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Abstract: In this paper, we focus on weak-stability and saddle point theorems of multiobjective optimization problems
that have an infinite number of constraints. The obtained results are based on the notion of weak-subdifferentials for
vector functions. Some properties of weak stability for the problems are introduced. Relationships between strong duality
and saddle points of the augmented Lagrange vector functions associated to the problems are investigated. Connections
between weak-stability and saddle point theorems of the problems are established. An example is given.
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1. Introduction
It is well known that the notion of subdifferentials for convex functions is important in convex analysis,
optimization theory, and variational analysis [13]. Optimality conditions for convex optimization problems
are usually represented in terms of subdifferentials of convex functions. Note that this notion may not be
suitable for the cases of nonconvex optimization problems. Hence, it is necessary to generalize this concept
for nonconvex functions. Such generalized subdifferentials for nonconvex functions were proposed by several
mathematicians, such as Clarke [3], Rockafellar [12, 14], Mordukhovich [11], and Azimov and Gazimov [2].
One of the generalized subdifferentials mentioned above, which has attracted several researchers recently, is the
notion of weak-subdifferentials introduced by Azimov and Gazimov. In [2], based on the notion of supporting
cones, the authors proposed the notion of weak-subdifferentials for scalar nonconvex functions. Moreover, with
a type of augmented Lagrange function, which was constructed by using supporting cones to the epigraph of a
perturbation function, the relationships between stability and duality of nonconvex problems via the augmented
Lagrangians are investigated. Several papers related to this topic were published, where the obtained results
were based on the use of weak-subdifferentials [4–10, 15]. Recently, this notion was developed for vector functions
defined on a normed space [9]. Inspired by this work, very recently, it was extended to vector functions defined
on a linear space and was applied to a multiobjective semiinfinite optimization problem [16]. Then dual problems
via augmented Lagrange vector functions were studied. In that paper, a concept of weak-stability for vector
functions was proposed and the relationships between weak-stability and strong duality for the problems were
investigated.
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In optimization theory, there exists a close connection between the notion of strong duality and saddle
point theorems (see [17] for more details). Hence, it is worth studying such relationships for the case of
multiobjective semiinfinite optimization. Note that the relationships between weak-stability, strong duality, and
saddle point theorems for a scalar nonconvex optimization problem based on weak-subdifferentials for scalar
functions were introduced in [2]. Furthermore, the results were extended for scalar semiinfinite optimization
problems in [15]. Very recently, the results were developed for multiobjective problems. In [16], the relationships
between weak-stability and strong duality for semiinfinite optimization problems are studied. Motivated by the
observations above, in this research, based on the notion of weak-subdifferentials for vector functions, we study
the relationships between weak-stability and saddle point theorems for multiobjective optimization problems
that have an infinite number of constraints. In our research, besides studying the relationships between weak-
stability and saddle point theorems, connections between strong duality and the existence of saddle points of
the problems are also investigated. Hence, the relations among weak stability, strong duality, and saddle points
theorems for the problems are studied.

The results in this paper are divided into two parts. The first part is devoted to investigating some
properties of weak-stability for the multiobjective optimization problem. The second part concerns saddle point
theorems for augmented Lagrange vector functions. We also show that there exists a close connection between
the pairs of efficient solutions of a multiobjective optimization problem and its dual problem with saddle points
of the corresponding vector Lagrange function. Then saddle point theorems for the multiobjective optimization
problems are given.

The paper is organized as follows. In the second section, we recall the results on weak-subgradients for
vector functions and the theorem that connects the property of weak-stability with the property of L-lower
Lipschitz. The main results are given in Sections 3 and 4, where results on weak-stability for a multiobjective
optimization problem are given and saddle point theorems are introduced. An example is given in the last part.

2. Preliminaries
Let T be an arbitrary index set. We use the following notations: RT := {u = (ut)t | ut ∈ R, t ∈ T},RT

+ :=

{u ∈ RT | ut ≥ 0, t ∈ T} and RT
− := {u ∈ RT | ut ≤ 0, t ∈ T}. Let λ : T → R be a real function such that

λ(t) = λt ∈ R for each t ∈ T but only finitely many λt differ from zero. We need the following linear space:

R(T ) := {λ = (λt)t∈T | λt = 0 for all t ∈ T but only finitely many λt ̸= 0}.

For λ ∈ R(T ) , its supporting set, denoted by T (λ) , is defined by

T (λ) := {t ∈ T | λt ̸= 0}.

It is obvious that, for a given λ ∈ R(T ) , the set T (λ) is a finite set. The subset of R(T ) where its elements

satisfy λt ≥ 0 for all t ∈ T is denoted by R(T )
+ . It is clear that R(T )

+ is a convex cone of R(T ) . For λ, λ̄ ∈ R(T ) ,
u ∈ RT , and α ∈ R , we define

αλ := (αλt)t∈T ,
λ± λ̄ := (λt ± λ̄t)t∈T ,

⟨λ, u⟩ :=
∑
t∈T

λtut =

{ ∑
t∈T (λ) λtut if T (λ) ̸= ∅,

0 if T (λ) = ∅.
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Let us define the function ρ : RT × R(T ) → R as follows:

ρ(u, λ) :=

{ ∑
t∈T (λ) |ut|, T (λ) ̸= ∅,

0, T (λ) = ∅.

The notation ∥u∥λ is used instead of the value of the function ρ at (u, λ) .
Let us denote D := Rm

+ . The notations D◦ , D∗ , and 0D stand for the interior of D , D \ {0D} , and
(0, 0, . . . , 0) , respectively. Then, for y, z ∈ Rm , we understand that

y = z ⇔ y − z = 0D,
y ≤D◦ z ⇔ z − y ∈ D◦,
y ≤D∗ z ⇔ z − y ∈ D∗,
y ≤D z ⇔ z − y ∈ D

and
y ̸≤D◦ z ⇔ z − y ̸∈ D◦,
y ̸≤D∗ z ⇔ z − y ̸∈ D∗,
y ̸≤D z ⇔ z − y ̸∈ D.

We need some more notations below:

R := R ∪ {+∞},
Rm

:= R× R× . . .× R, (m component),
L := {(λ1, . . . , λm), λi ∈ R(T ), i ∈ M},M := {1, 2, . . . ,m},
L+ := {(λ1, . . . , λm), λi ∈ R(T )

+ , i ∈ M},
L− := {(λ1, . . . , λm), λi ∈ R(T )

− , i ∈ M}.

For u ∈ RT , Λ = (λ1, . . . , λm) ∈ L , we define

⟨Λ, u⟩ :=
(
⟨λ1, u⟩, . . . , ⟨λm, u⟩

)
and

∥u∥Λ := ∥u∥λ̄ =

{ ∑
t∈T (λ̄) |ut|, T (λ̄) ̸= ∅,

0, T (λ̄) = ∅,

where λ̄ :=
∑m

i=1 λ
i .

For convenience, we recall some basic concepts and results.

Definition 2.1 [16, Definition 3.2] Given Λ ∈ L and u0 ∈ RT , the Λ-neighborhood of u0 ∈ RT with the radius
ϵ > 0 is defined by

UΛ
ϵ (u0) := {u ∈ RT : ∥u− u0∥Λ < ϵ}.

We note that the two following definitions are developed from the original ones for real valued functions,
which were introduced in [2].

Definition 2.2 [16, Definition 3.3] Let h : RT → Rm be a vector function such that domh ̸= ∅, i.e. domhi ̸= ∅
for all i ∈ M , and let u0 ∈ domh . The weak-subdifferential of the function h at u0 is denoted and defined by
the set

∂wh(u0) := {(Λ, k) ∈ L × Rm
+ | h(u)− h(u0) ≥D ⟨Λ, u− u0⟩ − k∥u− u0∥Λ,∀u ∈ RT }.
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Each pair (Λ, k) ∈ ∂wh(u0) is said to be a weak-subgradient of h at u0 .
If ∂wh(u0) ̸= ∅ , then we say that h is weakly subdifferentiable at u0 .
If h is defined on the set S ⊂ RT , we use the notation ∂w

S h(u0) instead of ∂wh(u0) .

Definition 2.3 [16, Definition 3.4] Given Λ ∈ L , a vector function h : RT → Rm
,domh ̸= ∅, is called Λ-lower

locally Lipschitz at u0 ∈ domh if there exist a vector L ∈ Rm
+ and a Λ-neighborhood UΛ

ϵ (u0) such that

h(u)− h(u0) ≥D −L∥u− u0∥Λ,∀u ∈ UΛ
ϵ (u0).

The vector function h is called Λ-lower Lipschitz if the inequality above holds for all u ∈ domh .

The following proposition and corollary are developed with inspiration from Theorem 1 and Corollary 2,
respectively, in [2] (see also [1]).

Proposition 2.4 [16, Theorem 3.2] Let h : RT → Rm be a vector function such that domh ̸= ∅ and u0 ∈ domh .
The following statements are equivalent:

a) h is weakly subdifferentiable at u0 ,
b) h is Λ-lower Lipschitz at u0 ,
c) h is Λ-lower locally Lipschitz at u0 and there exist numbers p ∈ Rm

+ and q ∈ Rm such that

h(u) ≥D −p∥u∥Λ + q, ∀u ∈ RT .

We understand that a vector function h : RT → Rm is said to be bounded below if each component
function of h is bounded below.

Corollary 2.5 Let h : RT → Rm be a Λ-lower Lipschitz function at u0 ∈ domh . If the function h is bounded
below, then it is weakly subdifferentiable at u0 .

Proof If the function h is bounded below then there exists a vector m ∈ Rm such that

h(u) ≥ m,∀u ∈ domh.

Hence,
h(u) ≥ −0∥u∥Λ +m,∀u ∈ domh.

Combining this and the assumption that h is a Λ -lower Lipschitz function at u0 ∈ domh , we get the desired
conclusion by applying Proposition 2.4. 2

Let us consider the following problem:

(MP) Minimize f(x) = (f1(x), f2(x), . . . , fm(x))
subject to gt(x) ≤ 0, t ∈ T,

x ∈ S,

where fi with i ∈ M and gt with t ∈ T are real valued functions defined on a linear space X , T is as above,
and S is a nonempty subset of X . Denote by A the feasible set of (MP). Set

R(T )
λ := {e ∈ R(T ) : |et| ≤ 1, t ∈ T (λ)}
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and

F := {(λ, k) ∈ R(T ) × R+ | ∃e ∈ R(T )
λ , ke− λ ∈ R(T )

+ }.

We need the following function (see [15]):

ω(u, λ, k) : RT × R(T ) × R+ → R,

where

ω(u, λ, k) :=

{
sup

e∈R(T )
λ

{⟨ke, u⟩ | ke− λ ∈ R(T )
+ }, T (λ) ̸= ∅,

0, T (λ) = ∅.
(2.1)

The augmented Lagrange vector function associated to (MP) is defined by

L(x,Λ, k) :=
(
L1(x, λ

1, k1), . . . , Lm(x, λm, km)
)
, (2.2)

where
Li(x, λ

i, ki) := fi(x)− ⟨λi, (gt(x))t⟩+ ω((gt(x)), λ
i, ki), i ∈ M. (2.3)

The perturbation function ϕi : X × RT → R associated to fi , i ∈ M, is defined by

ϕi(x, u) :=

{
fi(x) if x ∈ S and gt(x) ≤ ut, t ∈ T,
+∞, otherwise. (2.4)

Hence, the perturbation vector function ϕ : X × RT → Rm is

ϕ(x, u) :=
(
ϕ1(x, u), . . . , ϕm(x, u)

)
. (2.5)

We need the following lemmas. They are quoted from the ones in [16].

Lemma 2.6 For each i ∈ M , let Li be the augmented Lagrange function defined by (2.3) and let ϕi be the
perturbation defined by (2.4). One has

inf
u∈RT

{ϕi(x, u)− ⟨λ, u⟩+ k∥u∥λ} =

 Li(x, λ, k) if x ∈ S and (λ, k) ∈ F,
−∞ if x ∈ S but (λ, k) /∈ F,
+∞ if x /∈ S.

Lemma 2.7 For each i ∈ M and for every x ∈ S , it holds that

sup
(λ,k)∈F

Li(x, λ, k) =

{
fi(x) if gt(x) ≤ 0,∀t ∈ T,
+∞ otherwise.

Definition 2.8 For the problem (MP), a point z ∈ A is said to be:
i) an efficient solution of (MP) if there is no x ∈ A such that f(x) ≤D∗ f(z) .
ii) a weakly-efficient solution of (MP) if there is no x ∈ A such that f(x) ≤D◦ f(z) .
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The efficient solution set of (MP) is denoted by E(MP). Assume that E(MP) ̸= ∅ .

We note that the following duality scheme is also a generalization of the duality scheme given in [2]. The
dual problem for (MP) is formulated as follows (see [16]):

(MD) Maximize H(Λ, k)
subject to (Λ, k) ∈ Fm,

where H : Fm → Rm is defined by

H(Λ, k) :=
(
H1(Λ, k), . . . , Hm(Λ, k)

)
,

and
Hi(Λ, k) := inf

S
Li(x, λ

i, ki), (λi, ki) ∈ F.

Definition 2.9 For the problem (MD), a pair (Λ̄, k̄) ∈ Fm is said to be:
i) an efficient solution of (MD) if there is no (Λ, k) ∈ Fm such that

H(Λ̄, k̄) ≤D∗ H(Λ, k),

ii) a weakly efficient solution of (MD) if there is no (Λ, k) ∈ Fm such that

H(Λ̄, k̄) ≤D◦ H(Λ, k).

The set of efficient solutions of (MD) is called the efficient solution set of (MD) and is denoted by E(MD) .

Definition 2.10 The strong duality between (MP) and (MD) holds if there exist x̄ ∈ E(MP) and (Λ̄, k̄) ∈
E(MD) such that f(x̄) = H(Λ̄, k̄) .

In the next section, we establish a connection between weak-stability and the saddle point theorem for
(MP).

3. Weak-stability of (MP) and related properties

For the function ϕ defined by (2.5), let us consider the following vector function G defined as follows:

G(u) :=
(

inf
S

ϕ1(x, u), inf
S

ϕ2(x, u), . . . , inf
S

ϕm(x, u)
)
. (3.1)

Suppose that domG ̸= ∅ . It is obvious that infS ϕi(x, 0) = infA fi(x) for each i ∈ M . We recall the notation
of weak-stable introduced in [16].

Definition 3.1 The problem (MP) is said to be weak-stable if ∂wG(0) ̸= ∅ and Gi(0) is finite for any i ∈ M .

Theorem 3.2 For the problem (MP):
i) If there exist (Λ, k) ∈ Fm and x̄ ∈ A such that L(x,Λ, k) ≥ ϕ(x̄, 0) for all x ∈ S and infA fi(x) is

finite for all i ∈ M , then (MP) is weak-stable.
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ii) If (MP) is weak-stable and (infA f1(x), . . . , infA fm(x)) ∈ f(A) , then there exist (Λ, k) ∈ L×Rm

+ and
x̄ ∈ A such that

L(x,Λ, k) ≥ ϕ(x̄, 0),∀x ∈ S.

Proof i) Suppose that there exist (Λ, k) ∈ L+ × Rm

+ and x̄ ∈ A such that

L(x,Λ, k) ≥ ϕ(x̄, 0),∀x ∈ S.

Then, for any i ∈ M , we get
Li(x, λ

i, ki) ≥ ϕi(x̄, 0),∀x ∈ S.

By Lemma 2.6, we get
inf

u∈RT
{ϕi(x, u)− ⟨λi, u⟩+ ki∥u∥λi} ≥ ϕi(x̄, 0),∀x ∈ S.

Hence,
inf
x∈S

{ϕi(x, u)− ⟨λi, u⟩+ ki∥u∥λi} ≥ ϕi(x̄, 0),∀u ∈ RT .

Thus,
inf
S

ϕi(x, u)− ⟨λi, u⟩+ ki∥u∥λi ≥ ϕi(x̄, 0) ≥ inf
S

ϕi(x, 0),∀u ∈ RT .

We get
Gi(u)−Gi(0) ≥ ⟨λi, u⟩ − ki∥u∥λi , i ∈ M.

Note that Gi(0) = infA fi(x) is finite. Hence, for each i ∈ M , Gi is weak-subdifferentiable at u = 0 . Thus,
the vector function G is weak-subdifferentiable at u = 0 . The problem (MP) is weak-stable.

ii) Suppose that (MP) is weak-stable and (infA f1(x), . . . , infA fm(x)) ∈ f(A) . By applying Theorem 4.3
in [16], the strong duality between (MP) and (MD) holds. Using an argument as in the proof of Theorem 4.3
in [16], there exists (Λ, k) ∈ Fm and x̄ ∈ A such that

H(Λ, k) = f(x̄).

Since f(x̄) = ϕ(x̄, 0) and Hi(Λ, k) = infS Li(x, λ
i, ki) , it is easy to deduce that

L(x,Λ, k) ≥ ϕ(x̄, 0),∀x ∈ S.

2

The following theorem is developed from Theorem 6 in [2].

Theorem 3.3 For the problem (MP), suppose that (infA f1(x), . . . , infA fm(x)) ∈ f(A) . Then (MP) is weak-
stable if and only if both the following conditions hold:

i) There exist Λ ∈ L , L ∈ Rm
+ , UΛ(0) , and x∗ ∈ S such that

ϕ(x, u)− ϕ(x∗, 0) ≥D −L∥u∥Λ,∀x ∈ S, ∀u ∈ UΛ(0). (3.2)

ii) There exists vectors p ∈ Rm
+ and q ∈ Rm such that

ϕ(x, u) ≥D −p∥u∥Λ + q, ∀x ∈ S,∀u ∈ RT . (3.3)
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Proof If (MP) is weak-stable, then G is weak-subdifferentiable at u = 0 and Gi(0) is finite for each i ∈ M .
By Proposition 2.4, there exists Λ ∈ L such that the function G is Λ -locally lower Lipschitz at u = 0 and
there exist vectors p ∈ Rm

+ and q ∈ Rm such that

G(u) := (inf
S

ϕ1(x, u), . . . , inf
S

ϕm(x, u)) ≥D −p∥u∥Λ + q, ∀u ∈ RT .

Hence,
ϕ(x, u) ≥D −p∥u∥Λ + q, ∀u ∈ RT ,∀x ∈ S. (3.4)

On the other hand, since G is Λ -lower locally Lipschitz at u = 0 , there exist a Λ -neighborhood UΛ(0) and a
vector L ∈ Rm

+ such that

G(u)−G(0) ≥D −L∥u∥Λ,∀u ∈ UΛ(0).

Note that
G(0) = (inf

S
ϕ1(x, 0), . . . , inf

S
ϕ1(x, 0)) = (inf

A
f1(x), . . . , inf

A
fm(x)) ∈ f(A).

Then there exists x∗ ∈ A such that (infA f1(x), . . . , infA fm(x)) = f(x∗) . This implies that

ϕ(x, u)− ϕ(x∗, 0) ≥D −L∥u∥Λ,∀x ∈ S, ∀u ∈ UΛ(0).

Conversely, suppose that conditions i) and ii) hold. Note that

G(0) = (inf
S

ϕ1(x, 0), . . . , inf
S

ϕm(x, 0)) ≤D (ϕ1(x, 0), . . . , ϕm(x, 0)) = ϕ(x, 0),∀x ∈ S

and Gi(u) = infS ϕi(x, u) for all i ∈ M . Hence, from (3.2), we get

G(u)−G(0) ≥D −L∥u∥Λ,∀u ∈ UΛ(0).

Thus, G(u) is Λ -locally lower Lipschitz at u = 0 . On the other hand, since (3.3) holds for all x ∈ S , by taking
the infimum over S , we get

G(u) ≥D −p∥u∥Λ + q, ∀u ∈ RT .

Thus, by applying Proposition 2.4, G is weak-subdifferentiable at u = 0 , and (MP) is weak-stable. 2

Theorem 3.4 For the problem (MP), suppose that (infA f1(x), . . . , infA fm(x)) ∈ f(A) . Then (MP) is weak-
stable if and only if there exist Λ ∈ L , L ∈ Rm

+ and x∗ ∈ S such that

ϕ(x, u)− ϕ(x∗, 0) ≥D −L∥u∥Λ,∀x ∈ S,∀u ∈ RT . (3.5)

Proof Suppose that there exist Λ ∈ L , L ∈ Rm
+ , and x∗ ∈ S such that (3.5) holds. By (3.1), we obtain

G(u)− ϕ(x∗, 0) ≥D −L∥u∥Λ,∀x ∈ S,∀u ∈ RT .

Moreover, since ϕ(x∗, 0) ≥ G(0) , the inequality above implies that

G(u)−G(0) ≥D −L∥u∥Λ,∀u ∈ RT .
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The function G is Λ -lower Lipschitz at u = 0 . From this it can be deduced that the problem (MP) is weak-stable
by Proposition 2.4.

Conversely, suppose that (MP) is weak-stable. Hence, the function G is Λ -lower Lipschitz at u = 0 , i.e.
there exists Λ ∈ Rm

+ such that

G(u)−G(0) ≥D −L∥u∥Λ,∀u ∈ RT .

Hence,
ϕ(x, u)−G(0) ≥D −L∥u∥Λ,∀x ∈ S, ∀u ∈ RT .

Since G(0) = (infA f1(x), . . . , infA fm(x)) ∈ f(A) , there exist x∗ ∈ A such that G(0) = f(x∗) = ϕ(x∗, 0) . The
desired conclusion is derived 2

4. Saddle point theorems

Let us consider the vector Lagrange function L given by (2.2), where Λ ∈ L and k ∈ Rm
+ .

Definition 4.1 A pair (x̄, Λ̄) ∈ S × L− is called a saddle point of the vector function L if the following
inequalities are satisfied for some k ∈ Rm

+ :

L(x̄,Λ, k) ̸>D L(x̄, Λ̄, k),∀(Λ, k) ∈ Fm, (4.1a)

L(x̄, Λ̄, k) ̸>D L(x, Λ̄, k),∀x ∈ S. (4.1b)

That is to say that there exist no λi ∈ R(T )
− and x ∈ S, such that:

i) − ⟨λi, (gt(x̄))t⟩+ ω((gt(x̄)), λ
i, ki) ≥ −⟨λ̄i, (gt(x̄))t⟩+ ω((gt(x̄)), λ̄

i, ki), i ∈ M, with at least one strict
inequality;

ii) fi(x̄)−⟨λ̄i, (gt(x̄))t⟩+ω((gt(x̄)), λ̄
i, ki) ≥ fi(x)−⟨λ̄i, (gt(x))t⟩+ω((gt(x)), λ̄

i, ki), i ∈ M, with at least
one strict inequality.

Theorem 4.2 If (x̄, Λ̄) ∈ S × L− is a saddle point of the vector function L and gt(x) ≤ gt(x̄) for all x ∈ S

and for all t ∈ T , then x̄ is an efficient solution of (MP) and (Λ̄, k) is an efficient solution of (MD).

Proof Suppose that (x̄, Λ̄) ∈ S × L− is a saddle point of the vector function L for some k ∈ Rm
+ . From

Definition 4.1, there exists no λi ∈ R(T )
− such that

⟨λ̄i − λi, gt(x̄)⟩+ ω((gt(x̄)), λ
i, ki)− ω((gt(x̄)), λ̄

i, ki) ≥ 0, i ∈ M, (4.2)

with at least one strict inequality, and there exists no x ∈ S such that

fi(x̄)− fi(x)− ⟨λ̄i, (gt(x̄)− gt(x)⟩+ ω((gt(x̄)), λ̄
i, ki)− ω((gt(x)), λ̄

i, ki) ≥ 0, i ∈ M, (4.3)

with at least one strict inequality.
First, we claim that x̄ ∈ A . Assume to the contrary that x̄ /∈ A . Then there exists t0 ∈ T such that

gt0(x̄) > 0 . For i ∈ M , choose λi∗ such that λi∗
t0 < 0 and λ∗

t = λ̄i
t for all t ∈ T \ {t0} . Since λi∗

t0 < 0 is chosen
arbitrarily, by letting λi∗

t0 → −∞ , we get

⟨λ̄i − λi, gt(x̄)⟩ = (λ̄i
t0 − λi∗

t0)gt0(x̄) → +∞,

i.e. there exists λi ∈ R(T )
− such that the left-hand side of (4.2) tends to +∞ , a contradiction.
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Next, we prove that x̄ ∈ E(MP) . It needs to be proved that there is no x ∈ A such that f(x) ≤D∗ f(x̄) .
Suppose to the contrary that there exists x ∈ A such that f(x) ≤D∗ f(x̄) . Then

fi(x) ≤ fi(x̄),∀i ∈ M, (4.4)

with at least one strict inequality. Since gt(x) ≤ gt(x̄) for all t ∈ T ,

−⟨λ̄i, (gt(x))⟩ ≤ −⟨λ̄i, (gt(x̄))⟩. (4.5)

On the other hand, if gt(x) ≤ gt(x̄) for all t ∈ T then

sup
e∈R(T )

λ̄i

{⟨ke, gt(x)⟩ | ke− λ̄i ∈ R(T )
+ } ≤ sup

e∈R(T )

λ̄i

{⟨ke, gt(x̄)⟩ | ke− λ̄i ∈ R(T )
+ }.

This is equivalent to
ω((gt(x)), λ̄

i, ki) ≤ ω((gt(x̄)), λ̄
i, ki). (4.6)

Adding side by side (4.4), (4.5), and (4.6), we can see that there exists x ∈ A such that (4.3) holds, a
contradiction.

To complete the proof, we prove that (Λ̄, k) is an efficient solution of (MD). It needs to be proved that
there exists no (Λ∗, k) such that

H(Λ̄, k) ≤D∗ H(Λ∗, k). (4.7)

Suppose to the contrary that there exists (Λ∗, k) such that (4.7) holds. There exists i ∈ M such that

Hi(Λ̄, k) < Hi(Λ
∗, k),

or in other words,
inf
S

Li(x, λ̄
i, ki) < inf

S
Li(x, λ

∗i, ki).

Thus, there exists x ∈ S such that
Li(x, λ̄

i, ki) < Li(x, λ
∗i, ki).

Thus,
−⟨λ̄i, gt(x)⟩+ ω((gt(x)), λ̄

i, ki) < −⟨λ∗i, gt(x)⟩+ ω((gt(x)), λ
∗i, ki),

or in other words,
0 < ⟨λ̄i − λ∗i, gt(x)⟩+ ω((gt(x)), λ

∗i, ki)− ω((gt(x)), λ̄
i, ki),

a contradiction to (4.2). 2

Theorem 4.3 If the strong duality between (MP) and (MD) holds then the function L given by (2.2) has a
saddle point.

Proof Let x̄ be an efficient solution of (MP) and (Λ̄, k) be an efficient solution of (MD) with some k ∈ Rm
+ .

Since the strong duality between (MP) and (MD) holds,

f(x̄) = H(Λ̄, k).
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Hence, for every i ∈ M , we get
fi(x̄) = inf

S
Li(x, λ̄

i, ki).

Thus,
fi(x̄) ≤ Li(x, λ̄

i, ki),∀x ∈ S, i ∈ M. (4.8)

By Lemma 2.7, from the above inequality, we get

fi(x̄) ≤ Li(x̄, λ̄
i, ki) ≤ sup

(λi,ki)∈F

Li(x̄, λ
i, ki) = fi(x̄), i ∈ M. (4.9)

Thus, fi(x̄) = Li(x̄, λ̄
i, ki) . We claim that (4.1b) holds. Suppose to the contrary that there exists x′ ∈ S such

that
L(x′, Λ̄, k) < L(x̄, Λ̄, k).

Combining this with (4.9) and (4.8), we deduce that

Li(x
′, λ̄i, ki) < Li(x̄, λ̄

i, ki) = fi(x̄) ≤ Li(x, λ̄
i, ki),∀x ∈ S,

a contradiction. To complete the proof, we need to show that (4.1a) holds. Suppose there exists (Λ′, k′) ∈ Fm

such that
L(x̄,Λ′, k′) > L(x̄, Λ̄, k). (4.10)

By (4.9), we get
Li(x̄, λ

i, ki) ≤ fi(x̄), i ∈ M, ∀(λi, ki) ∈ F.

This implies that
Li(x̄, λ

i, ki) ≤ fi(x̄) = Li(x̄, λ̄
i, ki),∀(λi, ki) ∈ F, i ∈ M. (4.11)

Since inequality (4.11) holds for all (λi, ki) ∈ F, i ∈ M , we get a contradiction to (4.10). 2

Corollary 4.4 For (MP), suppose that (infA f1(x), . . . , infA fm(x) ∈ f(A) . If the problem (MP) is weak-stable
then the function L given by (2.2) has a saddle point.

Proof The desired conclusion can be obtained by combining Theorem 4.3 in [16] and Theorem 4.3. 2

Corollary 4.5 For the problem (MP), and the function L given by (2.2), if there exist (Λ, k) ∈ Fm and x̄ ∈ A

such that L(x,Λ, k) ≥ ϕ(x̄, 0) for all x ∈ S then the function L given by (2.2) has a saddle point.

Proof The desired conclusion can be obtained by combining Theorem 3.2 and Theorem 4.3. 2

Corollary 4.6 For the problem (MP) and the function L given by (2.2), suppose that both of the following
conditions hold:

i) There exist Λ ∈ L , L ∈ Rm
+ , UΛ(0) , and x∗ ∈ S such that

ϕ(x, u)− ϕ(x∗, 0) ≥D −L∥u∥Λ,∀x ∈ S, ∀u ∈ UΛ(0). (4.12)
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ii) There exists vectors p ∈ Rm
+ and q ∈ Rm such that

ϕ(x, u) ≥D −p∥u∥Λ + q, ∀x ∈ S,∀u ∈ RT . (4.13)

Then the function L has a saddle point.

Proof The desired result follows by combining Theorem 3.3 and Theorem 4.3. 2

Corollary 4.7 For the problem (MP), if there exists Λ ∈ L such that function G is Λ-lower Lipschitz at u = 0

and (infA f1(x), . . . , infA fm(x)) ∈ f(A) , then the function L has a saddle point.

Proof Suppose that there exists Λ ∈ L such that function G is Λ -lower Lipschitz at u = 0 . By Corollary 2.5,
the function G is weakly subdifferentiable at u = 0 . Since (infA f1(x), . . . , infA fm(x) ∈ f(A) , Gi(0) is finite
for all i ∈ M . Hence, the problem (MP) is weak-stable by Definition 3.1. The conclusion follows by Corollary
4.4. 2

The following example illustrates Theorem 4.3.
Example

(MP1) Minimize (−x, x2)
tx− 1 ≤ 0, t ∈ T = [0, 1],
x ∈ S := [0,∞).

It is easy to check that the feasible set of (MP1 ) is A = [0, 1] and x̄ = 0 is an efficient solution of (MP1 ).
The dual problem of (MP1) is formulated as follows:

(MD1) Maximize H(Λ, k)
(Λ, k) ∈ F 2,

where H(Λ, k) =
(
H1(λ

1, k1),H2(λ
2, k2)

)
and Hi(λ

i, ki) = infx∈S Li(x, λ
i, ki) with i=1,2. We have

L1(x, λ
2, k2) = −x− ⟨λ1, (tx− 1)t⟩+ ω((tx− 1)t, λ

1, k1), t ∈ T,

L2(x, λ
1, k1) = x2 − ⟨λ2, (tx− 1)t⟩+ ω((tx− 1)t, λ

2, k2), t ∈ T.

Note that R(T )
λ is compact. By (2.1), there exists ē1, ē2 ∈ R(T )

λ such that

L1(x, λ
1, k1) = −x+ ⟨k1ē1 − λ1, (tx− 1)t⟩, t ∈ T, k1ē1 − λ1 ≥ 0

= −x+ [
∑

t∈T t(k1ē1t − λ1
t )]x−

∑
t∈T (k

1ē1t − λ1
t )

= [
∑

t∈T t(k1ē1t − λ1
t )− 1]x−

∑
t∈T (k

1ē1t − λ1
t )

and
L2(x, λ

2, k2) = x2 + ⟨k2ē2 − λ2, (tx− 1)t⟩, t ∈ T, k2ē2 − λ2 ≥ 0
= x2 + [

∑
t∈T t(k2ē2t − λ2

t )]x−
∑

t∈T (k
2ē2t − λ2

t ).

It is easy to check that

inf
S

L1(x, λ
1, k1) =

{
−
∑

∈T (k
1ē1t − λ1

t ) if
∑

t∈T (k
1ē1t − λ1

t )t ≥ 1
−∞ if

∑
t∈T (k

1ē1t − λ1
t )t < 1,
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and
inf
S

L2(x, λ
2, k2) = −

∑
t∈T

(k2ē2t − λ2
t ).

It is obvious that (Λ̄, k̄) =
(
(λ̄1, k̄1), (λ̄2, k̄2)

)
= ((0t, 0), (0t, 0)) ∈ E(MD) and H(Λ̄, k̄) = (0, 0) = f(x̄), where

x̄ = 0 ∈ E(MP). The strong duality between (MP1 ) and (MD1 ) holds.
We claim that (x̄, Λ̄) is a saddle point of the function L(x,Λ, k) =

(
L(x, λ1, k1), L(x, λ2, k2)

)
, i.e. there

exist no λi ∈ R(T )
− and x ∈ S, such that:

i) − ⟨λi, (gt(x̄))t⟩+ ω((gt(x̄)), λ
i, ki) ≥ −⟨λ̄i, (gt(x̄))t⟩+ ω((gt(x̄)), λ̄

i, ki), i ∈ M, with at least one strict
inequality, and

ii) fi(x̄)−⟨λ̄i, (gt(x̄))t⟩+ω((gt(x̄)), λ̄
i, ki) ≥ fi(x)−⟨λ̄i, (gt(x))t⟩+ω((gt(x)), λ̄

i, ki), i ∈ M, with at least
one strict inequality.

Suppose to the contrary that there exists λi ∈ R(T )
− such that i) is satisfied with a strict inequality. Then

−⟨λi, (−1)t⟩+ ω((−1)t, λ
i, ki) > ω((−1)t, 0, k

i) (4.14)

with some i ∈ {1, 2} . Note that λi ∈ R(T )
− . It is easy to check that

ω((−1)t, λ
i, ki) ≤ ω((−1)t, 0, k

i).

This and (4.14) allow us to deduce that −⟨λi, (−1)t⟩ > 0 , a contradiction
Next, assume to the contrary that there exists x ∈ S such that ii) is satisfied with a strict inequality.

Then we get
fi(0) + ω((−1)t, 0, k

i) > fi(x) + ω(tx− 1)t, 0, k
i),

with at least an index i ∈ {1, 2} . Note that x̄ = 0 is an efficient solution of (MP1 ). Since λ̄i = 0 , by (2.1), we
get T (λi) = ∅ . Hence, from the inequality above, it is deduced that

fi(0) > fi(x).

If x ∈ S \A then fi(x) > 0 = fi(0) , a contradiction. If x ∈ A , it contradicts the fact that x̄ = 0 is an efficient
solution of (MP1 ). The proof is completed.
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