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Abstract: Let x : (M, g) → (M, g) be a null hypersurface isometrically immersed into a proper semi-Riemannian
manifold (M, ḡ) . A rigging for M is a vector field ζ defined on some open subset of M containing M such that
ζp /∈ TpM for every p ∈ M . Such a vector field induces an everywhere transversal null vector field N defined over M

and which induces on M the same geometrical objects as ζ . Let η̄ be the 1-form that is ḡ -metrically equivalent to N

and let η = x⋆η̄ be its pullback on M . For a given nowhere vanishing smooth function α on M , we have introduced and
studied the so-called α -associated (semi-)Riemannian metric gα = g+αη⊗ η . It turns out that this perturbation of the
induced metric along a transversal null vector field is always nondegenerate, so we have established some relationships
between geometrical objects of the (semi-)Riemannian manifold (M, gα) and those of the lightlike hypersurface (M, g) .
For instance, in the case where N is closed, we give a constructive method to find a α -associated metric whose Levi-
Civita connection coincides with the connection ∇ induced on M through the projection of the Levi-Civita connection
∇ of M along N . As an application, we show that given a null Monge hypersurface M in Rn+1

q , there always exists a
rigging and a α -associated metric whose Levi-Civita connection is the induced connection on M .

Key words: Null hypersurface, Monge hypersurface, screen distribution, rigging vector field, associated metric

1. Introduction
Let (M, g) be a proper semi-Riemannian manifold and x : M → M an embedded hypersurface of M . The
pullback metric g = x⋆g can be either degenerate or nondegenerate on M . When g is nondegenerate, one says
that (M, g) is a semi-Riemannian hypersurface of (M, g) ; otherwise, (M, g) is called a null (or degenerate, or
lightlike) hypersurface of (M, g) . Since any semi-Riemannian hypersurface has (locally) a canonical transversal
vector field that is everywhere orthogonal to the hypersurface (the Gauss map), there is a standard way to
study the extrinsic geometry of such a hypersurface. In fact, geometrical objects of the ambient manifold M

are projected orthogonally on M and give new objects, which can be used to study the extrinsic geometry of
the hypersurface.

For a null hypersurface, the tangent bundle contains the orthogonal bundle; hence, the orthogonal
projection is no longer possible. One of the most used techniques to study a null hypersurface (M, g) immersed
in a semi-Riemannian manifold (M, ḡ) is to arbitrarily fix on it a screen distribution S(TM) (a complementary
to the normal bundle TM⊥ in TM ) and a (null) section ξ ∈ Γ(TM⊥) . These choices locally fix a null
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transversal vector field N , which is orthogonal to the screen distribution, transversal to M , and satisfies
g(N, ξ) = 1 . (See, for instance, [1, 5].) Instead of choosing a null section of the normal bundle and a screen
distribution independently, we can make only one arbitrary choice of a transversal vector field ζ defined on an
open neighborhood of M in M . This vector field ζ is called rigging for M and induces a null section ξ (called
the associated rigged vector field) of the normal bundle, a screen distribution, and a null transversal vector field
N , all of them defined over M . This second technique (the rigging technique) was introduced in [8] and also
used in other works such as [3, 11, 12].

A null rigging N for M induces a family (gα) of nondegenerate metrics on M as follows. Let η̄ be
the 1 -form that is ḡ -metrically equivalent to N (i.e. η̄ = ḡ(N, .)) and η the pullback of η̄ on M via the
immersion x⋆ . For a given nowhere vanishing smooth function α on M we define the so-called α -associated
(semi-)Riemannian metric gα = g+αη⊗ η . When α = 1 , the metric g1 = g+ η⊗ η is the so-called associated
metric defined in [2]. Notice that for a function α > 0 the associated metric corresponding to the change of
rigging N ′ =

√
αN is equal to the α -associated metric gα corresponding to N . When the ambient manifold

(M, ḡ) is a Lorentzian manifold, the associated metric is a Riemannian metric. This Riemannian metric was
recently studied in [8].

When the null rigging N is defined over M , it induces a perturbation ḡα = ḡ + ᾱη̄ ⊗ η̄ of the metric
ḡ whose restriction on M gives the associated metric. Such perturbations including those defined by spacelike
or timelike vector fields at the place of null rigging have been considered in several works (see [9] for the α -
associated type and [11] for canonical variation gt = g+tη⊗η where t is constant). The Levi-Civita connection
of the α -associated metric does not coincide in general with the connection ∇ induced on M from the Levi-
Civita connection ∇ of ḡ through the projection along N . A necessary and sufficient condition to have this
coincidence for the case α = 1 was given in [2, 12].

In the present work, giving a null rigging N , we give a constructive method to obtain a nowhere vanishing
smooth function α such that the Levi-Civita connection of the corresponding α -associated metric coincides with
the induced connection. We also give relationships between curvatures of (M,∇) and those of (M,∇α) . We
give some applications of our formalism on null Monge hypersurfaces in Rn+1

1 .
This paper is organized as follows: the first section is the Introduction. In Section 2 we present the

twisted metric or a perturbation of a semi-Riemannian metric along a null vector field. Section 3 is devoted
to the general setup on null hypersurfaces and new results on the α -associated metric. Theorem 3.2 gives
a necessary and sufficient condition for the α -associated connection to coincide with the induced connection
provided that α is constant along the leaves of the screen distribution. Section 4 is devoted to the computation
of curvatures of the induced connection and the α -associated connection. Finally, in Section 5, we apply
the formalism developed in the previous sections to null Monge hypersurfaces in Rn+1

1 by showing that such
hypersurfaces always admit suitable riggings and functions α such that ∇α = ∇ .

2. Twisted metrics on a semi-Riemannian manifold

Throughout this work, (M, g) is an (n + 1) -dimensional semi-Riemannian manifold of index q > 0 , and ∇
and R̄ will represent respectively the Levi-Civita connection and the Riemannian curvature of g . (Objects
from the metric g will be denoted with a line.) All manifolds are taken as smooth and connected. Let Σ be
a d -dimensional manifold with d ≤ n + 1 . If there exists an immersion x : Σ → M , then x(Σ) is called a
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d -dimensional immersed submanifold of M . If, moreover, x is injective, one says that x(Σ) is a d -dimensional
submanifold of M . In addition, if the inverse map x−1 is a continuous map from x(Σ) to Σ , x(Σ) is a
d -dimensional embedded submanifold of M . When x(Σ) is an embedded submanifold, one identifies Σ and
x(Σ) . All submanifolds will be assumed embedded, and through the identification, stating that x :M →M is
a submanifold will mean that there is an embedding map x : Σ →M such that M = x(Σ) . A hypersurface of
M is a submanifold of M of dimension d = n . One says that x : (M, g) → (M, g) is an isometrically immersed
submanifold when, x : M → M is a submanifold of M and g = x⋆g . An isometrically immersed submanifold
x : (M, g) → (M, g) is called a nondegenerate submanifold if (M, g) is a semi-Riemannian manifold. Otherwise,
one says that (M, g) is a degenerate or null or lightlike submanifold. The latter means that at any point p ∈M

there exists a nonzero vector u ∈ TpM such that gp(u, v) = 0 for every v ∈ TpM .

Let N be a lightlike vector field defined over M and α be a nowhere vanishing smooth function on M .
We set η to be the 1 -form g -metrically equivalent to N . Using g , we define the α -twisted metric on M as

gα = g + αη ⊗ η. (1)

Lemma 2.1 The pair (M, gα) is a semi-Riemannian manifold.

Proof Let p ∈ M and u ∈ TpM such that gα(u, v) = 0 for every v ∈ TpM . In particular, gα(u,Np) = 0 ,
and hence η(u) = 0 , since Np is a null vector. It follows that g(u, v) = 0 for every v ∈ TpM , and then u = 0

since g is nondegenerate. This proves that gα is nondegenerate on M . 2

Let ∇α be the Levi-Civita connection of gα . The metrics g and gα are two semi-Riemannian metrics on
M . The following gives the relationship between their Levi-Civita connections.

Proposition 2.1 The connections ∇ and ∇α are related by

∇αUV = ∇UV +
1

2

[
αη(U) (iV dη)

#gα + αη(V ) (iUdη)
#gα − η(U)η(V )dα#gα

]
+

1

2
[α (LNg) (U, V ) + dα(U)η(V ) + dα(V )η(U)]N, (2)

where dα#gα is the vector field gα -metrically equivalent to the 1-form dα , and LNg is the Lie derivative of g
along N .

Proof Let us start by recalling the Koszul equation defining ∇α . For all sections U, V,W of the tangent
bundle TM ,

2gα(∇αUV,W ) = U · gα(V,W ) + V · gα(W,U)−W · gα(U, V )

+ gα([U, V ],W )− gα([V,W ], U) + gα([W,U ], V ).

Using (1) and the fact that ∇ is torsion-free and g -metric, the latter equation leads to
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2gα(∇αUV,W ) = g(∇UV,W ) + g(V,∇UW ) + αU · (η(V )η(W )) + dα(U)η(V )η(W )

+ g(∇VW,U) + g(W,∇V U) + αV · (η(U)η(W )) + dα(V )η(U)η(W )

− g(∇WU, V )− g(U,∇WV )− αW · (η(U)η(V ))− dα(W )η(U)η(V )

+ g(∇UV −∇V U,W ) + αη([U, V ])η(W )− g(∇VW −∇WV,U)

− αη([V,W ])η(U) + g(∇WU −∇UW,V ) + αη([W,U ])η(V )

= 2g(∇UV,W ) + 2αη(∇UV )η(W ) + α (LNg) (U, V )η(W ) + dα(U)η(V )η(W )

+ αη(U)dη(V,W ) + αη(V )dη(U,W ) + dα(V )η(U)η(W )− dα(W )η(U)η(V )

= 2gα(∇UV,W ) + α (LNg) (U, V )g(N,W ) + dα(U)η(V )g(N,W )

+ αη(U)dη(V,W ) + αη(V )dη(U,W ) + dα(V )η(U)g(N,W )− dα(W )η(U)η(V ),

and (2) holds. 2

3. Null hypersurfaces

3.1. Some preliminaries on null hypersurfaces

Let x : (M, g) → (M, g) be a null hypersurface of (M, g) . A rigging for M is a vector field ζ defined on an
open subset containing M such that for any p ∈M , ζp /∈ TpM . We say that a rigging ζ is a null rigging for M
when the restriction of ζ on M is lightlike. Therefore, if N is a null vector field on M anywhere transversal
to M , then N is a null rigging for M . Determining conditions for the existence of a rigging for a given null
hypersurface is still an open problem. However, it is clear that when the ambient manifold is a time-orientable
Lorentzian manifold, any null hypersurface has a rigging, e.g., a timelike vector field globally defined.

Let ζ be a rigging for M and η be the 1 -form g -metrically equivalent to ζ (namely η = g(ζ, ·)), and
let η = x⋆η be the restriction of η on M . The associated metric g̃ is given by

g̃ = g + η ⊗ η. (3)

The following is easy to prove.

Lemma 3.1 [2] The associated metric g̃ is nondegenerate.

The associated rigged vector field is the vector field g̃ -metrically equivalent to the 1 -form η and denoted ξ .
As g is nondegenerate, it holds that

η(v) ̸= 0, ∀v ∈ TxM
⊥ ∖ {0}. (4)

Lemma 3.2 The rigged field ξ is the unique section of TM⊥ such that η(ξ) = 1 .

Proof Let v ∈ TxM . By definition of ξ , η(v) = g̃(ξ, v) = g(ξ, v) + η(ξ)η(v) , which implies that g(ξ, v) =

η(v)(1 − η(ξ)) . In particular, when v ∈ TxM
⊥ ∖ {0} , the latter gives η(v)(1 − η(ξ)) = 0 . Hence, η(ξ) = 1 ,
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since from (4) η(v) ̸= 0 . It also follows that g(ξ, v) = 0 for every v ∈ TxM . Hence, ξ is a section of TM⊥ and
the uniqueness follows from the fact that TM⊥ is a rank 1 distribution. 2

From now on, ζ = N is a null rigging and ξ is the associated rigged vector field. We will consider perturbations
(1) of the ambient metric along this null rigging. Setting S(TM) = ker(η) and tr(TM) = span(N) , it is easy
to prove that S(TM) is a screen distribution and the following decompositions hold:

TM |M = TM ⊕ tr(TM) = S(TM)⊕orth
(
TM⊥ ⊕ tr(TM)

)
. (5)

It also holds that
g(ξ,N) = 1, g(N,N) = g(N,X) = 0, ∀X ∈ Γ(S(TM)). (6)

Let ∇ be the connection on M induced from ∇ through the projection along the transversal bundle tr(TM) =

span(N) . To avoid confusion, we may denote the induced connection by ∇N . For every section X of TM ,
one has g(∇Xξ, ξ) = 0 , which shows that ∇Xξ ∈ Γ(TM) . The Weingarten map is the endomorphism field

χ : Γ(TM) → Γ(TM)
X 7→ ∇Xξ

.

Gauss–Weingarten formulas of the immersion x : (M, g) → (M, g) are given by

∇XY = ∇XY +B(X,Y )N, (7)

∇XPY =
⋆

∇X PY + C(X,PY )ξ, (8)

∇XN = −ANX + τ(X)N, (9)

∇Xξ = −
⋆

Aξ X − τ(X)ξ, (10)

for all X,Y ∈ Γ(TM) , where
⋆

∇ denotes the connection on the screen distribution S(TM) induced by ∇
through the projection morphism P of Γ(TM) onto Γ(S(TM)) along ξ . B and C are the local second

fundamental forms of M and S(TM) , respectively; AN and
⋆

Aξ are the shape operators on TM and S(TM) ,

respectively; and the rotation 1 -form τ is given by τ(X) = g(∇XN, ξ) . It is easy to check that
⋆

Aξ and AN

are S(TM) -valued.
Shape operators and second fundamental forms are related by

B(X,Y ) = g(
⋆

Aξ X,Y ), (11)

C(X,PY ) = g(ANX,Y ). (12)

Using (6), (7), and (11), it is straightforward to show that
⋆

Aξ is g -symmetric and
⋆

Aξ (ξ) = 0 . On the contrary,
AN is not necessarily g -symmetric. However, AN is g -symmetric on the screen distribution as a consequence
of the following lemma.

Lemma 3.3 For any sections X,Y of the tangent bundle TM , one has

g(ANX,Y )− g(X,ANY ) = τ(X)η(Y )− τ(Y )η(X)− dη(X,Y ).

1165



NGAKEU and FOTSING TETSING/Turk J Math

Proof One just computes dη(X,Y ) by using the covariant derivative and Gauss–Weingarten equations. 2

The mean curvatures of M and S(TM) are respectively given by (cf. [4, 5])

⋆

H=

n∑
i=2

εiB(Ei, Ei) and H =

n∑
i=2

εiC(Ei, Ei), (13)

where (E2, . . . , En) is an orthonormal basis of the screen distribution and εi = g(Ei, Ei) = ±1 .

Proposition 3.1 If the screen distribution S(TM) is integrable and L is a leaf then H⃗ = Hξ+
⋆

HN is the
mean curvature vector of the immersion L→ (M, g) .

Proof For every x ∈ L , one has TxL = span(Nx, ξx) and the Gauss formula of the immersion L→ (M, g) is
given by

∇XY =
⋆

∇X Y+
⋆

∇
⊥

X Y =
⋆

∇X Y + C(X,Y )ξ +B(X,Y )N, (14)

for all X,Y ∈ Γ(S(TM)) . Using (13), one has

H⃗ =

n∑
i=2

εi
⋆

∇
⊥

Ei
Ei =

n∑
i=2

εiC(Ei, Ei)ξ +

n∑
i=2

εiB(Ei, Ei)N = Hξ+
⋆

HN.

2

A null hypersurface M is said to be totally umbilical (resp. totally geodesic) if there exists a smooth
function ρ on M such that at each point x ∈ M and for all X,Y ∈ TxM , Bx(X,Y ) = ρ(x)gx(X,Y ) (resp.

B vanishes identically on M ). It is equivalent to write
⋆

Aξ= ρP and
⋆

Aξ= 0 , respectively. Notice that these
are intrinsic notions on any null hypersurface in the sense that total umbilicity and total geodesibilicity of M
do not depend on the chosen rigging. Also, the screen distribution S(TM) is totally umbilical (resp. totally
geodesic) if there exists a smooth function λ on M such that Cx(X,PY ) = λ(x)gx(X,Y ) for all X,Y ∈ TxM

(resp. C = 0), which is equivalent to AN = λP (resp. AN = 0). We say that the rigged null hypersurface
x : (M, g,N) → (M, g) (or the rigging N ) has a conformal screen distribution when there exists a nowhere
vanishing smooth function φ on M such that

AN = φ
⋆

Aξ .

When the 1 -form η is closed, we say that (M, g,N) is a null hypersurface with closed rigging. The following
technical lemma∗ will be used in the sequel.

Lemma 3.4 For any null hypersurface with closed rigging and conformal screen distribution, the rotation
1-form vanishes on the screen distribution.

∗Fotsing TH, Ngakeu F. Null hypersurfaces and trapping horizons, 12 June 2017, arxiv: 1706.03861v1 [math.DG].
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For all sections X,Y, Z, T of TM , the so-called Gauss–Codazzi equations of (M, g,N) are given by

g(R(X,Y )Z,PT ) = g(R(X,Y )Z,PT )

+B(X,Z)C(Y, PT )−B(Y, Z)C(X,PT ), (15)

g(R(X,Y )Z,N) = g(R(X,Y )Z,N), (16)

g(R(X,Y )PZ,N) = (∇XC) (Y, PZ)− (∇Y C) (X,PZ)

+ C(X,PZ)τ(Y )− C(Y, PZ)τ(X), (17)

g(R(X,Y )Z, ξ) = (∇XB) (Y, Z)− (∇YB) (X,Z)

+B(Y, Z)τ(X)−B(X,Z)τ(Y ), (18)

g(R(X,Y )ξ,N) = C(Y,
⋆

AξX)− C(X,
⋆

Aξ Y )− dτ(X,Y ), (19)

where ∇XC is defined by (∇XC) (Y, PZ) = X · C(Y, PZ)− C(∇XY, PZ)− C(Y,
⋆

∇X PZ) .

3.2. α-Associated metric and α-twisted metric

For α ∈ C∞(M)⋆ a nowhere vanishing smooth function, the restriction on M of the α -twisted metric (1) is
given by

gα = g + αη ⊗ η, (20)

where we have denoted again by α the restriction of α on M . We call gα the α -associated metric of (M, g,N) .
One can observe that the 1 -associated metric g1 is just the associated metric g̃ .

Lemma 3.5 The pair (M, gα) is a semi-Riemannian manifold of index

να = q − 1

2
(1 + sign(α)) =

{
q − 1 if α > 0

q if α < 0.

Proof Let x ∈ M and u ∈ TxM such that gα(u, v) = 0 for all v ∈ TxM . In particular, 0 = gα(u, ξx) =

α(x)ηx(u) ⇒ ηx(u) = 0 since α(x) ̸= 0 . Thus, u ∈ S(TxM) . One then has g(u, v) = 0 for all v ∈ S(TxM) ,
and hence u = 0 since the restriction of g on the screen distribution is nondegenerate. Thus, (M, gα) is a semi-
Riemannian manifold. For the index, one just remarks that g is of index q − 1 on S(TM) and gα(ξ, ξ) = α .
2

We now know that xα : (M, gα) → (M, gα) is a nondegenerate hypersurface of the semi-Riemannian manifold
(M, gα) . The Gauss map of the isometric immersion xα is given by

δα =
√

|α|N − sign(α)√
|α|

ξ. (21)

In fact, g(X, ξ) = 0 =⇒ gα(X, δα) = 0 , ∀X ∈ Γ(TM) , and also gα(δα, δα) = −sign(α) . It follows that
(M, gα) is a semi-Riemannian manifold of index q , since (M, g) is of index να = q − 1

2 (1 + sign(α)) . For the
rest of this subsection, we assume that the rigging N is closed. This means that its equivalent 1 -form η is
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closed. It is easy to check that this is equivalent to

g(∇UN,V ) = g(U,∇VN), ∀U, V ∈ Γ(TM). (22)

Using (2), one has

∇αXδα = ∇Xδα +
1

2
[α (LNg) (X, δα) + dα(X)η(δα) + dα(δα)η(X)]N − 1

2
η(X)η(δα)dα

#gα .

Using (7)–(22) and by direct calculations, one gets

∇Xδα =
sign(α)√

|α|

[
−αANX+

⋆

Aξ X + τ(X)ξ
]
+ (X ·

√
|α|+

√
|α|τ(X))N +

dα(X)

2α
ξ,

(LNg)(X,N) = 0, dα#gα = dα#gα − sign(α)dα(δα)δα,

(LNg)(X, ξ) = 2τ(X), η(δα) = −sign(α)√
|α|

.

Thus,

∇αXδα =
sign(α)√

|α|

[
−αANX+

⋆

Aξ X + τ(X)ξ +
dα(X)

2α
ξ +

η(X)

2
√

|α|

(√
|α|dα#gα + dα(δα)ξ

)]
.

The shape operator of the immersion xα is then given by

Aδα(X) =
sign(α)√

|α|

[
αANX−

⋆

Aξ X − τ(X)ξ − dα(X)

2α
ξ − η(X)

2
√
|α|

(√
|α|dα#gα + dα(δα)ξ

)]
.

If α is constant on each leaf of the screen distribution and the screen distribution is conformal with
conformal factor 1/α , then the shape operator of the isometric immersion xα is given by

Aδα(X) = −sign(α)
2
√
|α|

η(X)
[
2τ(ξ) + η(dα#gα) + dα(N)

]
ξ.

We then have the following result.

Theorem 3.1 Let x : (M, g,N) → (M
n+1

, g) be a null hypersurface with closed rigging and conformal screen
distribution with conformal factor 1/α constant on leaves of the screen distribution. Then the isometric
immersion xα : (M, gα) → (M, gα) (gα being defined by (20)) is a nondegenerate hypersurface with at
most two principal curvatures: 0 with multiplicity n − 1 and eigenvectors the sections of S(TM) , and

− sign(α)

2
√

|α|

[
2τ(ξ) + η(dα#gα) + dα(N)

]
with multiplicity 1 and eigenvectors the sections of Rad(TM) .

3.3. Induced metric and α-associated metric
In this subsection, we will relate some geometrical objects of the α -associated metric gα with those of the
induced metric g . From here on, N is strictly a null rigging for M , meaning that we do not require N to
be lightlike globally on M , but on M . Recall that ∇α is the Levi-Civita connection of the α -associated semi-
Riemannian manifold (M, gα) and ∇ is the connection on the rigged null hypersurface x : (M, g,N) → (M, g)

induced from ∇ through the projection along N .
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Proposition 3.2 The connections ∇α and ∇ are related by

∇αXY = ∇XY − 1

2
η(X)η(Y )dα#gα +

α

2

[
η(X)(iY dη)

#gα + η(Y )(iXdη)
#gα

]
+

1

2α
[α (LNg) (X,Y ) + 2B(X,Y ) + dα(X)η(Y ) + dα(Y )η(X)] ξ. (23)

Proof Reasoning as in the proof of (2), one has

2gα(∇αXY, Z) = g(∇XY, Z) + g(Y,∇XZ) + αX · (η(Y )η(Z)) + dα(X)η(Y )η(Z)

+ g(∇Y Z,X) + g(Z,∇YX) + αY · (η(X)η(Z)) + dα(Y )η(X)η(Z)

− g(∇ZX,Y )− g(X,∇ZY )− αZ · (η(X)η(Y ))− dα(Z)η(X)η(Y )

+ g(∇XY −∇YX,Z) + αη(∇XY −∇YX)η(Z)− g(∇Y Z −∇ZY,X)

− αη([Y, Z])η(X) + g(∇ZX −∇XZ, Y ) + αη([Z,X])η(Y )

= 2gα(∇XY, Z) + 2B(X,Y )η(Z) + α (LNg) (X,Y )η(Z) + dα(X)η(Y )η(Z)

+ αη(X)dη(Y, Z) + αη(Y )dη(X,Z) + dα(Y )η(X)η(Z)− dα(Z)η(X)η(Y ).

From here, using the fact that
αη(X) = gα(X, ξ) ∀X ∈ Γ(TM), (24)

one obtains (23). 2

From here on, we assume that the rigging N is closed. Then using (22), (9), and (12), one has

(LNg)(X,Y ) = 2τ(X)η(Y )− 2C(X,PY ),

and equation (23) becomes

∇αXY = ∇XY − 1

2
η(X)η(Y )dα#gα

+
1

2α
[2B(X,Y )− 2αC(X,PY ) + 2ατ(X)η(Y ) + dα(X)η(Y ) + dα(Y )η(X)] ξ. (25)

From now on, we use the following range of indexes:

i, j = 0, 1, . . . , n; a, b = 1, . . . , n k, l = 2, . . . , n,

for summations (often with Einstein summation convention). For free indexes, we shall use

β, γ = 1, . . . , n.

Let
(
E1 = 1√

|α|
ξ, E2, . . . , En

)
be a gα -orthonormal frame field of TM such that (E2, . . . , En) is a frame field

of S(TM) . The matrix of gα in this frame is given by

gα = (gα(Ea, Eb)),

and we set (gabα ) to be the inverse matrix. Note that gabα = εaδab , with εa := ±1 .
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Proposition 3.3 One has:

À for all X,Y sections of TM , (Lξgα)(X,Y ) = −2B(X,Y ) + η(X)η(Y )dα(ξ) ;

Á in particular, divgα(ξ) = 1
2|α|dα(ξ)−

⋆

H ;

Â if ξ is gα -Killing conformal (or gα -Killing) with conformal factor φ , then (M, g,N) is totally umbilical
(or geodesic) with umbilical factor ρ = − 1

2φ .

Proof Since ∇α is the Levi-Civita connection of gα , one has

(Lξgα)(X,Y ) = gα(∇αXξ, Y ) + gα(X,∇αY ξ). (26)

Using (25), the latter becomes

(Lξgα)(X,Y ) = gα(∇Xξ, Y ) + gα(X,∇Y ξ) + η(X)η(Y )dα(ξ) + α [η(X)τ(Y ) + η(Y )τ(X)] .

From here, using (20) and Gauss–Weingarten formulas, the first item holds. By definition and using (26), one
has

divgα(ξ) = tr (∇αξ) = εkgα
(
∇αEk

ξ, Ek
)
=

1

2
εk(Lξgα)(Ek, Ek).

From here, using the first item, we obtain the second item. For the last item, let us assume that ξ is gα -
conformal Killing with conformal factor φ . Then the first item says that for all X,Y sections of the tangent
bundle TM ,

−2B(X,Y ) + η(X)η(Y )dα(ξ) = φg(X,Y ) + αφη(X)η(Y ). (27)

Setting X = Y = ξ , one finds dα(ξ) = αφ , and (27) becomes

−2B(X,Y ) = φg(X,Y ),

which completes the proof. 2

With the above proof we see that when ξ is gα -Killing, α is necessarily constant along integral lines of ξ .
We have two connections on M , namely the induced connection ∇ and the α -associated connection ∇α . A
natural question is to ask if both connections can coincide. The following result gives a necessary and sufficient
condition to have an affirmative answer.

Theorem 3.2 Let x : (M, g,N) → (M, g) be a null hypersurface with closed rigging.

À Let α be a nowhere vanishing function constant on each leaf of the screen distribution. Then the induced
connection is the Levi-Civita connection of the α-associated metric if and only if

⋆

Aξ= αAN and 2ατ(ξ) + dα(ξ) = 0. (28)

Á Let α be a nonzero real number. Then the induced connection is the Levi-Civita connection of the α-
associated metric if and only if

⋆

Aξ= αAN and τ ≡ 0. (29)
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Proof If α is constant along the leaves of the screen distribution, then

dα(X) = η(X)dα(ξ) and αdα#gα = dα(ξ)ξ,

and equation (25) becomes

∇αXY = ∇XY +
1

2α
[2B(X,Y )− 2αC(X,PY ) + 2ατ(X)η(Y ) + η(X)η(Y )dα(ξ)] ξ. (30)

Now ∇α = ∇ if and only if

2B(X,Y )− 2αC(X,PY ) + 2ατ(X)η(Y ) + η(X)η(Y )dα(ξ) = 0. (31)

Replacing X and Y by ξ in the latter, one obtains dα(ξ) + 2ατ(ξ) = 0 . The latter together with (31) allows
us to conclude that if α is constant along the leaves of the screen distribution then (28) holds. Now if α is
constant on M then the screen distribution is conformal and τ(ξ) = 0 , which by the Lemma 3.4 implies that
τ identically vanishes. The converse is straightforward by using (30). 2

Thus, given a null rigging N , to find an α -associated perturbation of g for which the coincidence of
connections happens, we have to solve equation (28) with α as unknown. By using Theorem 4.1 in [2], the
proof of the following result is a straightforward computation.

Proposition 3.4 Let (M, g,N) → (M, g) be a rigged null hypersurface. If α is a function such that (28)

holds, then the same equations hold for any change of rigging Ñ = ϕN , with ϕ constant on each leaf of the
screen distribution, and for α̃ = α

ϕ2 .

We notice that for another nowhere vanishing function ϕ on M , the α -associated metric along N

coincides with the α
ϕ2 -associated metric along Ñ = ϕN . Therefore, if ∇αN = ∇ , then we also have ∇Ñ

α
ϕ2

= ∇

without the condition that ϕ is constant along leaves of the screen distribution or the condition that Ñ is
closed.

4. Curvature of the α-associated metric

In this section, x : (M, g,N) → (M, g) is a rigged null hypersurface with closed null rigging N of a semi-
Riemannian manifold, and α is a nowhere vanishing smooth function on M constant on each leaf of the screen
distribution. Let X,Y, Z be sections of TM . We recall that the Riemannian curvature Rα of the α -associated
metric gα is given by

Rα(X,Y )Z = ∇αX∇αY Z −∇αY∇αXZ −∇α[X,Y ]Z. (32)
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It is straightforward to relate each of the three terms of the right-hand side of the above relation with tools of
the lightlike metric. Using equation (25) and Gauss–Weingarten equations, one finds

∇αX∇αY Z = ∇X∇Y Z −
[
1

α
B(Y, Z)− C(Y, PZ) + τ(Y )η(Z) +

1

2α
η(Y )η(Z)dα(ξ)

]
⋆

Aξ X

+

{
1

α
B(∇YX,Z)− C(X,P∇Y Z) + τ(X)η(∇Y Z) +

1

2α
η(X)η(∇Y Z)dα(ξ)

−
[
1

α
B(Y, Z)− C(Y, PZ) + τ(Y )η(Z) +

1

2α
η(Y )η(Z)dα(ξ)

]
τ(X)

− dα(X)

α2
η(Y )η(Z)dα(ξ) +

1

2α
X · (η(Y )η(Z))dα(ξ)

−dα(X)

2α2
B(Y, Z) +

1

α
X ·B(Y, Z)−X · C(Y, PZ) +X · (τ(Y )η(Z))

}
ξ.

Similarly, we express the two other terms of (32) to obtain the following:

Proposition 4.1 Riemannian curvatures of the connections ∇α and ∇ are related by

Rα(X,Y )Z = R(X,Y )Z −
[
1

α
B(Y, Z)− C(Y, PZ) + τ(Y )η(Z) +

1

2α
η(Y )η(Z)dα(ξ)

]
⋆

Aξ X

+

[
1

α
B(X,Z)− C(X,PZ) + τ(X)η(Z) +

1

2α
η(X)η(Z)dα(ξ)

]
⋆

AξY + dτ(X,Y )η(Z)

+

{
1

α
(∇XB) (Y, Z)− 1

α
(∇YB) (X,Z) + (∇Y C) (X,PZ)− (∇XC) (Y, PZ)

−
[
1

α
B(Y, Z)− 2C(Y, PZ)

]
τ(X) +

[
1

α
B(X,Z)− 2C(X,PZ)

]
τ(Y )

+
dα(ξ)

2α2

[
η(Y ) (2B(X,Z)− αC(X,PZ))− η(X) (2B(Y, Z)− αC(Y, PZ))

]}
ξ.

Let X ,Y,Z, T be sections of the screen distribution. Using the above proposition, one finds

gα(Rα(X,Y )Z,X ) = g(R(X,Y )Z,X ) +

[
1

α
B(X,Z)− C(X,PZ) + τ(X)η(Z) +

1

2α
η(X)η(Z)dα(ξ)

]
B(Y,X )

−
[
1

α
B(Y, Z)− C(Y, PZ) + τ(Y )η(Z) +

1

2α
η(Y )η(Z)dα(ξ)

]
B(X,X ).

Now using equation (15), this becomes

gα(Rα(X,Y )Z,X ) = g(R(X,Y )Z,X )−B(X,Z)C(Y,X ) +B(Y, Z)C(X,X )

+

[
1

α
B(X,Z)− C(X,PZ) + τ(X)η(Z) +

1

2α
η(X)η(Z)dα(ξ)

]
B(Y,X ) (33)

−
[
1

α
B(Y, Z)− C(Y, PZ) + τ(Y )η(Z) +

1

2α
η(Y )η(Z)dα(ξ)

]
B(X,X ).
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Using equations (16)–(17) and the above proposition, we obtain

g(Rα(ξ,X )Y, N) =
1

α
(∇ξB) (X ,Y)− 1

α
(∇XB) (ξ,Y)−

[
1

α
B(X ,Y)− C(X ,Y)

]
τ(ξ)

− dα(ξ)

2α2
[2B(X ,Y) + αC(X ,Y)]− C(ξ,Y)τ(X ). (34)

Equation (34) together with Gauss–Codazzi equation (18) gives

g(Rα(ξ,X )Y, N) =
1

α
g(R(ξ,X )Y, ξ)−

[
2

α
B(X ,Y)− C(X ,Y)

]
τ(ξ)

− dα(ξ)

2α2
[2B(X ,Y) + αC(X ,Y)]− C(ξ,Y)τ(X ). (35)

In Proposition 4.1, we have given relationships between Riemannian curvatures of the connections ∇α
and ∇ . Since ∇ is not a g -metric connection, the (1, 3) -tensor R does not have all Riemannian curvature
symmetries and does not allow us to define the classical Ricci tensor. However, if one defines a Ricci tensor as
Ric(X,Y ) = tr(Z 7→ R(Z,X)Y ) , this gives a nonnecessarily symmetric tensor and the definition of the scalar
curvature becomes ambiguous. For this reason, we will relate the Ricci tensor of ∇α with the one of ∇ for
sections of TM . In [8], such a relationship was found for α = 1 and by assuming that M is totally geodesic.
We are going to relate this Ricci tensor for a function α constant on the leaves of the screen distribution and
without the total geodesic condition. Let us start with sections of the screen distribution.

Proposition 4.2 For all X ,Y sections of the screen distribution, one has

Ricα(X ,Y) = Ric(X ,Y)− g(R(ξ,X )Y, N)− g(R(ξ,Y)X , N) +
1

α
g(R(ξ,X )Y, ξ)− C(ξ,Y)τ(X )

+
1

α
g(

⋆

AξX ,
⋆

AξY)− g(
⋆

AξX,ANY)− g(ANX ,
⋆

AξY) +B(X ,Y)

(
H − 1

α

⋆

H

)
(36)

+ C(X ,Y)
⋆

H −
[
2

α
B(X ,Y)− C(X ,Y)

]
τ(ξ)− dα(ξ)

2α2
[2B(X ,Y) + αC(X ,Y)] .

Proof By definition,

Ricα(X ,Y) = tr(Z 7→ Rα(Z,X )Y) =

n∑
k=2

εkg(Rα(Ek,X )Y, Ek) + g(Rα(ξ,X )Y, N).

Let us compute each term of the latter. Using (33), one has

εkg(Rα(Ek,X )Y, Ek) = εkg(R(Ek,X )Y, Ek)−B(ANX ,Y) +B(X ,Y)H

+
1

α
B(

⋆

AξX ,Y)−B(X , ANY)−
[
1

α
B(X ,Y)− C(X ,Y)

]
⋆

H .

Again by definition,

Ric(X ,Y) = εkg(R(Ek,X )Y, Ek) + g(R(ξ,X )Y, N) + g(R(ξ,Y)X , N),
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where we have used the quasi-orthonormal basis (N, ξ,E2, . . . , En) . Hence,

εkg(Rα(Ek,X )Y, Ek) = Ric(X ,Y)− g(R(ξ,X )Y, N)− g(R(ξ,Y)X , N)

−B(ANX ,Y) +B(X ,Y)H

+
1

α
B(

⋆

AξX ,Y)−B(X , ANY)−
[
1

α
B(X ,Y)− C(X ,Y)

]
⋆

H .

Then one obtains (36) by summing the latter with (35). 2

To complete the computation of the Ricci of all two sections of TM , it remains to compute Ricα(ξ, ξ)

and Ricα(ξ,X ) .

Proposition 4.3 For any function α constant on each leaf of the screen distribution of the rigged null
hypersurface (M, g,N) → (M, g) with closed null rigging N , the following hold:

À Ricα(ξ, ξ) = Ric(ξ, ξ)−
[
τ(ξ) + 1

2αdα(ξ)
] ⋆

H .

Á For any section X of S(TM) ,

Ricα(ξ,X ) = Ric(ξ,X ) + dτ(ξ,X ) + g(ANξ,X )
⋆

H .

Proof By definition, Ricα(ξ,X) = εkgα(Rα(Ek, ξ)X,Ek) . Equation (33) gives

εkgα(Rα(Ek, ξ)X,Ek) = εkg(R(Ek, ξ)X,Ek)− εkB(Ek, X)C(ξ, Ek)

+ εk
[
C(ξ, PX)− τ(ξ)η(X)− 1

2α
η(X)dα(ξ)

]
B(Ek, Ek). (37)

Replacing X by ξ and summing over k , one finds

Ricα(ξ, ξ) =
∑

εkg(R(Ek, ξ)ξ, Ek)−
[
τ(ξ) +

1

2α
dα(ξ)

]
⋆

H .

Since Ric(ξ, ξ) =
∑
εkg(R(Ek, ξ)ξ, Ek) , the first item holds. Now replacing X by X in (37) and summing, one

finds

Ricα(ξ,X ) = Ric(ξ,X )− g(R(ξ,X )ξ,N) + g(ANξ,
⋆

AξX ) + g(ANξ,X )
⋆

H,

since Ric(ξ,X ) = εkg(R(Ek, ξ)X , Ek) + g(R(N, ξ)X , ξ) = εkg(R(Ek, ξ)X , Ek) + g(R(ξ,X )ξ,N) . Then using
Gauss–Codazzi equation (19), the second item follows. 2

The following relates sectional curvatures of ∇α and ∇ . Recall that the sectional curvature of a plane
Π = span(X,Y ) is given by

Kα(Π) =
gα(Rα(X,Y )X,Y )

gα(X,X)gα(Y, Y )− gα(X,Y )2
.

By using equation (33), the proof of the following proposition is a straightforward calculation.
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Proposition 4.4 Let X and Y be two orthogonal sections of the screen structure. Let us consider the planes
Π0 = span(ξ,X ) and Π = span(X ,Y) . Then:

À Kα(Π0) =
1

αg(X ,X )

[
Kξ(Π0) +

[
τ(ξ) + 1

2αdα(ξ)
]
B(X ,X )

]
;

Á

Kα(Π) = K(Π) +
B(X ,X )B(Y,Y)−B(X ,Y)2

αg(X ,X )g(Y,Y)

+
2B(X ,Y)C(X ,Y)−B(X ,X )C (̸Y,Y)−B(Y,Y)C(X ,X )

g(X ,X )g(Y,Y)
.

Let us now relate scalar curvatures of (M, gα) and (M, g) .

Theorem 4.1 Let (M, g,N) → (M, g) be a null hypersurface with closed rigging of a semi-Riemannian manifold
and gα the semi-Riemannian metric on M defined as in (20). The scalar curvatures sα and s of (M, gα) and
(M, g) , respectively, are related (on M ) by

sα = s− 4Ric(ξ,N) + 2K(ξ,N) +
2

α
Ric(ξ, ξ)− 2tr

( ⋆
Aξ ◦AN

)
+

1

α
tr

(
⋆

A
2

ξ

)
+

(
2H − 1

α

⋆

H

)
⋆

H −τ(ANξ) +
(
H − 3

α

⋆

H

)
τ(ξ)− dα(ξ)

2α2

(
H + 3

⋆

H
)
.

Proof By definition,

sα = gaaα Ricα(Ea, Ea) = εkRicα(Ek, Ek) +
1

α
Ricα(ξ, ξ).

Let us compute each term of the latter. Replacing X and Y by Ek in equation (36) and summing over k , one
obtains

εkRicα(Ek, Ek) = s− 4Ric(ξ,N) + 2K(ξ,N) +
1

α
Ric(ξ, ξ)− 2tr

( ⋆
Aξ ◦AN

)
+

1

α
tr

(
⋆

A
2

ξ

)
+

(
2H − 1

α

⋆

H

)
⋆

H −τ(ANξ) +
(
H − 2

α

⋆

H

)
τ(ξ)− dα(ξ)

2α2

(
H + 2

⋆

H
)
. (38)

The first item of Proposition 4.3 gives:

1

α
Ricα(ξ, ξ) =

1

α
Ric(ξ, ξ)− 1

α

[
τ(ξ) +

1

2α
dα(ξ)

]
⋆

H . (39)

One obtains the announced result by summing (38) and (39). 2

5. Application on Monge null hypersurfaces of Rn+1
q

Let us now set (M, g) = Rn+1
q , the real standard semi-Euclidean space with its canonical metric

g = εi(dx
i)2,
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with Einstein’s summation and where (x0, . . . , xn) is the rectangular coordinate of Rn+1 , and we have set

εi = εi :=

{
−1 if 0 ≤ i ≤ q − 1

+1 if q ≤ i ≤ n
.

Let D be an open subset of Rnq−1 and let F : D → R be a nowhere vanishing smooth function. Let us consider
the immersion

x :
D −→ Rn+1

q

p = (u1, . . . , un) 7→ x(p) = (x0 = F (p), x1 = u1, . . . , xn = un).
(40)

Then M = x(D) is called a Monge hypersurface. It is easy to check that a vector field X = Xi ∂
∂xi (Einstein’s

summation) on Rn+1
q is tangent to M if and only if X0 = XaF ′

ua , so n =
∂

∂x0
+ εaF ′

ua
∂
∂xa is normal to M .

The Monge hypersurface M is a null hypersurface if and only if n is a null vector field. It is equivalent to write

εa (F ′
ua)

2
= ||∇F ||2 = 1, (41)

where ∇F is the gradient of F in the semi-Euclidean space Rnq−1 . Then taking the partial derivative of (41)

with respect to xβ leads to
εaF ′

uaF ′′
uauβ = 0. (42)

5.1. Generic UCC -normalization on a Monge null hypersurface

Let us endow the Monge null hypersurface x : M → Rn+1
q with the (physically and geometrically) relevant

rigging

NF =
1√
2

[
− ∂

∂x0
+ εaF ′

ua

∂

∂xa

]
. (43)

The corresponding rigged vector field is given by

ξF =
1√
2

n =
1√
2

[ ∂

∂x0
+ εaF ′

ua

∂

∂xa

]
. (44)

We show below that this is a closed normalization with vanishing rotation 1 -form τ and conformal screen
distribution with unit conformal factor φ = 1 . Let us consider the natural (global) parametrization of M given
by 

x0 = F (u1, ..., un)

xα = uα (u1, ..., un) ∈ D
α = 1, ..., n

. (45)

Then Γ(TM) is spanned by { ∂
∂uβ }β with

∂

∂uβ
= F ′

uβ

∂

∂x0
+

∂

∂xβ
. (46)

1176



NGAKEU and FOTSING TETSING/Turk J Math

Now taking the covariant derivative of n by the flat connection ∇ and using (42), we obtain

∇ ∂

∂uβ
n = εaF ′′

uβua

∂

∂xa

= εaF ′′
uβua

(
F ′
ua

∂

∂x0
+

∂

∂xa

)
,

∇ ∂
∂uα

n = εaF ′′
uβua

∂

∂ua
. (47)

Using (42) again we have
g(∇ ∂

∂uβ
n,NF ) = εaF ′

xβF
′′
xβxa = 0.

Hence, ∇ ∂

∂uβ
n is a section of the screen distribution.

Proposition 5.1 Let x : (M, g,NF ) → Rn+1
q be a Monge null hypersurface graph of a function F endowed

with the rigging NF as in (43). Then the following hold:

1. The rigging NF is closed and the corresponding rotation 1-form τNF vanishes identically.

2. The screen distribution is conformal with φ = 1 as conformal factor.

3. The screen distribution is integrable with leaves the level sets of the function F .

4. The induced connection ∇ coincides with the Levi-Civita connection of the associated metric g1 , i.e.

∇1 = ∇.

5. In the natural basis { ∂
∂ua }a , the divergence (with respect to the induced connection) of a vector field

X = Xa ∂
∂ua takes the form

divX =
∂Xa

∂ua

(as in the usual Euclidean case).

Proof Since ∇ is a flat connection and the difference between both of the vectors NF , ξF and 1√
2
n is a

constant vector, then

∇·NF = ∇·ξF =
1√
2
∇·n.

Then by using (47) and (10), τNF identically vanishes and

ANF

(
∂

∂uα

)
=
⋆

AξF

(
∂

∂uβ

)
= − 1√

2
εaF ′′

uβua

∂

∂ua
. (48)

Hence,
⋆

AξF= ANF
, which shows that the screen distribution is conformal with conformal factor φ = 1 . The

1 -form η is given by
η =

√
2F ′

uadua.
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Using the Gauss lemma it follows that

dη =
√
2F ′′

uaubdu
b ∧ dua =

√
2
∑
a ̸=b

(F ′′
uaub − F ′′

ubua) du
b ⊗ dua = 0,

which shows that the rigging NF is closed. Then the screen distribution is integrable. Let us now show that
the leaves of the screen distribution are really the level sets of F . Let c ∈ Im(F ) be a regular value of F and
Mc = F−1(c) the c -level set of F in Rnq−1 . Then ψc : Mc → Rnq−1 is a semi-Riemannian hypersurface of the
semi-Euclidean space Rnq−1 and the Gauss map is the gradient ∇F of F . We take ψc to be the inclusion map
and Mc is a subset of D . We then have the following diagram:

Mc
ψc
↪→ D ψ−→ M

i
↪→ Rn+1

q , (49)

p(u1, ..., un) 7→ x(x0 = F (u1, ..., un), x1 = u1, ..., xn = un).

We denote by
◦
∇ and ∇c the Levi-Civita connections of Rnq−1 and Mc , respectively. Taking the Jacobian

matrix of ψ , it is easy to check that for any X ∈ Γ(TMc) , ψ⋆(ψc⋆X) = ψ⋆(X) = (⟨X,∇F ⟩, X) = (0, X) and

⟨ψ⋆(X), ξF ⟩ = (1/
√
2)⟨(0, X), (1,∇F )⟩ = (1/

√
2) (−0 + ⟨X,∇F ⟩) = 0,

⟨ψ⋆(X),NF ⟩ = (1/
√
2)⟨(0, X), (−1,∇F )⟩ = (1/

√
2) (0 + ⟨X,∇F ⟩) = 0.

Thus, the level sets ψ(Mc) are the leaves of the screen distribution S (NF ) of M (endowed with the normal-
ization (43)). Conversely, let L→ (M, g) → Rn+1

q be a (connected) leaf of the screen distribution. We need to

show that L is a level set of F . For every x = (F (p), p) ∈ L , for every X = Xi ∂
∂xi ∈ TxRn+1 ,

X ∈ TxL ⇐⇒ ⟨X, ξF ⟩ = 0 = ⟨X,NF ⟩ ⇐⇒ X0 = 0.

Hence, for every β = 1, . . . , n , ∂
∂xβ ∈ TxL . In addition, since ⟨ ∂

∂xβ , ξF ⟩ = 1√
2
F ′
uβ , it follows that F ′

uβ (p) =

0, ∀x = (F (p), p) ∈ L,∀β = 1, . . . , n , so there exists c ∈ R such that

F (p) = c, ∀x = (F (p), p) ∈ L.

Thus, the leaf L is defined on M by F = c .

Since τNF identically vanishes and
⋆

AξF= ANF
, ∇ is the Levi-Civita connection of the (semi-Riemannian)

associated metric g1 (see Theorem 4.1 in [2]). Let X = Xa ∂
∂ua be a section of TM :

X = Xa ∂

∂ua
= X0 ∂

∂x1
+Xa ∂

∂xa
,

with X0 = F ′
uaXa . We have

∇∂
ub
X = ∂ub(X0)∂x0 + ∂ub(Xa)∂xa .
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By using (7) and (43) the left-hand side of the above equation gives

∇∂
ub
X = ∇∂

ub
X +B(∂ub , X)NF

= fa∂ua +B(∂ub , X)NF

=

(
F ′
uafa −

1√
2
B(∂ub , X)

)
∂x0

+

q−1∑
a=1

(
fa − F ′

ua

1√
2
B(∂ub , X)

)
∂xa +

n∑
a=q

(
fa + F ′

u

1√
2
B(∂ub , X)

)
∂xa .

After identification, one gets

fa =

{
∂ub(Xa) + 1√

2
F ′
uaB(∂ub , X) if 1 ≤ a ≤ q − 1

∂ub(Xa)− 1√
2
F ′
uaB(∂ub , X) if q ≤ a ≤ n

.

Hence,

∇∂
ub
X =

q−1∑
a=1

(
∂ub(Xa) +

1√
2
F ′
uaB(∂ub , X)

)
∂ua +

n∑
a=q

(
∂ub(Xa)− 1√

2
F ′
uaB(∂ub , X)

)
∂ua .

The above relation together with equation (41) leads to

divX = tr(∇X)

=

q−1∑
a=1

(
∂ua(Xa) +

1√
2
F ′
uaB(∂ua , X)

)
+

n∑
a=q

(
∂ua(Xa)− 1√

2
F ′
uaB(∂ua , X)

)

= ∂ua(Xa) +
1√
2

q−1∑
a=1

F ′
uaB(F ′

ua∂x0 + ∂xa , X)− 1√
2

n∑
a=q

F ′
uaB(F ′

ua∂x0 + ∂xa , X)

= ∂ua(Xa)−B(ξF , X)

= ∂ua(Xa).

2

Hence, on any Monge null hypersurface, our rigging NF has many good properties: the screen distribution
is integrable, the 1 -form τ identically vanishes, and

ANF
=
⋆

AξF . (50)

On a Monge null hypersurface, the rigging (43) is called generic unitary conformally closed (UCC)-rigging, since
it is closed and has a conformal screen with conformal factor φ = 1 . Recall that a hypersurface of a semi-
Riemannian manifold is said to be totally geodesic when its shape operator identically vanishes. The above
proposition together with Theorem 3.1 gives the following result.

Theorem 5.1 For any Monge null hypersurface (M, g,NF ) → Rn+1
q endowed with its generic UCC-rigging

(43), the isometric immersion x1 : (M, g1) → (Rn+1, g1) into the twisted semi-Riemannian manifold (Rn+1, g1)

with the metric (20) is a totally geodesic semi-Riemannian hypersurface.
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5.2. A special rigging on a Monge null hypersurface of Rn+1
q

Let us now consider for x :M → Rn+1
q , as in (40), the rigging

NF =
1

2x0

[ ∂

∂x0
− εaF ′

ua

∂

∂xa

]
(51)

with corresponding rigged vector field

ξF = −x0n = x0
[
− ∂

∂x0
− εaF ′

ua

∂

∂xa

]
. (52)

These two vector fields are defined on R⋆×D , which is an open subset containing our Monge null hypersurface
M . However, they are lightlike only along M . Since NF is pointwise conformal to the generic UCC-rigging,
the rigging NF also has integrable screen distribution and corresponding leaves are the level sets of the function
F . Furthermore, for this rigging,

η = − 1

2x0

[
dx0 + F ′

uadxa
]

(53)

and

η = − 1

x0
F ′
uadua (54)

since dx0 = F ′
uadua along M . Let us set for this subsection α = 2(x0)2 , which is constant along the leaves of

the screen distribution. After a direct calculation we obtain

gα =
[
εa + (F ′

ua)2
]
(dua)2 + 2

∑
a<b

F ′
uaF ′

ubdu
adub, (55)

where 2dxidxj = dxi ⊗ dxj + dxj ⊗ dxi . Notice that gα is a semi-Riemannian metric of index q − 1 on M ,
but since NF is lightlike only along M , the metric gα is not necessary nondegenerate. The problem is to find
integers n and q for which this metric is nondegenerate, in order to apply results of Section 3 to the Monge
null hypersurface M endowed with this rigging. For example, by a calculation of determinant, one shows that
for n = 3 and q = 2 , this metric gα is nondegenerate for any F .

Using (46) one has

∇ ∂
∂ua

ξF = −x0∇ ∂
∂ua

n − ∂x0

∂ua
n = −x0∇ ∂

∂ua
n +

F ′
ua

x0
ξF .

The latter together with (10) and (54) gives

⋆

Aξ= x0∇.n and τ = η. (56)

We also have

∇ ∂

∂uβ
NF = − 1

2x0
∇ ∂

∂uβ
n − (2x0)

∂ 1/(2x0)

∂uβ
NF = − 1

2x0
∇ ∂

∂uβ
n −

F ′
uβ

x0
NF ,

which allows us to find

AN =
1

2x0
∇.n. (57)
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Then the screen distribution is conformal with

⋆

Aξ= 2(x0)2AN and τ = η. (58)

From here, it is easy to check that (28) holds. By Theorem 3.2, the induced connection is the Levi-Civita
connection of the α -associated metric gα . Thus, ∇ = ∇α , where α = 2(x0)2 .

Remark 5.1 It is noteworthy that for all changes of rigging Ñ = ϕNF , the Levi-Civita connection of the
α
ϕ2 -associated metric coincides with the induced connection ∇Ñ .
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