[3] Gao W, Han Y. Blow-up of non-local semilinear parabolic equation with positive initial energy.Applied Mathematics Letters 2011; 24 (5): 784-788.
[4] Hu B. Blow-up Theories for Semilinear Parabolic Equations. Berlin Heidelberg; Germany: Springer, 2011.
[5] Khelghati A. Baghaei K. Blow-up phenomena for a non-local semilinear parabolic equation with positive initial energy. Computers \& Mathematics with Applications 2015; 70: 896-902.
[6] Jazar M, Kiwan R. Blow-up non-local semilinear parabolic equation with Neumann boundary conditions. Annales de l'Institut Henri Poincare (C) Non Linear Analysis 2008; 25: 215-218.
[7] Jun Zhou, Blow-up for a thin-film equation with positive energy. Journal of Mathematical Analysis and Applications 2017; 446: 1133-113
[8] Levine HA. Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $P u_{t}=A u+F(u)$. Archive for Rational Mechanics and Analysis 1973; 51: 371-386.
[9] Ortiz M, Repetto EA, Si H. A continuum model of kinetic roughening and coarsing in thin films. Journal of the Mechanics and Physics of Solids 1999; 47: 697-730.
[10] Philippin GA. Blow-up phenomena for a class of fourth- order parabolic problems. Proceedings of the American Mathematical Societ 2015; 143 (6): 2507-2513.
[11] Qu C, Zhou W, Zheng S. Blow-up versus extinction in a non-local p-Laplacian equation with Neumann boundary conditions. Journal of Mathematical Analysis and Applications 2014; 412 (1): 326-333.
[12] Qu C, Zhou W. Blow-up and extinction for a thin-film equation with the initial boundary value conditions. Journal of Mathematical Analysis and Applications 2016; 426: 796-809.
[13] Samarski AA. Blow-up in Quasilinear Parabolic Equations. Berlin, Germany: Walter de Gruyter, 1995.
[14] Vitillaro E. Global existence theorems for a class of equations with dissipation. Archive for Rational Mechanics and Analysis 1999; 149 (2): 155-182.

[^0]: *Correspondence: mpolat@yeditepe.edu.tr

