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Abstract: In this paper, we study a class of neutral functional integrodifferential equations with finite delay in Banach
spaces. We are interested in the global existence, uniqueness of mild solutions with values in the Banach space and in
its subspace D(A). The results are based on Banach’s and Schauder’s fixed point theorems and on the technique of
equivalent norms. As an application, we consider a diffusion neutral functional integrodifferential equation.
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1. Introduction
Neutral differential equations arise in many areas of applied mathematics and for this reason these equations
have received much attention in the last few decades. In the following, we provide several examples studied in
the literature resulting from various physical systems. In [30–32] the authors studied a model for a continuous
circular array of resistively coupled transmission lines with mixed initial boundary conditions, given by the
partial functional differential equations

∂

∂t
[u(t, ξ)− q(t− r, ξ)] = k∆[u(t, ξ)− q(t− r, ξ)] + f(ut(·, ξ)) for t ≥ 0,

where ξ is in the unit circle S1, ut(s, ξ) = u(t + s, ξ), −r ≤ s ≤ 0, t ≥ 0, k is a positive constant, f is a
continuous function, and 0 < q < 1. The phase space C

(
[−r, 0],H1(S1)

)
is the space of continuous functions

provided with the uniform norm topology. Motivated by the above model, Hale in [17–19] considered a more
general class of partial neutral functional differential equations of the form

{
∂
∂tDut = k∆Dut + f(ut) for t ≥ 0

u0 = ϕ,
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with k as a positive constant, ϕ ∈ C = C
(
[−r, 0] , C

(
S1,R

))
,

Dv = v(0)−
∫ 0

−r

v (s) dη(s) for v ∈ C, (1.1)

where the function η is of bounded variation and nonatomic at 0, that is, there exists a continuous nondecreasing
function µ : [0, r] → R+ such that µ(0) = 0 and∣∣∣∣∫ 0

−ϵ

v (s) dη(s)

∣∣∣∣ ≤ µ(ϵ) sup
−ϵ≤s≤0

|v(s)| for v ∈ C, ϵ ∈ [0, r],

with |·| a norm in C(S1,R). The Laplace operator A = k∆ with domain C2(S1,R) in an infinitesimal generator
of a strongly continuous semigroup of bounded linear operators on C(S1,R). Adimy and Ezzinbi [1] considered
the problem {

d
dtDut = ADut + f(ut) for t ≥ 0
u0 = ϕ,

where ϕ ∈ C = C ([−r, 0], X) , A is a nondensely defined linear operator that satisfies the Hille–Yosida condition
on the Banach space X, D : C → X is the bounded linear operator given by (1.1), and f is a continuous
function from of C into X. The model of rigid heat conduction with finite wave speeds, studied in [8], also can
be expressed as an integrodifferential equation of neutral type with infinite delay

d

dt

[
u(t) +

∫ t

−∞
K(t− s)u(s)ds

]
= A

[
u(t) +

∫ t

−∞
K(t− s)u(s)ds

]
+ f(t, ut) for t ≥ 0,

where the operator A is a generator of a strongly continuous semigroup on a Banach space. Some other models
are discussed by Hernandez and Henriquez in [9, 10], namely{

d
dt [u(t)− F (t, ut)] = Au(t) +G(t, ut) for t ≥ 0
u0 = ϕ,

where A generates an analytic semigroup on a Banach space X, B is the phase space of functions mapping
(−∞, 0] into X, ϕ ∈ B, and G, F are continuous functions from R+ × B into X. For more on this topic and
related applications we refer the reader to [17] and [32], which contain a comprehensive description of those
equations.

It has been noted that partial functional differential equations with delay have attracted widespread
attention in the literature, see for example [2, 3, 7, 11–14, 20] and the references therein.

Our work is mainly motivated by [29], where the author considered the initial value problem for an
abstract integrodifferential equation{

u′ (t) = Au (t) +
∫ t

0
g (t− s, u (s)) ds+ f (t) for t ≥ 0

u (0) = x ∈ X.

In this paper, we consider more generally the initial value problem for neutral integrodifferential equations with
a finite delay, more exactly the problem{

d
dt [u(t)−G(t, ut)] = A[u(t)−G(t, ut)] +

∫ t

0
B(t− s, us)ds+ F (t, ut),

u0 = ϕ,
(1.2)
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where A is a linear operator with domain D(A) which generates a strongly continuous semigroup (T (t))t≥0 on
a Banach space X, ϕ ∈ C ([−r, 0] , X) , and B,F,G are nonlinear operators with values in X. Recall that the
notation ut stands for the history function defined by

ut(s) = u(t+ s) for s ∈ [−r, 0].

We assume that
G (0, ϕ) = 0

and we are interested in mild solutions of problem (1.2), first in the spaces C ([0, t1] , X) (0 < t1 < ∞) and
C (R+, X) , and next in the spaces C ([0, t1] , Y ) and C (R+, Y ) , where Y is the space D (A) endowed with
the graph norm. The results are based on Banach’s and Schauder’s fixed point theorems and on the technique
of equivalent norms. As an application, we consider a diffusion partial functional integrodifferential equation.

The paper is organized as follows. In Section 2, we recall some preliminary notions and results. In
Section 3, we state and prove our main results on the existence and uniqueness, or only on the existence of mild
solutions with values in the Banach space X or in its subspace D(A), on a finite time interval [0, t1] and on
[0,∞). We use the theory of c0 -semigroups, Banach’s and Schauder’s fixed point theorems and the technique
of equivalent norms. Finally, in Section 4, as an application, we consider a diffusive neutral partial functional
integrodifferential equation.

2. Preliminaries
In this section, we recall some notions and results that we need in the following. Throughout the paper, X is a

Banach space, A : D (A) ⊂ X → X is closed linear operator which generates a c0 -semigroup (T (t))t≥0 on X.

For more details, refer to [24] and [28].

Recall that for such a semigroup, there exists M > 0 and ω ∈ R such that

|T (t)| ≤ Meωt, t ≥ 0, (2.1)

where |T (t)| is the norm of the bounded linear operator T (t) .

We denote by Y the space D(A) equipped with the graph norm defined by

|y|D(A) = |y|X + |Ay|X . (2.2)

It is well known that D (A) equipped with norm |·|D(A) is a Banach space.

We recall the following result from [21, p. 486].

Lemma 2.1 Let k : [0, t1] → X be continuously differentiable, and q be defined by

q(t) =

∫ t

0

T (t− s)k(s)ds for t ∈ [0, t1].

Then q(t) ∈ D (A) , for every t ∈ [0, t1], q is continuously differentiable, and

Aq(t) = q′(t)− k(t) =

∫ t

0

T (t− s)k′(s)ds+ T (t)k(0)− k(t).
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In regards with the abstract initial value problem

u′ (t) = Au (t) + h (t) , t ∈ [0, t1]

u (0) = v,

where v ∈ X and h ∈ C ([0, t1] , X) , we have the following definitions: by the mild solution of the problem,
one means the function u ∈ C ([0, t1] , X) given by

u (t) = T (t) v +

∫ t

0

T (t− s)h (s) ds, t ∈ [0, t1] . (2.3)

If v ∈ Y and either h ∈ C1 ([0, t1] , X) or h (t) ∈ Y for all t ∈ [0, t1] and h (t) , Ah (t) are continuous in t

on [0, t1] , then the function u (t) given by (2.3) is a strong solution of the problem, i.e. u ∈ C1 ([0, t1] , X) ∩
C ([0, t1] , Y ) , u (0) = u0 and u satisfies pointwise the differential equation.

In what follows, we shall work in the Banach space C ([0, t1] , X) endowed with the max norm |u|∞ =

|u|C([0,t1],X) = maxt∈[0,t1] |u (t)|X , or as in [5], with a suitable equivalent norm of the form

|u|θ = max
t∈[r,t1]

(
|ut|C([−r,0],X) e

−θt
)
,

for some θ > 0, where it is assumed that 0 < r < t1, and for each t ∈ [r, t1] , ut is the function in C ([−r, 0] , X)

defined by
ut (s) = u (t+ s) , s ∈ [−r, 0] .

It is easy to check that |·|θ is a norm on C ([0, t1] , X) and that

e−θt1 |u|∞ ≤ |u|θ ≤ |u|∞ ,

which proves the equivalence of the norms |·|∞ and |·|θ on C ([0, t1] , X) .

Similarly, we shall consider the Banach space C ([0, t1] , Y ) endowed with the corresponding max norm
|u|∞ = |u|C([0,t1],Y ) = maxt∈[0,t1] |u (t)|D(A) or an equivalent one of the form

|u|θ = max
t∈[r,t1]

(
|ut|C([−r,0],Y ) e

−θt
)
.

As it will follow from the next section, the use of an equivalent norm |·|θ with a suitable large enough
θ > 0 is extremely convenient when dealing with Volterra-type integral operators (see also [5, 6, 26, 27]).

3. Main results
3.1. Mild solutions with values in X

First we consider problem (1.2) in a compact interval [0, t1]. In view of (2.3), by a mild solution of (1.2) on the
interval [0, t1] we mean a function u ∈ C ([0, t1] , X) with u (0) = ϕ (0) such that for each t ∈ [0, t1] ,

u (t) = T (t)ϕ (0) +G (t, ũt) +

∫ t

0

T (t− s)

∫ s

0

B (s− τ, ũτ ) dτds+

∫ t

0

T (t− s)F (s, ũs) ds,
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where

ũ (t) =

{
ϕ (t) , t ∈ [−r, 0]
u (t) , t ∈ [0, t1] .

Our first result is about the existence and uniqueness of the mild solution of (1.2) in the set

K (t1, X) = {u ∈ C ([0, t1] , X) : u (0) = ϕ (0)}.

Clearly K (t1, X) is a closed subset of the space C ([0, t1] , X) . The result is obtained via Banach’s contraction
principle with respect to the norm |·|θ on C ([0, t1] , X) , with a suitable large enough number θ > 0.

Here are the hypotheses:

(H) B,F,G : [0, t1]×C([−r, 0], X) → X are continuous and Lipschitzian with respect to the second argument,
that is there are constants LB , LF , LG ≥ 0 with LG < 1 such that

|B(t, u)−B(t, v)|X ≤ LB |u− v|C([−r,0],X)

|F (t, u)− F (t, v)|X ≤ LF |u− v|C([−r,0],X)

|G(t, u)−G(t, v)|X ≤ LG |u− v|C([−r,0],X)

for all u, v ∈ C ([−r, 0], X) and t ∈ [0, t1].

Theorem 3.1 Under the assumption (H), problem (1.2) has a unique mild solution u ∈ C ([0, t1] , X) .

Proof A mild solution of (1.2) is a fixed point in K (t1, X) of the operator

(Pu) (t) = T (t)ϕ (0) +G (t, ũt) +

∫ t

0

T (t− s)

∫ s

0

B (s− τ, ũτ ) dτds+

∫ t

0

T (t− s)F (s, ũs) ds.

Since G (0, u0) = G (0, ϕ) = 0, one has P (K (t1, X)) ⊂ K (t1, X) . Hence, in order to apply Banach’s contraction
principle, it remains to prove that P is a contraction on K (t1, X) with respect to a suitable norm |·|θ on
C ([0, t1] , X) . To show this, consider two arbitrary functions u, v ∈ K (t1, X) and any t ∈ [0, t1] . Using (2.1)
and (H) we have

|(Pu) (t)− (Pv) (t)|X ≤ LG |ũt − ṽt|C([−r,0],X) +MLBe
ωt1

∫ t

0

∫ s

0

|ũτ − ṽτ |C([−r,0],X) dτds

+MLF e
ωt1

∫ t

0

|ũs − ṽs|C([−r,0],X) ds

= LG |ũt − ṽt|C([−r,0],X) e
−θteθt

+MLBe
ωt1

∫ t

0

∫ s

0

|ũτ − ṽτ |C([−r,0],X) e
−θτeθτdτds

+MLF e
ωt1

∫ t

0

|ũs − ṽs|C([−r,0],X) e
−θseθsds.
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It follows that

|(Pu) (t)− (Pv) (t)|X ≤
(
LGe

θt +MLBe
ωt1

∫ t

0

∫ s

0

eθτdτds+MLF e
ωt1

∫ t

0

eθsds

)
|u− v|θ .

Since ∫ t

0

eθsds =
1

θ

(
eθt − 1

)
≤ 1

θ
eθt,

∫ t

0

∫ s

0

eθτdτds ≤ 1

θ2
eθt,

we deduce that

|(Pu) (t)− (Pv) (t)|X ≤
[
LG +Meωt1

(
LB

θ2
+

LF

θ

)]
eθt |u− v|θ .

For t ∈ [r, t1] and s ∈ [−r, 0] , this inequality yields

|(Pu) (t+ s)− (Pv) (t+ s)|X ≤
[
LG +Meωt1

(
LB

θ2
+

LF

θ

)]
eθ(t+s) |u− v|θ

≤
[
LG +Meωt1

(
LB

θ2
+

LF

θ

)]
eθt |u− v|θ .

Taking the maximum for s ∈ [−r, 0] gives

|(Pu)t − (Pv)t|C([−r,0],X)
≤

[
LG +Meωt1

(
LB

θ2
+

LF

θ

)]
eθt |u− v|θ ,

for every t ∈ [r, t1] . Now we divide by eθt and take the maximum for t ∈ [r, t1] to give

|Pu− Pv|θ ≤
[
LG +Meωt1

(
LB

θ2
+

LF

θ

)]
|u− v|θ .

Therefore, in view of the assumption LG < 1, for θ > 0 large enough that

LG +Meωt1

(
LB

θ2
+

LF

θ

)
< 1,

the operator P is a contraction on K (t1, X) , and according to Banach’s fixed point theorem it has in K (t1, X)

a unique fixed point. 2

Under a weaker condition than (H), where the Lipschitz continuity is replaced by the condition of at
most linear growth, and a stronger assumption on G and on the semigroup (T (t))t≥0 , we can still prove the
existence of a mild solution in C ([0, t1] , X) , but not the uniqueness.

(Hw ) (a) B,F,G : [0, t1]×C([−r, 0], X) → X are continuous and have a growth at most linear with respect to
the second argument, that is there are constants LB , LF , LG ≥ 0 with LG < 1, and CB , CF , CG ≥ 0

such that
|B(t, u)|X ≤ LB |u|C([−r,0],X) + CB

|F (t, u)|X ≤ LF |u|C([−r,0],X) + CF

|G(t, u)|X ≤ LG |u|C([−r,0],X) + CG

for all u ∈ C ([−r, 0], X) and t ∈ [0, t1] ;
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(b) G maps bounded subsets of [0, t1]×C([−r, 0], X) into relatively compact sets of X; and the semigroup
(T (t))t≥0 is compact.

Theorem 3.2 Under the assumption (Hw ), problem (1.2) has at least one mild solution u ∈ C ([0, t1] , X) .

Proof From (Hw )(b), the operator P from C ([0, t1] , X) to its self is completely continuous. By similar
estimations as in the proof of Theorem 3.1, using the growth conditions on B,F,G, and the technique based
on equivalent norms, we obtain

|Pu|θ ≤
[
LG +Meωt1

(
LB

θ2
+

LF

θ

)]
|u|θ + c,

for every u ∈ K (t1, X) , where
c = CG +Meωt1t1CF +Meωt1t21CB .

Since LG < 1, we may choose θ > 0 large enough that

LG +Meωt1

(
LB

θ2
+

LF

θ

)
< 1,

and then a number R > 0 such that[
LG +Meωt1

(
LB

θ2
+

LF

θ

)]
R+ c ≤ R.

For example we can take

R =

(
1− LG −Meωt1

(
LB

θ2
+

LF

θ

))−1

c.

Thus, the operator P maps the closed bounded convex set KR = {u ∈ K (t1, X) : |u|θ ≤ R} into itself.
Consequently, from Schauder’s fixed point theorem, there exists at least one u ∈ KR with Pu = u. Clearly u

is a mild solution of problem (1.2). 2

Next we consider problem (1.2) on the semiline [0,∞) and we look for a mild solution on [0,∞), that is
a function u ∈ C ([0,∞), X) which is a mild solution on any finite interval [0, t1] . To guarantee the existence
and uniqueness of such a solution we require the following conditions:

(H*) B,F,G : [0,∞)×C([−r, 0], X) → X are continuous and Lipschitzian with respect to the second argument,
that is there are continuous functions lB , lF , lG : [0,∞) → [0,∞) with lG (t) < 1 for all t ∈ [0,∞) such
that

|B(t, u)−B(t, v)|X ≤ lB (t) |u− v|C([−r,0],X)

|F (t, u)− F (t, v)|X ≤ lF (t) |u− v|C([−r,0],X)

|G(t, u)−G(t, v)|X ≤ lG (t) |u− v|C([−r,0],X)

for all u, v ∈ C ([−r, 0], X) and t ∈ [0,∞).
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Theorem 3.3 Under the assumption (H* ), problem (1.2) has a unique mild solution u ∈ C ([0,∞), X) .

Proof It suffices to apply Theorem 3.1 to any finite interval [0, n] , for any integer n > r, with

LB = max
t∈[0,n]

lB (t) , LF = max
t∈[0,n]

lF (t) , LG = max
t∈[0,n]

lG (t) .

Clearly, since lG (t) < 1 for all t ≥ 0, one has LG < 1. Notice that the Lipschitz constants being dependent on
n, the corresponding numbers θ and their associated norms |·|θ may differ as well from one interval [0, n] to
the other.

Thus, for each such interval [0, n] , problem (1.2) has a unique mild solution on [0, n] , let it be denoted
by un. The uniqueness property implies

un+1 (t) = un (t) for t ∈ [0, n] .

Based on this, the following definition of a function u ∈ C ([0,∞), X) ,

u (t) = un (t) , t ∈ [0, n] , n ∈ N, n > r.

Obviously, this function u is the unique mild solution in C ([0,∞), X) of (1.2). 2

An analogue existence but not uniqueness result on semiline can be established relaxing the Lipschitz
continuity conditions and reinforcing the semigroup assumption.

(H*
w ) (a) B,F,G : [0,∞)× C([−r, 0], X) → X are continuous and there are continuous functions lB , lF , lG :

R+ → R+ with lG (t) < 1 for all t ≥ 0, and cB , cF , cG : R+ → R+ such that

|B(t, u)|X ≤ lB (t) |u|C([−r,0],X) + cB (t)

|F (t, u)|X ≤ lF (t) |u|C([−r,0],X) + cF (t)

|G(t, u)|X ≤ lG (t) |u|C([−r,0],X) + cG (t)

for all u ∈ C ([−r, 0], X) and t ∈ [0,∞);

(b) G maps bounded subsets of [0,∞) × C([−r, 0], X) into relatively compact sets of X; and the
semigroup (T (t))t≥0 is compact.

Theorem 3.4 Under the assumption (H*
w ), problem (1.2) has at least one mild solution u ∈ C ([0,∞), X) .

Proof One solution u1 ∈ C ([−r, 1] , X) can be guaranteed using Theorem 3.2, where t1 = 1, LB =

maxt∈[0,1] lB (t) , CB = maxt∈[0,1] cB (t) and LF , LG, CF , CG are defined in a similar way. The solution u1

is then continued on the interval [1, 2] by considering the operator

(Pu) (t) = T (t− 1)u1 (1) +G (t, ũt) +

∫ t

1

T (t− s)

∫ s

0

B (s− τ, ũτ ) dτds

+

∫ t

1

T (t− s)F (s, ũs) ds,
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where

ũ (t) =

{
u1 (t) , t ∈ [−r, 1]
u (t) , t ∈ [1, 2] .

A fixed point of P in C ([1, 2] , X) is obtained via Schauder’s fixed point theorem using a similar method. This
extends u1 to a solution u2 ∈ C ([−r, 2] , X) , which in its turn is continued on the interval [2, 3] , and so on. 2

3.2. Mild solutions with values in D(A)

In applications, when X is a space of functions of space variables, the appurtenance of an element to the subspace
D (A) of X means some regularity with respect to the space variables. Therefore, it is of interest to guarantee
that the mild solution takes values in D (A) . Recalling that Y, the space D (A) equipped with the norm (2.2),
is a Banach space, we are able to adapt the previous results to this aim assuming that ϕ ∈ C ([−r, 0] , Y ) . Our
assumptions are now:

(A1) F,G : [0, t1] × C([−r, 0], Y ) → Y are continuous and Lipschitzian with respect to the second argument,
that is there are constants LF , LG ≥ 0 with LG < 1 such that

|F (t, u)− F (t, v)|D(A) ≤ LF |u− v|C([−r,0],Y )

|G(t, u)−G(t, v)|D(A) ≤ LG |u− v|C([−r,0],Y )

for all u, v ∈ C ([−r, 0], Y ) and t ∈ [0, t1].

(A2) B : [0, t1] × C([−r, 0], Y ) → X, the derivative ∂B
∂t (t, u) exists and is continuous from [0, t1] × Y to X,

there exist constants LB , L
1
B ≥ 0 such that:

|B(t, u)−B(t, v)|X ≤ LB |u− v|C([−r,0],Y )

and ∣∣∣∣∂B∂t (t, u)− ∂B

∂t
(t, v)

∣∣∣∣
X

≤ L1
B |u− v|C([−r,0],Y )

for all u, v ∈ C ([−r, 0] , Y ) and t ∈ [0, t1].

Theorem 3.5 Under the assumption (A1) and (A2), problem (1.2) has a unique mild solution u ∈ C ([0, t1] , Y ) .

Proof Denote

(P1u) (t) = T (t)ϕ (0) +G (t, ũt) +

∫ t

0

T (t− s)F (s, ũs) ds,

(P2u) (t) =

∫ t

0

T (t− s)

∫ s

0

B (s− τ, ũτ ) dτds.

As in the proof of Theorem 3.1, we obtain, this time for the norm |·|θ in C ([0, t1] , Y ) , for every u, v ∈
K (t1, Y ) := {u ∈ C ([0, t1] , Y ) : u (0) = ϕ (0)},

|P1u− P1v|θ ≤
(
LG +Meωt1

LF

θ

)
|u− v|θ . (3.1)
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Also,

|(P2u) (t)− (P2v) (t)|X ≤ Meωt1
LB

θ2
eθt |u− v|θ . (3.2)

Next, for an estimate of |(AP2u) (t)− (AP2v) (t)|X , we apply Lemma 2.1 to

k (s) =

∫ s

0

[B (s− τ, uτ )−B (s− τ, vτ )] dτ,

for which

k′ (s) = B (0, us)−B (0, vs) +

∫ s

0

[
∂B

∂t
(s− τ, uτ )−

∂B

∂t
(s− τ, vτ )

]
dτ.

In this case,
q (t) = (P2u) (t)− (P2v) (t)

and since

Aq (t) =

∫ t

0

T (t− s) k′ (s) ds− k (t)

Then

|(AP2u) (t)− (AP2v) (t)|X ≤
∣∣∣∣∫ t

0

T (t− s) k′ (s) ds

∣∣∣∣
X

+ |k (t)|X

≤ Meωt1

∫ t

0

|k′ (s)|X ds+ |k (t)|X .

Next by similar estimations,

|k (t)|X ≤ LB

θ
eθt |u− v|θ

and ∫ t

0

|k′ (s)|X ds ≤
(
LB

θ
+

L1
B

θ2

)
eθt |u− v|θ .

Hence,

|(AP2u) (t)− (AP2v) (t)|X ≤
[
Meωt1

(
LB

θ
+

L1
B

θ2

)
+

LB

θ

]
eθt |u− v|θ . (3.3)

Now (3.2) and (3.3) yield

|(P2u) (t)− (P2v) (t)|D(A) ≤
[
Meωt1

(
2LB

θ
+

L1
B

θ2

)
+

LB

θ

]
eθt |u− v|θ

This gives

|(P2u)t − (P2v)t|C([−r,0],Y )
≤

[
Meωt1

(
2LB

θ
+

L1
B

θ2

)
+

LB

θ

]
eθt |u− v|θ

and after dividing by eθt and taking the maximum over t, becomes

|P2u− P2v|θ ≤
[
Meωt1

(
2LB

θ
+

L1
B

θ2

)
+

LB

θ

]
|u− v|θ . (3.4)
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Finally, (3.1) and (3.4) give

|Pu− Pv|θ ≤
[
LG +Meωt1

(
2LB

θ
+

L1
B

θ2
+

LF

θ

)
+

LB

θ

]
|u− v|θ .

Thus, choosing θ > 0 sufficiently large, the operator P is a contraction on K (t1, Y ) with respect to the norm
|·|θ on C ([0, t1] , Y ) . 2

Next we consider problem (1.2) on the semiline [0,∞) and we look for a mild solution with values in
D (A) , that is a function u ∈ C ([0,∞), Y ) which is a mild solution on any finite interval [0, t1] . The hypotheses
are:

(A1*) F,G : [0,∞)×C([−r, 0], Y ) → Y are continuous and lipschitzian with respect to the second argument,
that is there are continuous functions lB , lF , lG : [0,∞) → [0,∞) with lG (t) < 1 for all t ∈ [0,∞) such
that

|F (t, u)− F (t, v)|D(A) ≤ lF (t) |u− v|C([−r,0],Y )

|G(t, u)−G(t, v)|D(A) ≤ lG (t) |u− v|C([−r,0],Y )

for all u, v ∈ C ([−r, 0], Y ) and t ∈ [0,∞).

(A2* ) B : [0,∞)×C([−r, 0], Y ) → X, the derivative ∂B
∂t (t, u) exists and is continuous from [0,∞)× Y to X,

there exist continuous functions lB , l
1
B : [0,∞) → [0,∞) such that:

|B(t, u)−B(t, v)|X ≤ lB (t) |u− v|C([−r,0],Y )

and ∣∣∣∣∂B∂t (t, u)− ∂B

∂t
(t, v)

∣∣∣∣
X

≤ l1B (t) |u− v|C([−r,0],Y )

for all u, v ∈ C ([−r, 0] , Y ) and t ∈ [0,∞).

Theorem 3.6 Under the assumptions (A1*) and (A2*), problem (1.2) has a unique mild solution u ∈
C ([0,∞), Y ) .

Proof The proof is similar to that of Theorem 3.3. 2

4. Application
To illustrate the previous results, we consider the following diffusion model given by a neutral integrodifferential
equation with delay

d
dt

[
u(t, ξ)−

∫ 0

−r
γ(s)u(t+ s, ξ))ds

]
= d2

dξ2

[
u(t, ξ)−

∫ 0

−r
γ(s)u(t+ s, ξ))ds

]
+
∫ t

0
β (t− s, u(s, ξ)) ds+

∫ 0

−r
ρ (s)u(t+ s, ξ))ds, t ≥ 0, ξ ∈ [0, a]

u(t, 0) = u(t, a) = 0, t ≥ 0

u(s, ξ) = ϕ (s, ξ) , s ∈ [−r, 0], ξ ∈ [0, a].

(4.1)
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With the notations

u (t) (ξ) = u (t, ξ) for t ≥ 0, ξ ∈ [0, a] ,

ϕ (s) (ξ) = ϕ (s, ξ) for s ∈ [−r, 0] , ξ ∈ [0, a] ,

problem (4.1) can be rewritten in the form

d
dt

[
u(t)−

∫ 0

−r
γ (s)ut(s))ds

]
= d2

dξ2

[
u(t)−

∫ 0

−r
γ (s)ut(s))ds

]
+
∫ t

0
β
(
t− s, d2

dξ2u (s)
)
ds+

∫ 0

−r
ρ (s)ut(s))ds, t ≥ 0, ξ ∈ [0, a]

u (t) (0) = u (t) (π) = 0, t ≥ 0

u0 (s) = ϕ (s) , s ∈ [−r, 0], ξ ∈ [0, a].

(4.2)

Then problem (4.2) is of type (1.2), if we let X = L2 (0, a) , A : D(A) ⊂ X → X be defined by

D(A) = H2(0, a) ∩H1
0 (0, a), Au = u′′,

and for t ≥ 0, v ∈ C([−r, 0], Y ),

G (t, v) =

∫ 0

−r

γ (s) v (s) ds, B (t, v) = β (t, v′′) , F (t, v) =

∫ 0

−r

ρ (s) v(s))ds.

Notice that the operator A defined as above is the infinitesimal generator of c0 -semigroup on X (see [28, p.
64]).

Assume that

(i) ϕ ∈ C([−r, 0], Y ); γ, ρ ∈ L1 ([−r, 0] ,R+) , |γ|L1(−r,0) < 1 and
∫ 0

−r
γ (s)ϕ (s) ds = 0.

(ii) β : R+ ×R → R is continuous and continuously differentiable in its first variable; β (t, x) and βt (t, x) are
Lipschitz continuous in x uniformly in t.

Notice that here G and F do not depend on t, they are bounded linear operators from C([−r, 0], Y ) to
Y, and

|G (t, v)|Y ≤ |γ|L1(−r,0) |v|C([−r,0],Y )

|F (t, v)|Y ≤ |ρ|L1(−r,0) |v|C([−r,0],Y ) .

Hence the hypothesis (A1∗ ) on F and G is fulfilled with lF (t) ≡ |ρ|L1(−r,0) and lG (t) ≡ |γ|L1(−r,0) . As

concerns hypothesis (A2∗ ), we refer to paper [29].
Consequently, the conditions of Theorem 3.6 are fulfilled and we have the following result.

Theorem 4.1 Under the assumptions (i) and (ii), problem (4.1) has a unique mild solution u ∈ C ([0,∞), Y ) .
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