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Key words: Pointwise convergence, ideal convergence, Fσ -ideal, I⋆ -universal set, ω -diagonalizability, Lunina 7-tuples,
Baire-one-star functions

1. Introduction

Let f⃗ = (fn)n be a sequence of real-valued functions defined on a metric space X . It is not difficult to show that

if f⃗ is a sequence of continuous functions then the set L(f⃗) , of all points x ∈ X such that (fn(x))n converges,
is of the type Fσδ(X) . On the other hand, Hahn [10] and Sierpiński [27] proved independently that if A is

an Fσδ -subset of a Polish space X , then there is a sequence f⃗ of continuous functions for which A = L(f⃗) .
Further research (see, e.g., Kornfel’d [13] and Lipiński [17]) also involved the sets of points with the sequence
divergent to infinity and the like. The full description of these sets was given by Lunina [18]; see Theorem 3.1
below. We will expand this result in two directions. First, the class of continuous functions will be replaced by
B∗
1(X) : the class of all real Baire-star-one mappings defined on X (see Theorem 3.4). In 2010 Borzestowski and

Recław proved [1] an ideal version of Lunina’s theorem for sequences of continuous functions. The second kind
of extension of Lunina’s theorem consists of characterization of sets of ideal (instead of pointwise) convergence
points for sequences of Baire-star-one functions with respect to the ideal of Fσ -type (see Theorem 4.5 and
Corollary 4.6). In the last part of the paper we discuss ideal limits of sequences of Baire-star-one functions (see
Theorem 5.6).

2. Preliminaries
2.1. Notations
Let X be a topological space. P(X) denotes the family of all subsets of X . The symbol Π0

α(X) (Σ0
α(X) ,

resp.) denotes the multiplicative (additive, resp.) class α of Borel subsets of X and ∆0
α(X) = Π0

α(X)∩Σ0
α(X) .
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The class of all continuous functions f : X → R is denoted by C(X) . Let Γ be a family of subsets of X .
We say that a mapping f : X → R is Γ -measurable iff f−1(U) ∈ Γ for any open set U ⊂ R . In particular,
for 1 ⩽ α < ω1 , the family of Σ0

α+1(X) -measurable functions is called the α Borel class. Recall that if X

is a perfectly normal topological space then the α Borel class coincides with the α Baire class Bα(X) ; see,
e.g., [3, Proposition 3.14]. It is easy to see that for each α , a function f : X → R is Π0

α(X) -measurable iff it
is ∆0

α(X) -measurable. Hence, the class of Π0
α+1(X) -measurable functions is a subclass of the α Borel class

and if X is an uncountable Polish space then this inclusion is proper. Π0
2(X) -measurable functions are called

first-level Borel functions (see [11]) or Baire-.5 functions (see [26]). If X is a complete metric space then the
class of Π0

2(X) -measurable functions is equal to the Baire-star-one class B∗
1(X) introduced by O’Malley [12,

Theorem 2.3].

Definition 2.1 f ∈ B∗
1(X) if for any nonempty closed set F ⊂ X there is an open set U ⊂ X such that

F ∩ U ̸= ∅ and the restriction f |F is continuous on F ∩ U .

2.2. Lunina’s 7-tuples

For a sequence f⃗ = (fn)n we define seven types of sets of convergence and divergence points:

E1(f⃗) = {x : (fn(x)) is convergent};
E2(f⃗) = {x : lim fn(x) = −∞};
E3(f⃗) = {x : lim fn(x) = +∞};
E4(f⃗) = {x : −∞ < lim fn(x) < lim fn(x) < +∞};
E5(f⃗) = {x : −∞ = lim fn(x) < lim fn(x) < +∞};
E6(f⃗) = {x : −∞ < lim fn(x) < lim fn(x) = +∞};
E7(f⃗) = {x : −∞ = lim fn(x) & lim fn(x) = +∞}.

Observe that the sets E1(f⃗), . . . , E7(f⃗) form a partition of X . Moreover,

E1(f⃗) ∪ E4(f⃗) = {x : (fn(x)) is bounded}.

Let F ⊂ RX be a family of real-valued functions defined on X . A sequence ⟨E1, . . . , E7⟩ is called a Lunina’s

7-tuple for F if there is a sequence f⃗ = (fn)n ∈ F such that Ei = Ei(f⃗) for i = 1, . . . , 7 ; see [1] or [6]. The
family of all Lunina’s 7-tuples for F is denoted by Λ7(F) .

3. Lunina’s 7-tuples for the families of Borel functions

Theorem 3.1 ([18]) Let X be a metrizable space. ⟨E1, . . . , E7⟩ ∈ Λ7(C(X)) iff the following conditions hold:

1. E1, . . . , E7 form a partition of X ;

2. E1, E2, E3 are Fσδ in X ;

3. E3 ∪ E5 ∪ E7 and E2 ∪ E6 ∪ E7 are Gδ in X .
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Wesołowska in her dissertation [29] considered sets E1(f⃗) , E2(f⃗) , and E3(f⃗) for sequences f⃗ = (fn)n of

Baire-alpha mappings fn : X → R with α < ω1 . She characterized each family {Ei(f⃗) : f⃗ ⊂ Bα(X)} separately

and formulated the problem of characterization of pairs ⟨E2(f⃗), E3(f⃗)⟩ for f⃗ ⊂ Bα(X) [29, Problem 2.14]. This
problem was solved in a more general form by Irek Recław shortly before his death. Unfortunately, he did not
manage to publish this result. We will do it now, believing that his proof is worth saving.

Theorem 3.2 (Recław ∗) Let (X, τ) be a metrizable space and let α < ω1 . Then ⟨E1, . . . , E7⟩ ∈ Λ7(Bα(X))

iff the following conditions hold:

1. E1, . . . , E7 form a partition of X ;

2. E1, E2, E3 are Π0
α+3 in X ;

3. E3 ∪ E5 ∪ E7 and E2 ∪ E6 ∪ E7 are Π0
α+2 in X .

Proof The case α = 0 follows from Lunina’s theorem. Let α > 0 . Clearly, if f⃗ ⊂ Bα(X) , then the sets

Ei(f⃗) , i = 1, . . . , 7 , satisfy conditions (1)–(3). Assume now that the sets E1, . . . , E7 satisfy conditions (1)–(3).
Then, for i = 1, 2, 3 , there exists a sequence

{Hi
m,n,k : m,n, k ∈ N} ⊂ ∆0

α+1(X)

with
Ei =

∩
m∈N

∪
n∈N

∩
k∈N

Hi
m,n,k.

Similarly, for i = 4, 5 , there is a sequence

{Hi
m,n : m,n ∈ N} ⊂ ∆0

α+1(X)

with
E2 ∪ E5 ∪ E7 =

∩
m∈N

∪
n∈N

H4
m,n and E3 ∪ E6 ∪ E7 =

∩
m∈N

∪
n∈N

H5
m,n.

Let τ ′ be a metrizable topology on X generated by the family τ ∪ {Hi
m,n,k : i ⩽ 3; m,n, k ∈ N} ∪ {Hi

m,n : i =

4, 5; m,n ∈ N}∪{X\Hi
m,n,k : i ⩽ 3; m,n, k ∈ N}∪{X\Hi

m,n : i = 4, 5; m,n ∈ N} ; see [28, Lemma 3.2.1, Remark

3.2.2]. Observe that the sets Ei , i = 1, 2, 3 , are of Fσδ -type, and the sets E2∪E5∪E7 and E3∪E6∪E7 are of

Gδ -type in topology τ ′ . Hence, by Lunina’s theorem, there is a sequence f⃗ = (fn)n of functions fn : X → R ,

which are continuous in topology τ ′ and such that Ei = Ei(f⃗) for i = 1, . . . , 7 . Finally, notice that for each

n ∈ N and any open set V ⊂ R , the set f−1
n (V ) is of type Σ0

α+1 in topology τ . Thus, f⃗ ⊂ Bα(X) , and
consequently, ⟨E1, . . . , E7⟩ ∈ Λ7(Bα(X)) . 2

Lemma 3.3 Let F ⊂ RX and let F0 be a dense (in topology of uniform convergence) subset of F . Then
Λ7(F0) = Λ7(F) .
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Proof The inclusion “⊂” is clear. To show that Λ7(F) ⊂ Λ7(F0) , fix

⟨E1, . . . , E7⟩ ∈ Λ7(F) . Then there is a sequence f⃗ = (fn)n ⊂ F such that Ei(f⃗) = Ei , i = 1, . . . , 7 . For
every n ∈ N , choose a function gn ∈ F0 with |fn − gn| < 1

n and observe that for each x ∈ X the equalities

limnfn(x) = limngn(x) and limnfn(x) = limngn(x) hold. Thus, Ei(f⃗) = Ei((gn)n) for i = 1, . . . , 7 , so
Λ7(F) ⊂ Λ7(F0) . 2

The following theorem characterizes Lunina’s 7-tuples for the family of Π0
α+1(X) -measurable functions.

Theorem 3.4 Let X be a metric space, 1 ⩽ α < ω1 , and let F be the class of Π0
α+1(X)-measurable functions.

Then ⟨E1, . . . , E7⟩ ∈ Λ7(F) iff the following conditions hold:

1. E1, . . . , E7 form a partition of X ;

2. E1, E2, E3 are Π0
α+3 in X ;

3. E3 ∪ E5 ∪ E7 and E2 ∪ E6 ∪ E7 are Π0
α+2 in X .

Proof Clearly, F ⊂ Bα(X) . Moreover, F is dense (in topology of uniform convergence) in Bα(X) . Indeed,
every f ∈ Bα(X) is a uniform limit of a sequence (fn)n ⊂ Bα(X) such that the range of every fα is an isolated
set; see [14, §31, VIII, Theorem 3, p. 388]). Clearly, each fn is Π0

α+1(X) -measurable. By Lemma 3.3,

Λ7(F) = Λ7(Bα(X)).

Applying now Theorem 3.2, we get the assertion. 2

Corollary 3.5 Let X be a complete metric space. Then ⟨E1, . . . , E7⟩ ∈ Λ7(B∗
1(X)) iff the following conditions

hold:

1. E1, . . . , E7 form a partition of X ;

2. E1, E2, E3 are Gδσδ in X ;

3. E3 ∪ E5 ∪ E7 and E2 ∪ E6 ∪ E7 are Fσδ in X .

The following example shows that Theorem 3.4 does not happen in any topological space.

Example 3.6 Let X = R be a topological space with the topology τ of co-countable sets:

τ = {A ⊂ R : R \A is countable} ∪ {∅}.

Then:

• C(X) is equal to the family of constant functions;

• B∗
1(X) = RX ;

• Gδσδ(X) = τ ;

• ∆0
1(X) = {∅,R} .
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Note that for a given α < ω1 we can also consider the αth Sierpiński class of mappings Sα(X) ⊂ RX .
Recall that Sα(X) = Lα(X) + Uα(X) , where Lα(X) and Uα(X) are the classes of limits of, respectively,
nondecreasing and nonincreasing sequences of functions from the class Bα(X) and the sign “+” denotes the
algebraic sum of two sets of reals, i.e. A+B = {a+ b : a ∈ A, b ∈ B} . Clearly,

Bα(X) ⊂ Sα(X) ⊂ Bα+1(X),

and if X is an uncountable Polish space then all above inclusions are proper. Moreover, for each α < ω1 , the
closure of Sα(X) (with topology of uniform convergence) is equal to Bα+1(X) ; see [22]. Hence (and by Lemma
3.3), we get the following:

Corollary 3.7 Let X be a Polish space. Then Λ7(Sα(X)) = Λ7(Bα+1(X)) for every ordinal α < ω1 .

4. Ideal Lunina’s 7-tuples for the families of Borel functions
4.1. Ideals on N
An ideal on N is a nonempty family of subsets of N closed under taking finite unions and subsets of its elements.
We assume moreover that I is proper (N /∈ I ) and contains all finite sets. By FIN we denote the ideal of all
finite subsets of N . By identifying subsets of N with their characteristic functions, we can identify the family
P(N) with the Cantor space C . In this sense, ideals can be Fσ sets or have the Baire property in the space C .
In particular, Fσ ideals have a nice property in terms of submeasures.

A map ϕ : P(N) → [0,∞] is a submeasure if

• ϕ (∅) = 0 ,

• ϕ is monotone (i.e. ϕ(A) ⩽ ϕ(B) whenever A ⊂ B ), and

• ϕ is subadditive (i.e. ϕ(A ∪B) ⩽ ϕ(A) + ϕ(B)).

We will assume also that ϕ(N) > 0 . For a submeasure ϕ , set

FIN(ϕ) = {A ⊂ N : ϕ(A) < ∞}.

For example, FIN = FIN(ϕ) for ϕ(A) = |A| – the number of elements of A . A submeasure ϕ is lower
semicontinuous (lsc, in short) if

ϕ (A) = lim
n→∞

ϕ (A ∩ {0, 1, . . . , n− 1})

holds for all A ⊂ N . For example, FIN = FIN(ϕ) for ϕ(A) = |A| – the number of elements of A .
Now we recall the above-mentioned property of Fσ ideals.

Theorem 4.1 ([21]) If I is an Fσ ideal then there exists an lsc submeasure ϕ such that I = FIN(ϕ) .

The ideal FIN is Fσ . Similarly, summable ideals are Fσ . The ideal of sets of asymptotic density zero is Fσδ

but not Fσ (see, e.g., [6] for definitions and more details).
The following lemma follows directly from the definition.

Lemma 4.2 [[1, Lemma 6]] Assume that I = FIN(ϕ) for a lower semicontinuous submeasure ϕ . Then A ∈ I
iff there exists a natural number nA so that for every B ∈ FIN, if B ⊂ A then ϕ(B) ⩽ nA .
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4.2. Ideal convergence

Fix an ideal I . For a sequence (xn)n of reals and x ∈ R we define:

I − limxn = x iff {n ∈ N : |xn − x| ⩾ ε} ∈ I for any ε > 0;
I − limxn = +∞ iff {n ∈ N : xn < M} ∈ I for any M ∈ R;
I − limxn = −∞ iff {n ∈ N : xn > M} ∈ I for any M ∈ R;

I − lim xn = inf {α : {n : xn > α} ∈ I} ;
I − lim xn = sup {α : {n : xn < α} ∈ I} .

We say that (xn)n is I -convergent if I − limxn = x for some x ∈ R . Note that this fact is equivalent
to the following Cauchy-like condition (see, e.g., [5]):

∀ε>0 ∃k {n : |xn − xk| > ε} ∈ I.

4.3. Ideal Lunina’s 7-tuples

Let I be an ideal on N and let f⃗ = (fn)n be a sequence of functions fn : X → R . We define seven types of

sets of I -convergence and divergence points for the sequence f⃗ :

E1
I(f⃗) = {x : (fn(x)) is I-convergent};

E2
I(f⃗) = {x : I − lim fn(x) = −∞};

E3
I(f⃗) = {x : I − lim fn(x) = +∞};

E4
I(f⃗) = {x : −∞ < I − lim fn(x) < I − lim fn(x) < +∞};

E5
I(f⃗) = {x : −∞ = I − lim fn(x) < I − lim fn(x) < +∞};

E6
I(f⃗) = {x : −∞ < I − lim fn(x) < I − lim fn(x) = +∞};

E7
I(f⃗) = {x : −∞ = I − lim fn(x) & I − lim fn(x) = +∞}.

Let F ⊂ RX . A sequence ⟨E1, . . . , E7⟩ is called an I -Lunina’s 7-tuple for F if there is a sequence

f⃗ = (fn)n ⊂ F such that Ei = Ei
I(f⃗) , i = 1, . . . , 7 ; see [1] or [6]. The family of all I -Lunina’s 7-tuples for

F is denoted by Λ7
I(F) . In our considerations we use the following fact, which originally was proved (see [1,

Theorem 3]) for F being the class of continuous functions.

Lemma 4.3 [[24, Lemma 1]] The inclusion

Λ7(F) ⊂ Λ7
I(F)

holds for each family F ⊂ RX and any ideal I with the Baire property.

Borzestowski and Recław [1] considered the sets Ei
I(f⃗) , i = 1, . . . , 7 , for the sequences f⃗ of continuous functions

and they proved the following:

Theorem 4.4 Let X be a metric space and let I be an Fσ ideal. Then

Λ7
I(C(X)) = Λ7(C(X)).
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4.4. Results
Theorem 4.5 (Recław †) Let X be a metric space and let I be an Fσ ideal. Then

Λ7
I(Bα(X)) = Λ7(Bα(X)) for any α < ω1.

Proof The inclusion “⊃” follows from Lemma 4.3. To show that Λ7
I(Bα(X)) ⊂ Λ7(Bα(X)) , fix α < ω1 and

⟨E1, . . . , E7⟩ ∈ Λ7
I(Bα(X)) . Then there is f⃗ = (fn)n with Ei = Ei

I(f⃗) for i = 1, . . . , 7 . By Lemma 4.2 we
have

E1
I(f⃗) =

{
x ∈ X : ∀k∈N ∃j∈N

{
n : |fn(x)− fj(x)| >

1

k

}
∈ I

}
={

x ∈ X : ∀k∈N ∃j∈N ∃m∈N ∀B∈FIN

(
ϕ(B) > m ⇒ ∃i∈B |fj(x)− fi(x)| ⩽

1

k

)}
=

∩
k∈N

∪
j,m∈N

∩
B∈FIN
ϕ(B)>m

∪
i∈B

{
x : |fj(x)− fi(x)| ⩽

1

k

}

and thus E1
I(f⃗) ∈ Π0

α+3(X) . Similarly, since

E2
I(f⃗) = {x ∈ X : ∀k∈N {n : fn(x) > −k} ∈ I} =

{x ∈ X : ∀k∈N ∃m∈N ∀B∈FIN (ϕ(B) > m ⇒ ∃i∈Bfi(x) ⩽ −k)} =∩
k∈N

∪
m∈N

∩
B∈FIN
ϕ(B)>m

∪
i∈B

{x : fi(x) ⩽ −k}

and
E3

I(f⃗) =
∩
k∈N

∪
m∈N

∩
B∈FIN
ϕ(B)>m

∪
i∈B

{x : fi(x) ⩾ k} ,

we have E2
I(f⃗), E

3
I(f⃗) ∈ Π0

α+3(X) . Moreover, since

E3 ∪ E5 ∪ E7 =
{
x ∈ X : I − limn(f⃗) = +∞

}
=

{x ∈ X : ∀k∈N {n ∈ N : fn(x) > k} ̸∈ I} =∩
k∈N

∩
m∈N

∪
B∈FIN
ϕ(B)>m

∩
i∈B

{x ∈ X : fi(x) > k} ,

E3 ∪ E5 ∪ E7 ∈ Π0
α+2(X) . Similarly,

E2 ∪ E6 ∪ E7 = {x ∈ X : I − limn(f⃗) = −∞} ∈ Π0
α+2(X).

Observe that the sets E1, . . . , E7 satisfy conditions (1)–(3) from Theorem 3.2. Therefore, ⟨E1, . . . , E7⟩ ∈
Λ7(Bα(X)) . 2

Corollary 4.6 Let X be a complete metric space and let I be an Fσ ideal. Then

Λ7
I(B∗

1(X)) = Λ7(B∗
1(X)).
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Proof We have

Λ7(B∗
1(X)) ⊂ Λ7

I(B∗
1(X)) ⊂ Λ7

I(B1(X)) = Λ7(B1(X)) = Λ7(B∗
1(X)).

2

Corollary 4.7 Let X be a Polish space, I be an Fσ ideal, and α be a countable ordinal. Then

Λ7
I(Sα(X)) = Λ7(Sα(X)) = Λ7(Bα+1(X)).

Proposition 4.8 Let X be a complete metric space containing a subspace homeomorphic to the Cantor space
P(N) . If Λ7

I(B∗
1(X)) = Λ7(B∗

1(X)) , then I is an Fσδ -ideal.

Proof We use an idea of the proof of [1, Theorem 8]. Consider a sequence of continuous functions fn : P(N) →
R given by the formula

fn(A) =

{
0 if n ̸∈ A,
n otherwise.

Observe that

• if A ∈ I then I − lim fn(A) = 0 , and hence A ∈ E1
I(f⃗) ;

• if A ̸∈ I then {n : fn(A) > k} = A\{0, . . . , k} ̸∈ I for each k ∈ N , so A ∈ EI(f⃗) = E3
I(f⃗)∪E5

I(f⃗)∪E7
I(f⃗) .

Therefore, EI(f⃗) = P(N) \ I . Assume now that h : P(N) → X is a homeomorphic embedding and
X0 = h[P(N)] . Then X0 is closed in X and for each n ∈ N , gn = fn ◦ h−1 ∈ B∗

1(X0) (even it is continuous).
Let g⃗ = (gn)n . Observe that

EI(g⃗) = E3
I(g⃗) ∪ E5

I(g⃗) ∪ E7
I(g⃗) = h[EI(f⃗)] = h[P(N) \ I].

We can extend each gn to a continuous function g̃n defined on whole X . Put EI((g̃n)n) = E3
I((g̃n)n) ∪

E5
I((g̃n)n) ∪ E7

I((g̃n)n) , and then EI(g⃗) = EI((g̃n)n) ∩X0 . By the assumption, EI((g̃n)n) ∈ Gδσ(X) ; hence,

h(I) = X0 \ h[P(N) \ I] = X0 \ EI(g⃗) = X0 \ EI((g̃n)n) ∈ Fσδ(X0).

Thus, I is of Fσδ -type. 2

Problem 4.9 Assume that I is an Fσδ ideal. Does the equality Λ7
I(B∗

1(R)) = Λ7(B∗
1(R)) hold? Is it true for

the ideal of sets of asymptotic density zero?

5. Limits of sequences of Baire-star-one functions
5.1. ω -diagonalizable filters

We say that a sequence f⃗ = (fn)n ⊂ RX is I -convergent to a function f : X → R if I − limn fn(x) = f(x) for

every x ∈ X . Then f is called an I -limit of a sequence f⃗ . For a family F ⊂ RX , the symbol I − LIM (F)

denotes the family of all I -limits of sequences f⃗ ⊂ F . Clearly, if I ⊂ J then I − LIM (F) ⊂ J − LIM (F) for
any family F ⊂ RX . In particular:
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Lemma 5.1 The inclusion
LIM (F) ⊂ I − LIM (F)

holds for every family F ⊂ RX and all ideals I .

We say that the set I⋆ = {A : N \ A ∈ I} is a dual filter to an ideal I . A set Z = {Am : m ∈ N} of
nonempty finite subsets of N is called I⋆ -universal if for each F ∈ I⋆ there is m ∈ N such that Am ⊂ F . We
say that I⋆ is ω -diagonalizable by I⋆ -universal sets if there exists a sequence (Zn)n of I⋆ -universal sets such
that for every F ∈ I⋆ there is n ∈ N with A∩F = ∅ only for finitely many sets A ∈ Zn (see [16]). Clearly, the
filter FIN⋆ of cofinite sets is ω -diagonalizable by I⋆ -universal sets. Moreover, each Fσδ ideal has this property
(see [15]). The following lemma gives us a useful criterion of ω -diagonalizability.

Lemma 5.2 ([7]) I⋆ is ω -diagonalizable by I⋆ -universal sets iff there exists a sequence (Zn)n such that

1. Zn ⊂ [N]<N for each n ∈ N ;

2. |{A ∈ Zn : A ⊂ F}| = ω for each n ∈ N and F ∈ I⋆ ;

3. for each F ∈ I⋆ there is n ∈ N such that A ∩ F ̸= ∅ for all A ∈ Zn .

We say that a filter I⋆ is ω -+ -diagonalizable if there are sets {Xn ∈ I+ : n ∈ N} such that for each
A ∈ I there is n ∈ N with Xn ∩ A = ∅ (equivalently, for each B ∈ I⋆ there is n with Xn ⊂ B ) [16]. Clearly,
the filter FIN⋆ is ω -+ -diagonalizable.

Lemma 5.3 ([16]) Every ω -+-diagonalizable filter I⋆ is ω -diagonalizable by I⋆ -universal sets.

The family of Fσ ideals I for which I⋆ is ω -+ -diagonalizable is a proper subclass of all Fσ ideals. The ideal
of sets of asymptotic density zero is not ω -+ -diagonalizable (see [23]).

5.2. Results
For an ideal I and a topological space X we define I -Baire classes of mappings:

• BI
0 (X) = C(X) and

• BI
α(X) = I − LIM

(∪
β<α BI

β (X)
)

, for α > 0 .

In our considerations we use the following result, which, in the case of functions defined on a Polish space
X , belongs to Laczkovich and Recław [15] and independently to Debs and Saint Raymond [4]. In general form
it has been proved by Filipów and Szuca.

Theorem 5.4 [[7, Theorem 3.2]] Let X be a perfectly normal topological space. If I is an ideal such that I⋆

is ω -diagonalizable by I⋆ -universal sets then BI
α(X) = Bα(X) .

Lemma 5.5 Let F ⊂ RX and let F0 be a dense (in topology of uniform convergence) subset of F . Then for
any ideal I we have

I − LIM (F0) = I − LIM (F) .
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Proof The inclusion “⊂” is clear. To show that I − LIM (F) ⊂ I − LIM (F0) , fix f ∈ I − LIM (F) . Then

there is a sequence f⃗ = (fn)n ⊂ F such that I − limn fn = f . For every n ∈ N , choose a function gn ∈ F0

with |fn − gn| < 1
n . Hence, I − limn gn = I − limn fn = f . 2

From Lemma 5.5 and Theorem 5.4 we obtain:

Theorem 5.6 Let X be a perfectly normal topological space, 1 ⩽ α < ω1 , and F be the class of all
Π0

α+1(X)-measurable functions. If I is an ideal such that I⋆ is ω -diagonalizable by I⋆ -universal sets then
I − LIM (F) = Bα+1(X) .

Corollary 5.7 Let X be a completely metrizable space. If I is an ideal such that I⋆ is ω -diagonalizable by
I⋆ -universal sets then I − LIM (B∗

1(X)) = B2(X) .

In particular, for I = FIN we obtain the following two corollaries.

Corollary 5.8 If X is a perfectly normal topological space, 1 ⩽ α < ω1 , and F is the class of all Π0
α+1(X)-

measurable functions then LIM (F) = Bα+1(X) .

Corollary 5.9 If X is a complete metric space then LIM (B∗
1(X)) = B2(X) .

Theorem 5.10 Assume that I is an analytic ideal and X is an uncountable Polish space. Then I −
LIM (B∗

1(X)) = B2(X) iff I⋆ is ω -diagonalizable by I⋆ -universal sets.

Proof The implication “⇐” follows from Corollary 5.7. To show the implication “⇒”, suppose that I⋆ is
not ω -diagonalizable by I⋆ universal sets. Then I −LIM (B1(X)) \B2(X) ̸= ∅ ; see [7, Theorem 6.1] (note that
in [7] the authors assumed that I is a Borel ideal, but the same proof works also for all analytic ideals; see [6,
Theorem 7.30]). By Lemma 5.5, I − LIM (B∗

1(X)) = I − LIM (B1(X)) , so I − LIM (B∗
1(X)) ̸= B2(X) . 2

Corollary 5.11 Assume that X is a Polish space, I is an ideal such that I⋆ is ω -diagonalizable by I⋆ -
universal sets, and α is a countable ordinal. Then

I − LIM (Sα(X)) = Bα+2(X).

6. Appendix: Darboux Baire α functions

In the last part of the paper we consider Darboux functions defined on the real line. Recall that f : R → R is
a Darboux function if it has the intermediate value property. The class of all Darboux functions is denoted by
D . For a family F ⊂ RR , we denote by DF the class D ∩ F .

Let I be an ideal on N . Also let f⃗ = (fn)n and g⃗ = (gn)n be the sequences of functions defined on the
real line. We say that:

• f⃗ and g⃗ are I -equivalent if {n ∈ N : fn(x) ̸= gn(x)} ∈ I for each x ∈ X ;

• f⃗ and g⃗ are equivalent if they are FIN-equivalent.
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Proposition 6.1 Let I be an ideal and F ⊂ RR be a family of functions such that every sequence f⃗ ⊂ F is
I -equivalent to some sequence g⃗ ⊂ DF . Then:

1. Λ7
I(DF) = Λ7

I(F) and

2. I − LIM (DF) = I − LIM (F) .

Proof (1). The inclusion “⊂” is clear. To see that the opposite inclusion is true, note that if f⃗ = (fn)n and
g⃗ = (gn)n are I -equivalent then the equalities I−limnfn(x) = I−limngn(x) and I−limnfn(x) = I−limngn(x)

hold for each x ∈ R . Thus, Ei
I(f⃗) = Ei

I(g⃗) for i = 1, . . . , 7 . The proof of (2) is similar. 2

Lemma 6.2 Let I be an ideal on N and let α ⩾ 1 be a countable ordinal. Then every sequence f⃗ ⊂ Bα is
equivalent to some sequence g⃗ ⊂ DBα .

Proof Let f ∈ Bα and let E be a meager subset of R . Then there is g ∈ DBα such that f = g except on
a meager set M ⊂ R , which is disjoint with E ; see [2] and [19, Proposition 1] for the case of α = 1 . The case
α > 1 can be proved in a standard way; see, e.g., [20, Theorem II.1.2]. List all open intervals with rational
end-points in a sequence (In)n . For every n, k ∈ N choose a Cantor set Cn,k ⊂ In \E such that Cn,k ∩Ci,j = ∅
whenever ⟨n, k⟩ ̸= ⟨i, j⟩ and fix a continuous surjection gn,k : Cn,k → [−k, k] . Then g : R → R defined by

g(x) =

{
gn,k(x) for x ∈ Cn,k, ⟨n, k⟩ ∈ N2;

f(x) otherwise

has all required properties.

Fix f⃗ = (fn)n ⊂ Bα . Put E0 = ∅ and for n ⩾ 1 choose inductively a function gn ∈ DBα such that the
set En = {x ∈ R : fn(x) ̸= gn(x)} is meager and disjoint with the set

∪
i<n Ei . Let g⃗ = (gn)n . Then g⃗ ⊂ DBα

and {n ∈ N : fn(x) ̸= gn(x)} has at most one element. Thus, f⃗ and g⃗ are I -equivalent. 2

Corollary 6.3 Let I be an ideal and let α ⩾ 1 be a countable ordinal. Then:

1. Λ7
I(DBα) = Λ7

I(Bα) and

2. I − LIM (DBα) = I − LIM (Bα) .

In particular, for I = FIN we obtain:

Corollary 6.4 If α ⩾ 1 is a countable ordinal then

1. Λ7(DBα) = Λ7(Bα) and

2. LIM (DBα) = LIM (Bα) .

Finally, note that if α > 1 and F is equal to the family of all Π0
α -measurable functions then every

sequence f⃗ ⊂ F is I -equivalent to some sequence g⃗ ⊂ DF . This fact can be proved exactly in the same way
as Lemma 6.2. Thus, the following conditions hold:

1158



NATKANIEC and SIEG/Turk J Math

1. Λ7
I(DF) = Λ7

I(F) ;

2. I − LIM (DF) = I − LIM (F) .

In the case of α = 1 , i.e. for the class DB∗
1 , the situation is more complicated. In 1991 Grande [8, Theorem 1]

proved that LIM (DB∗
1) = B2 ∩ PWD , where PWD is the class of all pointwise discontinuous functions, i.e.

such mappings f : R → R for which the set C(f) of all continuity points of f is dense in R .

Theorem 6.5 Let I be an ideal such that the filter I⋆ is ω -+-diagonalizable. Then

I − LIM (DB∗
1) = B2 ∩ PWD.

Proof The inclusion “⊃” follows from Grande’s theorem [8, Theorem 1] and Lemma 5.1. To prove the inclusion
“⊂”, fix f = I − limn fn for some sequence (fn)n ⊂ DB∗

1 . By Lemma 5.3, the filter I⋆ is ω -diagonalizable by
I⋆ -universal sets. Thus, Corollary 5.9 yields f ∈ B2 .

Recall that if g ∈ DB⋆
1 then g|C(g) is dense in g [26], and hence g is quasi-continuous in the sense

of Kempisty (see, e.g., [9, Lemma 2]). Thus, (fn)n is a sequence of quasi-continuous functions and I⋆ is
ω -+ -diagonalizable, so f = I − limn fn is pointwise discontinuous; see [23, Proposition 3.1]. 2

Problem 6.6 Suppose I is an ideal such that I−LIM (DB∗
1) = B2∩PWD . Is the filter I⋆ ω -+-diagonalizable?

Problem 6.6 is open even under the assumption that I is an analytic ideal.
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