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Abstract: This work aims to develop oscillation criterion and asymptotic behavior of solutions for a class of fractional
order differential equation:

Dα
0 u(t) + λu(t) = f(t, u(t)), t > 0,

Dα−1
0 u(t)|t=0 = u0, lim

t→0
J2−α
0 u(t) = u1,

where Dα
0 denotes the Riemann–Liouville differential operator of order α with 1 < α ≤ 2 and λ ∈ [1,∞). Properties of

the Mittag–Leffler function are utilized to establish our main results.

Key words: Fractional differential equations, oscillation, asymptotic behavior, the Riemann–Liouville differential
operator, the Mittag–Leffler function

1. Introduction
The study of fractional derivatives and integrals is a branch of mathematical analysis, known as fractional
calculus. Fractional differential equations, as the generalization of classical integer order differential equations,
have gained great interest because of their considerable applications in the fields of science and engineering that
are yet increasing. In the beginning, there were almost no well-known functional uses of this field and many
researchers considered it a theocratical territory consisting of just mathematical manipulations of a few or no
practical utilization. Almost three decades back, this view changed worldwide and gradually, the fractional
calculus penetrated in applied mathematics. In the most recent decade, fractional calculus has been practically
connected to almost every field of science and engineering. It should be noted that the majority of research
work is devoted to the solvability of fractional differential equations and in this respect fractional differential
equations have gained significant developments [1, 22].

Recently, the exploration on the oscillation theory of fractional differential equations has been exception-
ally productive and developed rapidly and has drawn the attention of many analysts [4, 5, 8, 13, 19, 21].

In [5, 19, 21], oscillation criteria are established for nonlinear fractional differential equations by gen-
eralized Riccati transformation technique and by using certain parameter functions. In [13], the generalized
Riccati transformation technique and integral averaging method has been used to establish sufficient conditions
for oscillation of solutions of time fractional partial fractional differential equations.
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In [4], some oscillation results for fractional order delay differential equations are given by using the
Laplace transformation formulations of fractional order derivatives.

In [8], oscillation criteria for a class of nonlinear fractional differential equations is established by obtaining
an equivalent volterra integral equation. Some interesting results are established by considering different
conditions.

We likewise allude [2, 3, 9–12, 15, 18, 20] to see some exploration of very late days on oscillation of a
variety of fractional differential equations.

In this manuscript, we established the oscillation criteria and asymptotic behavior of solutions for a class
of fractional differential equations by considering equations of the form

Dα
0 u(t) + λu(t) = f(t, u(t)), t > 0, (1.1)

Dα−1
0 u(t)|t=0 = u0, lim

t→0
J2−α
0 u(t)|t=0 = u1, (1.2)

where Dα
0 denotes the Riemann-Liouville(RL) differential operator of order α with 1 < α ≤ 2, λ ∈ [1,∞) and

u0, u1 ∈ R+ = [0,∞). We let f : R+ × R → R be a continuous function.
However in any case, to the best of our insight nothing is discussed about the oscillation of the solutions of

the fractional differential equations (1.1) so far. The motivation for the present work has been inspired basically
by the paper of N. Parhi and N. Misra [14], and the cited papers in the references. In this paper, we used the
Laplace transformation to the differential equation to get an equivalent integral equation. Some properties of
Mittag-Leffler function are used to obtain oscillation criteria.

The remainder of this paper is organized as follows: In the next section, we give some basic definitions
and properties. Some related properties of the Mittag–Leffler function are established in Section 3. Section 4
presents main results about oscillatory and nonoscillatory solutions, and the last section discusses the asymptotic
behavior of oscillatory and non-oscillatory solutions.

2. Preliminaries
In this section, we recall fundamentals of fractional calculus needed for the further developments of this paper.
We define the Riemann–Liouville fractional integral and derivative, and also give some of their properties that
will be used in this article.

The Riemann–Liouville integral is named after Bernhard Riemann and Joseph Liouville, and is defined
as follows:

Definition 2.1 Let α > 0 and u ∈ L1[a, b], for a ≤ t ≤ b. Then the Riemann–Liouville fractional integral Iαa

is defined as

Iαa u(t) =
1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds,

where Γ(.) is the Gamma function and a is the fixed initial point.

Next we present semigroup property and linearity property of the Riemann–Liouville fractional integral.
These properties are used in the proofs of next section.

1. If α, β ≥ 0 and u ∈ L1[a, b], then
Iαa I

β
a u = Iβa I

α
a u = Iα+β

a u

holds almost everywhere on [a, b].
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2. Let u and v be two functions defined on [a, b] such that Iαa u and Iαa v exist almost everywhere, then

Iαa (c1u+ c2v) = c1I
α
a u+ c2I

α
a v

almost everywhere on [a, b] .

Next we give the definition of fractional-order derivative.

Definition 2.2 [7] Let α > 0, n = ⌈α⌉ , and u ∈ ACn[a, b], for a ≤ t ≤ b. Then the Riemann–Liouville
fractional derivative Dα

a is defined as

Dα
au = DnIn−α

a u = Dn

(
1

Γ(n− α)

∫ t

a

(t− s)n−α−1u(s)ds

)
, n− 1 < α ≤ n.

In particular, for α = n, Dα
au = Dnu.

For some β > −1 and α > 0,

Dα
a (t− a)β =

Γ(β + 1)

Γ(β − α+ 1)
(t− a)β−α. (2.1)

The Riemann–Liouville fractional derivative and integral also satisfy the following properties:

(a) For α, β ≥ 0 and u ∈ L1[a, b], Dα
a I

α
a u = u.

(b) For α, β > 0, β > α and u ∈ L1[a, b], Dα
a I

β
a u = Iβ−α

a u holds almost everywhere on [a, b].

3. The Mittag–Leffler function and related properties

In this section, we define a two-parameter Mittag–Leffler function and prove some related properties that play
an important role in the upcoming progress of the paper.

Definition 3.1 The two-parameter Mittag–Leffler function Eα,β is defined by the power series

Eα,β(t) =

∞∑
k=0

tk

Γ(kα+ β)
,

where α, β > 0 are the parameters.

On the basis of numerical evidences [17], for α ∈ (1, 2], the estimate

−1 < Eα,α(−tα) ≤ 1

Γ(α)

holds for t ≥ 0.

It is evident from Figure 1 that for t ≥ 0 and 1 < α ≤ 2, the function tα−1Eα,α(−tα) is a bounded func-
tion, that is |tα−1Eα,α(−tα)| ≤ 1. , and the function tα−2Eα,α−1(−tα) is bounded below by −1. Furthermore,
limt→∞ tα−2Eα,α−1(−tα) ≤ 1. Also, note that at t = 0, the graph of tα−2Eα,α−1(−tα) blows up.
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Figure 1. Graphs of tα−1Eα,α(−tα) and tα−2Eα,α−1(−tα) for α = 1.01, 1.25, 1.50, 1.75, 2.00.

For simplicity, we introduce the notation

Jα
0 f(t, u(t)) :=

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds.

Now we prove the following properties that are important tools in the proof of Theorem 3.2.
For 1 < α ≤ 2,

(P1) Dα
0 J

α
0 f(t, u(t)) = f(t, u(t))− λ

∫ t

0
(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds.

(P2) limt→0 Dα−1
0 Jα

0 f(t, u(t)) = 0.

(P3) Dα
0 t

α−1Eα,α(−λtα) = −λtα−1Eα,α(−λtα) and, Dα
0 t

α−2Eα,α−1(−λtα) = −λtα−2Eα,α−1(−λtα).

Proof

(P1) By definition 3.1, we get Dα
0 J

α
0 f(t, u(t)) = Dα

0

∫ t

0

∑∞
k=0

(−λ)k(t−s)αk+α−1

Γ(αk+α) f(s, u(s))ds.

As the power series defining Eα,β(t) is convergent for all real t, we can interchange summation and
integration, and by definition 2.1, we have

Dα
0 J

α
0 f(t, u(t)) = Dα

0

∞∑
k=0

(−λ)kIαk+α
0 f(t, u(t))

= Dα
0 I

α
0 f(t, u(t)) +Dα

0

∞∑
k=1

(−λ)kIαk+α
0 f(t, u(t)).

Using property (a) of RL-derivative and integral, and replacing k − 1 by k in the sum, we obtain

Dα
0 J

α
0 f(t, u(t)) = f(t, u(t)) +Dα

0

∞∑
k=0

(−λ)k+1Iαk+α+α
0 f(t, u(t)).

In view of power series convergence, interchanging summation and derivative in the second term of the
right hand side, we get

Dα
0 J

α
0 f(t, u(t)) = f(t, u(t)) +

∞∑
k=0

(−λ)k+1Dα
0 I

αk+α+α
0 f(t, u(t)).
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Using property (b) of RL-derivative and integral, we obtain

Dα
0 J

α
0 f(t, u(t)) = f(t, u(t)) +

∞∑
k=0

(−λ)k+1Iαk+α
0 f(t, u(t)).

Applying definition 2.1, and then interchanging summation and integral, we get

Dα
0 J

α
0 f(t, u(t)) = f(t, u(t)) +

∫ t

0

∞∑
k=0

(−λ)k+1(t− s)αk+α−1

Γ(αk + α)
f(s, u(s))ds.

By definition 3.1, we have

Dα
0 J

α
0 f(t, u(t)) = f(t, u(t))− λ

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds.

(P2) Using the similar arguments as above in the proof of (P2) , we get Dα−1
0 Jα

0 f(t, u(t))

=
∫ t

0
Eα,1(−λ(t− s)α)f(s, u(s))ds.

Now, since limt→0

∫ t

0
Eα,1(−λ(t− s)α)f(s, u(s))ds = 0. Thus, we get limt→0 D

α−1
0 Jα

0 f(t, u(t)) = 0.

(P3) Dα
0 t

α−1Eα,α(−λtα) = Dα
0

∑∞
k=0

(−λ)ktαk+α−1

Γ(αk+α) =
∑∞

k=1
(−λ)ktαk−1

Γ(αk) =
∑∞

k=0
(−λ)k+1tαk+α−1

Γ(αk+α)

= −λtα−1
∑∞

k=0
(−λ)ktαk

Γ(αk+α) = −λtα−1Eα,α(−λtα), and Dα
0 t

α−2Eα,α−1(−λtα)

= Dα
0

∑∞
k=0

(−λ)ktαk+α−2

Γ(αk+α−1) =
∑∞

k=1
(−λ)ktαk−2

Γ(αk−1) = −λtα−2
∑∞

k=0
(−λ)ktαk

Γ(αk+α−1)

= −λtα−2Eα,α−1(−λtα).

2

Theorem 3.2 Let 1 < α ≤ 2, λ ∈ [1,∞) and u0, u1 ∈ R+. Let f : R+ × R → R is continuous. Then u is
solution of (1.1), (1.2) if and only if u satisfies the integral equation

u(t) =u0t
α−1Eα,α(−λtα) + u1t

α−2Eα,α−1(−λtα)

+

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds.
(3.1)

Proof Assume that u is the the solution of Equation (1.1), (1.2), then u satisfies the Volterra integral equation
(3.1)(see [6]).

Conversely, we assume that u is the solution of (3.1), then we show that it solves (1.1), (1.2).
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From (P1) and (P3) , we have

Dα
0 u(t) =Dα

0 [u0t
α−1Eα,α(−λtα) + u1t

α−2Eα,α−1(−λtα)

+

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds]

=− u0λt
α−1Eα,α(−λtα)− u1λt

α−2Eα,α−1(−λtα) + f(t, u(t))

− λ

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

=− λu(t) + f(t, u(t)).

Consequently, Dα
0 u(t) + λu(t) = f(t, u(t)). That is, the equation (1.1) is satisfied.

Next we prove that the initial conditions are also satisfied.

As Dα−1
0 tα−1Eα,α(−λtα) =

∑∞
k=0

(−λ)kDα−1
0 tαk+α−1

Γ(αk+α) =
∑∞

k=0
(−λ)ktαk

Γ(αk+1) = Eα,1(−λtα). And

J2−α
0 tα−2Eα,α−1(−λtα) =

∑∞
k=0

(−λ)kJ2−α
0 tαk+α−2

Γ(αk+α−1) =
∑∞

k=0
(−λ)ktαk

Γ(αk+1) = Eα,1(−λtα).

Now, since Eα,1(−λtα) =
∑∞

k=0
(−λ)ktαk

Γ(αk+1) = 1 +
∑∞

k=1
(−λ)ktαk

Γ(αk+1) . Thus, we obtain

lim
t→0

Dα−1
0 tα−1Eα,α(−λtα) = lim

t→0
J2−α
0 tα−2Eα,α−1(−λtα) = 1. (3.2)

Also J2−α
0 tα−1Eα,α(−λtα) =

∑∞
k=0

(−λ)kJ2−α
0 tαk+α−1

Γ(αk+α) =
∑∞

k=0
(−λ)ktαk+1

Γ(αk+2) = tEα,2(−λtα), and

Dα−1
0 tα−2Eα,α−1(−λtα) =

∑∞
k=0

(−λ)kDα−1
0 tαk+α−2

Γ(αk+α−1) =
∑∞

k=1
(−λ)ktαk−1

Γ(αk) = −λtα−1Eα,α(−λtα).

Thus, we have

lim
t→0

J2−α
0 tα−1Eα,α(−λtα) = lim

t→0
Dα−1

0 tα−2Eα,α−1(−λtα) = 0. (3.3)

Thus from (P2) , (3.2) and (3.3) the initial conditions are also satisfied.
Hence, every solution of (3.1) is also a solution of (1.1), (1.2) and vice versa. 2

We consider only those real solutions u : R+ → R of (1.1) that are continuous and exist on the half line
[0,∞) and are nontrivial in any neighborhood of infinity.

A solution u(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative.
Otherwise, it is called nonoscillatory.

In Sections 4 and 5, we provide sufficient conditions for the oscillatory and nonoscillatory solutions of
(1.1), (1.2).

4. Oscillatory and nonoscillatory solutions

Theorem 4.1 For 1 < α < 2, u1 = 0. Assume that f : R+ × R → R+ is a continuous function, and let there
exists a constant M > 0 such that

|f(t, u)| ≤ M

Γ(1− α)(t− a)α
for some a > 0 and t > a.

Then all unbounded solutions of (1.1), (1.2) are oscillatory.
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Proof Let u(t) be an unbounded solution of (1.1), (1.2) on [0,∞) such that it is not oscillatory. Then there
exists a t0 ≥ 0 such that u(t) > 0 for t ≥ t0. Since we have −1 ≤ tα−1Eα,α(−λtα) ≤ 1, and also we know
−1 < Eα,α(−λtα) ≤ 1

Γ(α) . Thus, we get

0 < u(t) =u0t
α−1Eα,α(−λtα) +

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

=u0t
α−1Eα,α(−λtα) +

∫ t1

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

+

∫ t

t1

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

≤u0 +

∫ t1

0

f(s, u(s))ds+
1

Γ(α)

∫ t

t1

(t− s)α−1f(s, u(s))ds

≤u0 +

∫ t1

0

f(s, u(s))ds+
M

Γ(α)

∫ t

a

(t− s)α−1

Γ(1− α)(s− a)α
ds

≤u0 + Lt1 +M,

where L = supt∈[0,t1] |f(t, u(t))| and t1 = max{a, t0}. Hence, u(t) is bounded, a contradiction.

For the other case, let u(t) < 0 for t ≥ t0. We have

0 > u(t) =u0t
α−1Eα,α(−λtα) +

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

=u0t
α−1Eα,α(−λtα) +

∫ t1

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

+

∫ t

t1

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

>− u0 −
∫ t1

0

f(s, u(s))ds−
∫ t

t1

(t− s)α−1f(s, u(s))ds

>− u0 −
∫ t1

0

f(s, u(s))ds−M

∫ t

t1

(t− s)α−1

Γ(1− α)(s− t1)α
ds

>− u0 − Lt1 −
M

Γ(α)
,

where L = supt∈[0,t1] |f(t, u(t))| and t1 = max{a, t0}. Hence, u(t) is bounded, a contradiction. 2

Theorem 4.2 Let u1 = 0, and f : R+ × R → R+ satisfy f(t,−u) = −f(t, u) and u2 ≤ u3 implies
f(t, u2) ≥ f(t, u3) for each fixed t. Let

lim
t→∞

∫ t

ρ

f(s,K)ds = +∞, t ≥ ρ

for some ρ > 0 and K > 0, then all bounded solutions of (1.1), (1.2) are oscillatory.
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Proof Let u(t) be a bounded solution of (1.1), (1.2) that is not an oscillatory solution on [0,∞) , so there
exists a constant M and t0 ≥ 0 such that |u(t)| ≤ M for t ≥ 0. Let u(t) < 0 for t ≥ t0. We have

u(t) = u0t
α−1Eα,α(−λtα) +

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

≥ −u0 −
∫ t0

0

f(s, u(s))ds−
∫ t

t0

f(s, u(s))ds

≥ −u0 − Lt0 +

∫ t

t0

f(s,M)ds,

where L = supt∈[0,t0] |f(t, u(t))|. This leads to u(t) > 0 for large t, a contradiction.

For the other case, let u(t) > 0 for t ≥ t0. We get

u(t) = u0t
α−1Eα,α(−λtα) +

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

≤ u0 +

∫ t0

0

f(s, u(s))ds+

∫ t

t0

f(s, u(s))ds

≤ u0 + Lt0 −
∫ t

t0

f(s,M)ds,

where L = supt∈[0,t0] |f(t, u(t))|. We obtain u(t) < 0 for large t, a contradiction. 2

Theorem 4.3 Let f : R+ × R → R+ that satisfy f(t,−u) = −f(t, u). Let f(t, u) be monotonically increasing
in u for each fixed t. If

lim
t→∞

inf
∫ t

0

f(s,K)ds = −∞

for some K > 0, then all bounded solutions of (1.1), (1.2) are nonoscillatory.

Proof Let u(t) be a bounded solution of (1.1), (1.2) on [0,∞) such that |u(t)| ≤ M for t ≥ 0. Let u(t) be
an oscillatory solution of (1.1), (1.2). Thus, there exists a sequence (tn) such that u(tn) = 0 and tn → ∞ as
n → ∞. We have

u0t
α−1
n Eα,α(−λtαn) + u1t

α−2
n Eα,α−1(−λtαn) = −

∫ tn

0

(tn − s)α−1Eα,α(−λ(tn − s)α)f(s, u(s))ds

≥ −
∫ tn

0

f(s, u(s))ds

≥ −
∫ tn

0

f(s,M)ds.

We obtain lim supn→∞(u0t
α−1
n Eα,α(−λtαn) + u1t

α−2
n Eα,α−1(−λtαn)) = ∞, a contradiction. 2
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5. Asymptotic behavior of oscillatory and nonoscillatory solutions

Theorem 5.1 Let f : R+ ×R → R be monotonically increasing in u for each fixed t and it satisfy f(t,−u) =

−f(t, u) and uf(t, u) < 0 if u ̸= 0.

Let limt→∞
∫ t

ρ
f(s,K)ds = +∞, t ≥ ρ for some ρ > 0 and K > 0.

If u(t) are oscillatory solutions of (1.1), (1.2) such that limt→∞ u(t) exists, then limt→∞ u(t) = 0.

Proof Let limt→∞ u(t) = r ̸= 0. Let r < 0. Choose 0 < ϵ < −r, so there exists a t0 > 0 such that t ≥ t0

implies u(t) < r + ϵ < 0. Thus,

f(t, u(t)) < f(t, r + ϵ) = −f(t,−(r + ϵ)).

Since u(t) is oscillatory, there exists a sequence (tn) such that u(tn) = 0 and tn → ∞ as n → ∞. Now,
choosing tn ≥ t0, we get

u0t
α−1
n Eα,α(−λtαn) + u1t

α−2
n Eα,α−1(−λtαn) =−

∫ t0

0

(tn − s)α−1Eα,α(−λ(tn − s)α)f(s, u(s))ds

−
∫ tn

t0

(tn − s)α−1Eα,α(−λ(tn − s)α)f(s, u(s))ds

≤
∫ t0

0

f(s, u(s))ds+

∫ tn

t0

f(s, u(s))ds

≤Lt0 −
∫ tn

t0

f(s,−(r + ϵ))ds,

where L = supt∈[0,t0] |f(t, u(t))|. Thus, limn→∞(u0t
α−1
n Eα,α(−tαn)+u1t

α−2
n Eα,α−1(−λtαn)) = −∞, a contradic-

tion.
For the other case, let r > 0. Then for 0 < ϵ < r, there exists a t0 > 0 such that u(t) > r− ϵ for t ≥ t0.

Choosing tn ≥ t0, we have

u0t
α−1
n Eα,α(−λtαn) + u1t

α−2
n Eα,α−1(−λtαn) =−

∫ t0

0

(tn − s)α−1Eα,α(−λ(tn − s)α)f(s, u(s))ds

−
∫ tn

t0

(tn − s)α−1Eα,α(−λ(tn − s)α)f(s, u(s))ds

≥
∫ t0

0

f(s, u(s))ds+

∫ tn

t0

f(s, u(s))ds

≥− Lt0 +

∫ tn

t0

f(s, r − ϵ)ds,

where L = supt∈[0,t0] |f(t, u(t))|. Thus, limn→∞(u0t
α−1
n Eα,α(−tαn) + u1t

α−2
n Eα,α−1(−λtαn)) = ∞, a contradic-

tion. 2

Theorem 5.2 Let u1 = 0, and f : R+ × R → R+ be monotonic decreasing in u for each fixed t and let it
satisfy f(t,−u) = −f(t, u). If

lim
t→∞

∫ t

0

f(s,K)ds = +∞ for some K > 0,

then all bounded solutions of (1.1), (1.2) are eventually negative.
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Proof Let u(t) be a bounded solution of (1.1), (1.2) such that |u(t)| ≤ M for t ≥ 0. It follows from Theorem
4.3 that u(t) is eventually positive or eventually negative. Thus, we let u(t) be eventually positive. Then there
exists a t0 > 0 such that u(t) > 0 for t ≥ t0. We have

u(t) = u0t
α−1Eα,α(−λtα) +

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

= u0t
α−1Eα,α(−λtα) +

∫ t0

0

(t− s)α−1Eα,α(−λ(t− s)α)f(s, u(s))ds

≤ u0 +

∫ t0

0

f(s, u(s))ds+

∫ t

t0

f(s, u(s))ds

≤ u0 + Lt0 −
∫ t

t0

f(s,M)ds,

where L = supt∈[0,t0] |f(t, u(t))|. Applying lim as t → ∞, we get a contradiction. 2

Theorem 5.3 Let u1 = 0, and f : R+ × R → R that satisfy f(t,−u) = −f(t, u) and uf(t, u) < 0 if u ̸= 0.

Also, u2 ≤ u3 implies f(t, u2) ≤ f(t, u3) for each fixed t. If

lim
t→∞

∫ t

ρ

f(s,K)ds = +∞, t ≥ ρ

for some ρ > 0 and K > 0, then no nonoscillatory solution of (1.1), (1.2) is bounded away from zero as t → ∞.

Proof Assume u(t) a nonoscillatory solution of (1.1), (1.2). Furthermore, assume that as t → ∞ it is
bounded away from zero. Then there exist t0 > 0, ϵ > 0 such that |u(t)| ≥ ϵ, for t ≥ t0. Let us assume u(t)

be eventually negative. Then there exists a t1 > t0 such that u(t) < 0 for t ≥ t1. So −u(t) ≥ ϵ for t ≥ t1. We
get

u(t) ≥ −u0 −
∫ t1

0

f(s, u(s))ds−
∫ t

t1

f(s, u(s))ds

≥ −u0 − Lt1 +

∫ t

t1

f(s, ϵ)ds,

where L = supt∈[0,t0] |f(t, u(t))|. So

lim
t→∞

u(t) ≥ −u0 − Lt1 + lim
t→∞

∫ t

t1

f(s, ϵ)ds > 0,

a contradiction.
For the other case, let u(t) > 0 for t ≥ t1. So, u(t) > ϵ for t ≥ t1. We get

u(t) ≤ u0 −
∫ t1

0

f(s, u(s))ds−
∫ t

t1

f(s, u(s))ds

≤ u0 + Lt1 −
∫ t

t1

f(s, ϵ)ds,

implies limt→∞ u(t) < 0, a contradiction. 2
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Theorem 5.4 Let u1 = 0, and f : R+×R → R+ satisfying f(t,−u) = −f(t, u) and u2 ≤ u3 implies f(t, u2) ≥
f(t, u3) for each fixed t. If

lim
t→∞

∫ t

ρ

f(s,K)ds = +∞, t ≥ ρ

for some ρ > 0 and K > 0, then no nonoscillatory solution of (1.1), (1.2) goes to zero as t → ∞.

Proof Let u(t) be a nonoscillatory solution of (1.1), (1.2). Suppose that limt→∞ u(t) = 0. Then for every
ϵ > 0 there exists a T > 0 such that |u(t)| < ϵ for t ≥ T. Now we assume that u(t) is eventually negative.
Then there exists a t0 > T such that u(t) < 0 for t ≥ t0. Thus, 0 < −u(t) < ϵ for t ≥ t0. We have

u(t) ≥ −u0 −
∫ t0

0

f(s, u(s))ds−
∫ t

t0

f(s, u(s))ds

≥ −u0 − Lt0 +

∫ t

t0

f(s, ϵ)ds,

where L = supt∈[0,t0] |f(t, u(t))|. Hence limt→∞ u(t) > 0, a contradiction.

For the other case, let u(t) be eventually positive. Thus, there exists a t0 > T such that u(t) > 0 for
t ≥ t0. Then 0 < u(t) < ϵ for t ≥ t0. We get

u(t) ≤ u0 +

∫ t0

0

f(s, u(s))ds+

∫ t

t0

f(s, u(s))ds

= u0 +

∫ t0

0

f(s, u(s))ds−
∫ t

t0

f(s,−u(s))ds

≤ u0 + Lt0 −
∫ t

t0

f(s, ϵ)ds,

implies limt→∞ u(t) < 0, a contradiction. 2

Theorem 5.5 Let u1 = 0, and f : R+ × R → R that satisfy f(t,−u) = −f(t, u) and uf(t, u) < 0 if u ̸= 0.

Also, u2 ≤ u3 implies f(t, u2) ≤ f(t, u3) for each fixed t. If

lim
t→∞

∫ t

ρ

f(s,K)ds = +∞, t ≥ ρ

for some ρ > 0 and K > 0. If u(t) is a nonoscillatory solution of (1.1), (1.2) such that limt→∞ u(t) exists,
then limt→∞ u(t) = 0.

Proof Suppose limt→∞ u(t) ̸= 0. Furthermore, assume that u(t) is eventually negative. Then there exists a
t0 > 0 such that u(t) < 0 for t ≥ t0. Let limt→∞ u(t) = r < 0. For 0 < ϵ < −r , there exists a t1 > t0 such
that u(t) < r + ϵ < 0, for t ≥ t1. We have

u(t) ≤ u0 +

∫ t1

0

f(s, u(s))ds+

∫ t

t1

f(s, u(s))ds

< u0 + Lt1 −
∫ t

t1

f(s,−(r + ϵ))ds,

where L = supt∈[0,t1] |f(t, u(t))|. Hence, limt→∞ u(t) not exists, a contradiction.
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For the other case, let r > 0. For 0 < ϵ < r , there exists a t1 ≥ t0 such that u(t) > r− ϵ > 0 for t ≥ t1.

Thus, for t ≥ t1, we get

u(t) ≥ −u0 +

∫ t1

0

f(s, u(s))ds+

∫ t

t1

f(s, u(s))ds

> −u0 − Lt1 +

∫ t

t1

f(s, r − ϵ)ds,

which implies that limt→∞ u(t) does not exist, a contradiction. 2

We hope that oscillation theory for Caputo fractional differential equations can also be developed similarly.
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