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Abstract: An integral-boundary value problem for a hyperbolic partial differential equation in two independent variables
is considered. By introducing additional functional parameters, we investigate the solvability of the problem and develop
an algorithm for finding its approximate solutions. The problem is reduced to an equivalent one, consisting of the
Goursat problem for a hyperbolic equation with parameters and boundary value problems with an integral condition
for ODEs with respect to the parameters entered. We propose an algorithm to find an approximate solution to the
original problem, which is based on the algorithm for finding a solution to the equivalent problem. The convergence
of the algorithms is proved. A coefficient criterion for the unique solvability of the integral-boundary value problem is
established.

Key words: Hyperbolic equation of second order, integral-boundary value problem, parameter, algorithm, approximate
solution

1. Introduction
On the domain Ω = [0, T ]× [0, ω], we consider the integral-boundary value problem for the hyperbolic equation
of second order

∂2u

∂t∂x
= A(t, x)

∂u

∂x
+B(t, x)

∂u

∂t
+ C(t, x)u+ f(t, x), (1)

P (t)u(t, 0) +

∫ a

0

K(t, ξ)u(t, ξ)dξ = ψ(t), t ∈ [0, T ], (2)

S(x)u(0, x) +

∫ b

0

M(τ, x)u(τ, x)dτ = φ(x), x ∈ [0, ω], (3)

where u(t, x) is an unknown function; the functions A(t, x) , B(t, x) , C(t, x) , and f(t, x) are continuous on
Ω ; the functions K(t, x) and P (t) , ψ(t) , are continuously differentiable with respect to t on Ω and [0, T ] ,
respectively; the functions M(t, x) and S(x) , φ(x) , are continuously differentiable with respect to x on Ω and
[0, ω] , respectively; and 0 < a ≤ ω , 0 < b ≤ T . The compatibility condition is given below.

Let C(Ω, R) be a space of continuous functions u : Ω → R with norm ||u||0 = max
(t,x)∈Ω

|u(t, x)| .
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A function u(t, x) ∈ C(Ω, R) , whose partial derivatives ∂u(t,x)
∂x , ∂u(t,x)

∂t , and ∂2u(t,x)
∂t∂x belong to C(Ω, R),

is called a classical solution to problem (1)–(3), if it satisfies equation (1) and integral conditions (2) and (3).
Integral-boundary value problems for hyperbolic equations often arise in the mathematical modeling of

processes of heat distribution, plasma physics, moisture transfer in capillary-porous media, clean technology of
silicon ores, etc. [8–15,17–26,28–31]. Some types of integral-boundary value problems for hyperbolic equations
were studied in [8–31]. Solvability conditions for these problems are established in different terms. Problem
(1)–(3) for P (t) = 0 , S(x) = 0 , K(t, x) =M(t, x) , and K(t, x) =M(t, x) = 1 was investigated in [10,13,22–26].
Under the assumption of continuous differentiability of the equation coefficients, the conditions for the unique
solvability of that problem have been obtained. In [31], the contractive mapping principle is used to study
problem (1)–(3) for P (t) = 0 , S(x) = 0 and K(t, x) = K(x) , M(t, x) = M(t). In [7], the unique solvability
conditions for the problem, where P (t) = 0 , S(x) = 0 , and K(t, x) = M(t, x), were established in terms of
initial data.

A boundary value problem for hyperbolic equations subject to general integral conditions is one of the
rarely studied problems of mathematical physics. This formulation of the problem is considered for the first
time.

The aim of this work is to develop an algorithm for finding a solution to problem (1)–(3) and establish
conditions for the existence and uniqueness of its classical solution.

In Section 2, a scheme of the method from [4–6] is presented, which will be used to investigate the problem.
We introduce new unknown functions as linear combinations of the solutions’ values on the characteristics. The
problem (1)–(3) is reduced to an equivalent one consisting of the Goursat problem for hyperbolic equations
with functional parameters and boundary value problems with integral conditions for ODEs with respect to
the parameters entered. An algorithm for finding an approximate solution to the problem under investigation
is proposed. The algorithm consists of two parts. First, we solve two boundary value problems with integral
conditions for ODEs. Such problems have been intensively studied in recent years [1–3] and they occur in
numerous areas of applied mathematics. In the second part of the algorithm, we solve the Goursat problem for
a hyperbolic equation with parameters. In Section 3, the conditions for the existence of a unique solution to
the boundary value problem with integral condition for ODEs are provided. In Section 3, the convergence of
the algorithm is proved, and the conditions for the unique solvability of problem (1)–(3) are given in terms of
initial data.

2. The description of the method and the algorithm

We introduce the following notations: µ(t) = u(t, 0) − 1
2u(0, 0) , λ(x) = u(0, x) − 1

2u(0, 0) , ũ(t, x), where the
latter is a new unknown function.

We make the following replacement of desired function u(t, x) in problem (1)–(3):
u(t, x) = ũ(t, x) + µ(t) + λ(x) , and we move to the problem:

∂2ũ

∂t∂x
= A(t, x)

∂ũ

∂x
+B(t, x)

∂ũ

∂t
+C(t, x)ũ+A(t, x)λ̇(x) +B(t, x)µ̇(t) +C(t, x)λ(x) +C(t, x)µ(t) + f(t, x), (4)

ũ(t, 0) = 0, t ∈ [0, T ], (5)

ũ(0, x) = 0, x ∈ [0, ω], (6)
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[
P (t) +

∫ a

0

K(t, ξ)dξ

]
µ(t) + P (t)λ(0) +

∫ a

0

K(t, ξ)λ(ξ)dξ +

∫ a

0

K(t, ξ)ũ(t, ξ)dξ = ψ(t), t ∈ [0, T ], (7)

[
S(x)+

∫ b

0

M(τ, x)dτ

]
λ(x)+S(x)µ(0)+

∫ b

0

M(τ, x)µ(τ)dτ +

∫ b

0

M(τ, x)ũ(τ, x)dτ = φ(x), x ∈ [0, ω]. (8)

A triple of functions (ũ(t, x), µ(t), λ(x)) satisfying the hyperbolic equation (4), the conditions on char-
acteristics (5) and (6), and the functional relations (7) and (8) for µ(0) = λ(0) is called a solution to problem

(4)–(8) if the function ũ(t, x) ∈ C(Ω, R) has the partial derivatives ∂ũ(t, x)

∂x
, ∂ũ(t, x)

∂t
, ∂

2ũ(t, x)

∂t∂x
in C(Ω, R) ,

and the functions µ(t) and λ(x) are continuously differentiable on [0, T ] and [0, ω] , respectively.
The relation µ(0) = λ(0) is a compatibility condition of data.
Problem (4)–(8) is equivalent to problem (1)–(3). If the function u∗(t, x) is a solution to problem (1)–

(3), then the triple of functions (ũ∗(t, x), µ∗(t) , λ∗(x)), where ũ∗(t, x) = u∗(t, x) − µ∗(t) − λ∗(x) , µ∗(t) =

u∗(t, 0) − 1
2u

∗(0, 0), λ∗(x) = u∗(0, x) − 1
2u

∗(0, 0), is a solution to problem (4)–(8). The converse is also true.
If the triple of functions (ũ∗∗(t, x), µ∗∗(t), λ∗∗(x)) is a solution to problem (4)–(8), then the function u∗∗(t, x)

defined by the equality
u∗∗(t, x) = ũ∗∗(t, x) + µ∗∗(t) + λ∗∗(x) ,

where u∗∗(t, 0)− 1
2u

∗∗(0, 0) = µ∗∗(t) , u∗∗(0, x)− 1
2u

∗∗(0, 0) = λ∗∗(x) , is a solution to problem (1)–(3).
For fixed µ(t) , λ(x), problem (4)–(6) is the Goursat problem with respect to the function ũ(t, x) on

the domain Ω . Relations (7) and (8) allow us to determine the unknown parameters µ(t) , λ(x) satisfying the
condition µ(0) = λ(0) .

By virtue of conditions (5) and (6), relations (7) at t = 0 and (8) at x = 0 yield[
P (0) +

∫ a

0

K(0, ξ)dξ

]
µ(0) + P (0)λ(0) +

∫ a

0

K(0, ξ)λ(ξ)dξ = ψ(0), (9)

[
S(0) +

∫ b

0

M(τ, 0)dτ

]
λ(0) + S(0)µ(0) +

∫ b

0

M(τ, 0)µ(τ)dτ = φ(0). (10)

Taking into account λ(0) = µ(0), we get[
2P (0) +

∫ a

0

K(0, ξ)dξ

]
λ(0) +

∫ a

0

K(0, ξ)λ(ξ)dξ = ψ(0), (11)

[
2S(0) +

∫ b

0

M(τ, 0)dτ

]
µ(0) +

∫ b

0

M(τ, 0)µ(τ)dτ = φ(0). (12)

Assumptions on the data of problem (1)–(3) allow us to differentiate (7) and (8) with respect to t and
x , respectively. We then obtain[

P (t) +

∫ a

0

K(t, ξ)dξ

]
µ̇(t) = −

[
Ṗ (t) +

∫ a

0

∂K(t, ξ)

∂t
dξ

]
µ(t)−

∫ a

0

∂K(t, ξ)

∂t
ũ(t, ξ)dξ−
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−
∫ a

0

K(t, ξ)
∂ũ(t, ξ)

∂t
dξ − Ṗ (t)λ(0)−

∫ a

0

∂K(t, ξ)

∂t
λ(ξ)dξ + ψ̇(t), t ∈ [0, T ], (13)

[
S(x) +

∫ b

0

M(τ, x)dτ

]
λ̇(x) = −

[
Ṡ(x) +

∫ b

0

∂M(τ, x)

∂x
dτ

]
λ(x)−

∫ b

0

∂M(τ, x)

∂x
ũ(τ, x)dτ−

−
∫ b

0

M(τ, x)
∂ũ(τ, x)

∂x
dτ − Ṡ(x)µ(0)−

∫ b

0

∂M(τ, x)

∂x
µ(τ)dτ + φ̇(x), x ∈ [0, ω]. (14)

We introduce new unknown functions ṽ(t, x) = ∂ũ(t, x)

∂x
, w̃(t, x) = ∂ũ(t, x)

∂t
and the following notations:

B1(t) = P (t) +

∫ a

0

K(t, ξ)dξ, B2(x) = S(x) +

∫ b

0

M(τ, x)dτ , C1(t) = Ṗ (t) +

∫ a

0

∂K(t, ξ)

∂t
dξ ,

C2(x) = Ṡ(x) +

∫ b

0

∂M(τ, x)

∂x
dτ , G1(t, ũ, w̃) =

∫ a

0

∂K(t, ξ)

∂t
ũ(t, ξ)dξ +

∫ a

0

K(t, ξ)w̃(t, ξ)dξ,

G2(x, ũ, ṽ) =

∫ b

0

∂M(τ, x)

∂x
ũ(τ, x)dτ +

∫ b

0

M(τ, x)ṽ(τ, x)dτ ,

L1(t, λ) = Ṗ (t)λ(0) +

∫ a

0

∂K(t, ξ)

∂t
λ(ξ)dξ , L2(x, µ) = Ṡ(x)µ(0) +

∫ b

0

∂M(τ, x)

∂x
µ(τ)dτ .

Then equations (13) and (14) can be written in the following forms:

B1(t)µ̇(t) = −C1(t)µ(t)−G1(t, ũ, w̃)− L1(t, λ) + ψ̇(t), t ∈ [0, T ], (15)

B2(x)λ̇(x) = −C2(x)λ(x)−G2(x, ũ, ṽ)− L2(x, µ) + φ̇(x), x ∈ [0, ω]. (16)

Thus, we have a closed system of equations (4)–(6), (15), (12), (16), and (11) for determining unknown
functions ṽ(t, x) , w̃(t, x) , ũ(t, x) , λ̇(x) , λ(x) , µ̇(t) , and µ(t) .

Relation (15) in conjunction with (12) presents a boundary value problem with integral condition for a
differential equation with respect to µ(t) , and the relation (16) in conjunction with (11) presents a boundary
value problem with integral condition for a differential equation with respect to λ(x) .

The boundary value problem with integral condition (15) and (12) is equivalent to relation (7), and the
boundary value problem with integral condition (16) and (11) is equivalent to relation (8) for µ(0) = λ(0) .

If µ̇(t) , λ̇(x) , µ(t) , λ(x) are known, we can find the functions ṽ(t, x), w̃(t, x) , ũ(t, x) from (4)–(6).
Conversely, if we know the functions ṽ(t, x), w̃(t, x) , ũ(t, x), then we can find µ̇(t) , µ(t) , λ̇(x) , λ(x) from
boundary value problems (15), (12) and (16), (11). The unknowns are both ṽ(t, x), w̃(t, x) , ũ(t, x), and µ̇(t) ,
µ(t) , λ̇(x) , λ(x) . Therefore, to find a solution of problem (4)–(8), we use an iterative method: determine
the triple (ũ∗(t, x), µ∗(t), λ∗(x)) as the limit of the sequence (ũ(m)(t, x), µ(m)(t)) , λ(m)(x)) , m = 0, 1, 2, ... ,
according to the following algorithm:

Step 0. 1) Assuming ũ(t, x) = 0 , w̃(t, x) = 0 , λ(x) = 0 , on the right-hand side of equation (15), we find
initial approximations µ̇(0)(t) , µ(0)(t) , t ∈ [0, T ] , from the boundary value problem with integral condition (15)
and (12). Assuming ũ(t, x) = 0 , ṽ(t, x) = 0 , µ(t) = 0 on the right-hand side of equation (16), we find initial
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approximations λ̇(0)(x) , λ(0)(x) , x ∈ [0, ω] , from the boundary value problem with integral condition (16) and
(11).

2) Find ṽ(0)(t, x), w̃(0)(t, x), ũ(0)(t, x), (t, x) ∈ Ω from the Goursat problem (4)–(6) for λ̇(x) = λ̇(0)(x) ,
µ̇(t) = µ̇(0)(t) , λ(x) = λ(0)(x) , µ(t) = µ(0)(t) .

Step 1. 1) Assuming ũ(t, x) = ũ(0)(t, x) , w̃(t, x) = w̃(0)(t, x) , λ(x) = λ(0)(x) on the right-hand side of
equation (15), we find µ̇(1)(t) , µ(1)(t) , t ∈ [0, T ] from the boundary value problem with integral condition (15)
and (12). Assuming ũ(t, x) = ũ(0)(t, x) , ṽ(t, x) = ṽ(0)(t, x) , µ(t) = µ(0)(t) on the right-hand side of equation
(16), we find λ̇(1)(x) , λ(1)(x) , x ∈ [0, ω] , from the boundary value problem with integral condition (16) and
(11).

2) Find ṽ(1)(t, x), w̃(1)(t, x), ũ(1)(t, x), (t, x) ∈ Ω from the Goursat problem (4)–(6) for λ̇(x) = λ̇(1)(x) ,
µ̇(t) = µ̇(1)(t) , λ(x) = λ(1)(x) , µ(t) = µ(1)(t) , and so on.

Step m . 1) Assuming ũ(t, x) = ũ(m−1)(t, x) , w̃(t, x) = w̃(m−1)(t, x) , λ(x) = λ(m−1)(x) on the right-
hand side of equation (15), we find µ̇(m)(t) , µ(m)(t) , t ∈ [0, T ] , from the boundary value problem with integral
condition (15) and (12). Assuming ũ(t, x) = ũ(m−1)(t, x) , ṽ(t, x) = ṽ(m−1)(t, x) , µ(t) = µ(m−1)(t) on the
right-hand side of equation (16), we find λ̇(m)(x) , λ(m)(x) , x ∈ [0, ω] , from the boundary value problem with
integral condition (16) and (11).

2) Find ṽ(m)(t, x), w̃(m)(t, x), ũ(m)(t, x), (t, x) ∈ Ω , from the Goursat problem (4)–(6) for λ̇(x) =

λ̇(m)(x) , µ̇(t) = µ̇(m)(t) , λ(x) = λ(m)(x) , µ(t) = µ(m)(t) , m = 1, 2, ... .
The constructed algorithm consists of two parts: we solve the boundary value problems with integral

condition for the ordinary differential equations (15), (12) and (16), (11) in the first part, and we solve the
Goursat problem for hyperbolic equations with functional parameters in the second part.

3. Boundary value problems with integral conditions for the ordinary differential equations
Consider the boundary value problem with integral condition for the ordinary differential equations

µ̇(t) = A1(t)µ(t) + g1(t), t ∈ [0, T ], (17)

[
2S(0) +

∫ b

0

M(τ, 0)dτ

]
µ(0) +

∫ b

0

M(τ, 0)µ(τ)dτ = φ(0), (18)

where the functions A1(t) and g1(t) are continuous on [0, T ] , the function M(t, x) is continuous on Ω , and
S(0) and φ(0) are some constants, 0 < b ≤ T .

The function µ(t) ∈ C([0, T ], R) having the derivative µ̇(t) ∈ C([0, T ], R) is called a solution to problem
(17)–(18), if it satisfies ordinary differential equation (17) and boundary condition (18).

We also consider the boundary value problem with integral condition for the ordinary differential equation
of the following type:

λ̇(x) = A2(x)λ(x) + g2(x), x ∈ [0, ω], (19)

[
2P (0) +

∫ a

0

K(0, ξ)dξ

]
λ(0) +

∫ a

0

K(0, ξ)λ(ξ)dξ = ψ(0), (20)
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where the functions A2(x) and g2(x) are continuous on [0, ω] , the function K(t, x) is continuous on Ω , and
P (0) and ψ(0) are some constants, 0 < a ≤ ω .

The function λ(x) ∈ C([0, ω], R) having the derivative λ̇(x) ∈ C([0, ω], R) is called a solution to problem
(19)–(20), if it satisfies ordinary differential equation (19) and boundary condition (20).

Below we give conditions for the unique solvability of boundary value problems with integral condition
(17), (18) and (19), (20).

Suppose

a1(t) =

∫ t

0

A1(τ)dτ , a2(x) =

∫ x

0

A2(ξ)dξ , α1 = max
t∈[0,T ]

|A1(t)| , α2 = max
x∈[0,ω]

|A2(x)| ,

ã1 = 2S(0) +

∫ b

0

M(τ, 0)
[
1 + ea1(τ)

]
dτ , ã2 = 2P (0) +

∫ a

0

K(0, ξ)
[
1 + ea2(ξ)

]
dξ .

Assume that |ã1| ≥ δ1 > 0 , |ã2| ≥ δ2 > 0 .
Then the solutions to problems (17), (18) and (19), (20) can be written in the following forms:

µ(t) =
ea1(t)

ã1
·φ(0)−e

a1(t)

ã1
·
∫ b

0

M(τ, 0)ea1(τ)

∫ τ

0

e−a1(τ1)g1(τ1)dτ1dτ+e
a1(t)

∫ t

0

e−a1(τ)g1(τ)dτ, t ∈ [0, T ], (21)

and

λ(x) =
ea2(x)

ã2
· ψ(0)− ea2(x)

ã2
·
∫ a

0

K(0, ξ)ea2(ξ)

∫ ξ

0

e−a2(ξ1)g2(ξ1)dξ1dξ + ea2(x)

∫ x

0

e−a2(ξ)g2(ξ)dξ, x ∈ [0, ω],

(22)
respectively. Relations (21) and (22) follow from the representation of the solution to the Cauchy problem for
the ordinary differential equations according to the qualitative theory of differential equations.

The following statements are true.

Theorem 1 Suppose that |ã1| =
∣∣∣∣2S(0) + ∫ b

0

M(τ, 0)
[
1 + ea1(τ)

]
dτ

∣∣∣∣ ≥ δ1 > 0 , where a1(t) =

∫ t

0

A1(τ)dτ .

Then problem (17)–(18) has a unique solution µ∗(t) ∈ C([0, T ], R) representable in the form of (21), and
the estimate

max
t∈[0,T ]

|µ∗(t)| ≤ K1 max
(

max
t∈[0,T ]

|g1(t)|, |φ(0)|
)

(23)

holds, where K1 =
1

δ1
eα1T

[
1 + max

t∈[0,b]
|M(t, 0)| · b

2

2
eα1b

]
+ Teα1T .

Theorem 2 Suppose that |ã2| =
∣∣∣∣2P (0) + ∫ a

0

K(0, ξ)
[
1 + ea2(ξ)

]
dξ

∣∣∣∣ ≥ δ2 > 0 , where a2(x) =

∫ x

0

A2(ξ)dξ .

Then problem (19)–(20) has a unique solution λ∗(x) ∈ C([0, ω], R) representable in the form of (22), and
the estimate

max
x∈[0,ω]

|λ∗(x)| ≤ K2 max
(

max
x∈[0,ω]

|g2(x)|, |ψ(0)|
)

(24)

holds, where K2 =
1

δ2
eα2ω

[
1 + max

x∈[0,a]
|K(0, x)| · a

2

2
eα2a

]
+ ωeα2ω .
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4. Conditions for convergence of the algorithm and the main result

In Section 2, an algorithm for finding a solution to problem (4)–(8), which is equivalent to problem (1)–(3), is
constructed. To formulate the main result, assume that

B1(t) = P (t) +

∫ a

0

K(t, ξ)dξ ̸= 0 for all t ∈ [0, T ] and B2(x) = S(x) +

∫ b

0

M(τ, x)dτ ̸= 0 for all x ∈ [0, ω] .

We introduce the following notations:
α = max

(t,x)∈Ω
|A(t, x)| , β = max

(t,x)∈Ω
|B(t, x)| , γ = max

(t,x)∈Ω
|C(t, x)| , H = α+ β + γ , β1 = max

t∈[0,T ]
|[B1(t)]

−1| ,

β2 = max
x∈[0,ω]

|[B2(x)]
−1| , A1(t) = −[B1(t)]

−1C1(t) , A2(x) = −[B2(x)]
−1C2(x) , κ1 = max

(t,x)∈Ω
|K(t, x)| ,

κ2 = max
(t,x)∈Ω

∣∣∣∂K(t, x)

∂t

∣∣∣ , σ1 = max
(t,x)∈Ω

|M(t, x)| , σ2 = max
(t,x)∈Ω

∣∣∣∂M(t, x)

∂x

∣∣∣ , χ1 = max
t∈[0,T ]

|Ṗ (t)| , χ2 = max
x∈[0,ω]

|Ṡ(x)| ,

l1(a) = β1

{
a(κ1 + κ2)max(T, ω)eH(T+ω) + aκ2 +χ1

}
, l2(b) = β2

{
b(σ1 + σ2)max(T, ω)eH(T+ω) + bσ2 +χ2

}
.

In Section 3, the conditions for unique solvability of boundary value problems with integral condition
(17), (18) and (19), (20) are established. For fixed ṽ(t, x) , w̃(t, x) , ũ(t, x) in each step of the algorithm we
solve the boundary value problems with integral condition (15), (12) and (16), (11). For fixed λ̇(x) , µ̇(t) , λ(x) ,
µ(t), we solve the Goursat problem (4), (6).

The following statement provides the conditions for the convergence of the proposed algorithm and the
existence of a unique solution to problem (4)–(8).

Theorem 3 Let:
(1) functions A(t, x), B(t, x), C(t, x) , and f(t, x) be continuous on Ω ;
(2) functions K(t, x) and P (t) , ψ(t) be continuously differentiable with respect to t on Ω and [0, T ] , respec-
tively, and functions M(t, x) and S(x) , φ(x) be continuously differentiable with respect to x on Ω and [0, ω] ,
respectively;

(3) B1(t) = P (t) +

∫ a

0

K(t, ξ)dξ ̸= 0 for all t ∈ [0, T ] , and B2(x) = S(x) +

∫ b

0

M(τ, x)dτ ̸= 0 for all x ∈

[0, ω] ;
(4) the following conditions be fulfilled:

|ã1| =
∣∣∣∣2S(0) + ∫ b

0

M(τ, 0)
[
1 + ea1(τ)

]
dτ

∣∣∣∣ ≥ δ1 > 0 , |ã2| =
∣∣∣∣2P (0) + ∫ a

0

K(0, ξ)
[
1 + ea2(ξ)

]
dξ

∣∣∣∣ ≥ δ2 > 0 ,

where a1(t) = −
∫ t

0

[B1(τ)]
−1

[
Ṗ (τ) +

∫ a

0

∂K(τ, ξ)

∂τ
dξ

]
dτ , a2(x) = −

∫ x

0

[B2(ξ)]
−1

[
Ṡ(ξ) +

∫ b

0

∂M(τ, ξ)

∂ξ
dτ

]
dξ ;

(5) the inequality q = max
(
K1l1(a) +K2l2(b), (α1K1 + 1)l1(a), (α2K2 + 1)l2(b)

)
< 1 hold.

Then problem (4)–(8) has a unique solution.

Proof Let conditions (1)–(3) of Theorem 3 be fulfilled. Use the 0th step of the algorithm and consider the
following boundary value problem with integral condition

µ̇(t) = A1(t)µ(t)− [B1(t)]
−1ψ̇(t), t ∈ [0, T ], (25)

1973



ASSANOVA/Turk J Math

[
2S(0) +

∫ b

0

M(τ, 0)dτ

]
µ(0) +

∫ b

0

M(τ, 0)µ(τ)dτ = φ(0). (26)

λ̇(x) = A2(x)λ(x)− [B2(x)]
−1φ̇(x), x ∈ [0, ω], (27)

[
2P (0) +

∫ a

0

K(0, ξ)dξ

]
λ(0) +

∫ a

0

K(0, ξ)λ(ξ)dξ = ψ(0). (28)

Condition (4) including the conditions of Theorems 1 and 2 yields the unique solvability of problems (17), (18)
and (19), (20). Find initial approximations µ(0)(t) and λ(0)(x) from the boundary value problems (17), (18)
and (19), (20). Then, similarly to the estimates (23) and (24), for the functions µ(0)(t) , λ(0)(x) and their
derivatives µ̇(0)(t) , λ̇(0)(x) the following estimates hold:

max
t∈[0,T ]

|µ(0)(t)| ≤ K1 max
(

max
t∈[0,T ]

|[B1(t)]
−1ψ̇(t)|, |φ(0)|

)
, (29)

max
t∈[0,T ]

|µ̇(0)(t)| ≤ [α1K1 + 1]max
(

max
t∈[0,T ]

|[B1(t)]
−1ψ̇(t)|, |φ(0)|

)
. (30)

max
x∈[0,ω]

|λ(0)(x)| ≤ K2 max
(

max
x∈[0,ω]

|[B2(x)]
−1F1(x)|, |ψ(0)|

)
, (31)

max
x∈[0,ω]

|λ̇(0)(x)| ≤ (α2K2 + 1)max
(

max
x∈[0,ω]

|[B2(x)]
−1φ̇(x)|, |ψ(0)|

)
. (32)

Solving the Goursat problem (4)–(6) for the found values of parameters, we find ṽ(0)(t, x), w̃(0)(t, x), ũ(0)(t, x)

for all (t, x) ∈ Ω .
The following inequalities are valid:

|ṽ(0)(t, x)| ≤ max(T, ω)eH(T+ω) max
(t,x)∈Ω

|f̃(t, x)|,

|w̃(0)(t, x)| ≤ max(T, ω)eH(T+ω) max
(t,x)∈Ω

|f̃(t, x)|,

|ũ(0)(t, x)| ≤ max(T, ω)eH(T+ω) max
(t,x)∈Ω

|f̃(t, x)|,

where f̃(t, x) = A(t, x)λ̇(0)(x) +B(t, x)µ̇(0)(t) + C(t, x)
[
λ(0)(x) + µ(0)(t)

]
+ f(t, x) .

Successively, we determine the functions µ(m)(t) , λ(m)(x) , µ̇(m)(t) , λ̇(m)(x) , ṽ(m)(t, x), w̃(m)(t, x) ,
ũ(m)(t, x) on the mth step of the algorithm and obtain µ(m+1)(t) , λ(m+1)(x) , µ̇(m+1)(t) , λ̇(m+1)(x) , ṽ(m+1)(t, x),

w̃(m+1)(t, x) , ũ(m+1)(t, x) on the (m+ 1)th step, m = 1, 2, ... .
Evaluating the corresponding differences of successive approximations, we obtain

max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)| ≤
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≤ K1 max
t∈[0,T ]

|[B1(t)]
−1|

[
|L1(t, λ

(m) − λ(m−1))|+ |G1(t, ũ
(m) − ũ(m−1), w̃(m) − w̃(m−1))|

]
, (33)

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)| ≤

≤ K2 max
x∈[0,ω]

|[B2(x)]
−1|

[
|L2(x, µ

(m) − µ(m−1))|+ |G2(x, ũ
(m) − ũ(m−1), ṽ(m) − ṽ(m−1))|

]
, (34)

max
t∈[0,T ]

|µ̇(m+1)(t)− µ̇(m)(t)| ≤ [α1K1 + 1] max
t∈[0,T ]

|[B1(t)]
−1|

[
|L1(t, λ

(m) − λ(m−1))|+

+|G1(t, ũ
(m) − ũ(m−1), w̃(m) − w̃(m−1))|

]
, (35)

max
x∈[0,ω]

|λ̇(m+1)(x)− λ̇(m)(x)| ≤ [α2K2 + 1] max
x∈[0,ω]

|[B2(x)]
−1|

[
|L2(x, µ

(m) − µ(m−1))|+

+|G2(x, ũ
(m) − ũ(m−1), ṽ(m) − ṽ(m−1))|

]
, (36)

|ṽ(m+1)(t, x)− ṽ(m)(t, x)| ≤

≤ max(T, ω)eH(T+ω)

{
α max

x∈[0,ω]
|λ̇(m+1)(x)− λ̇(m)(x)|+ β max

t∈[0,T ]
|µ̇(m+1)(t)− µ̇(m)(t)|+

+γ
[

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|+ max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|
]}
, (37)

|w̃(m+1)(t, x)− w̃(m)(t, x)| ≤

≤ max(T, ω)eH(T+ω)

{
α max

x∈[0,ω]
|λ̇(m+1)(x)− λ̇(m)(x)|+ β max

t∈[0,T ]
|µ̇(m+1)(t)− µ̇(m)(t)|+

+γ
[

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|+ max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|
]}
, (38)

|ũ(m+1)(t, x)− ũ(m)(t, x)| ≤

≤ max(T, ω)eH(T+ω)

{
α max

x∈[0,ω]
|λ̇(m+1)(x)− λ̇(m)(x)|+ β max

t∈[0,T ]
|µ̇(m+1)(t)− µ̇(m)(t)|+

+γ
[

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|+ max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|
]}
. (39)

Suppose

∆m+1 = max
(

max
x∈[0,ω]

|λ(m+1)(x)− λ(m)(x)|+ max
t∈[0,T ]

|µ(m+1)(t)− µ(m)(t)|,

max
x∈[0,ω]

|λ̇(m+1)(x)− λ̇(m)(x)|, max
t∈[0,T ]

|µ̇(m+1)(t)− µ̇(m)(t)|
)
.
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Then, from relations (33)–(36), taking into account estimations (37)–(39) and using the notation intro-
duced, we obtain the main inequality:

∆m+1 ≤ q∆m. (40)

Condition (5) of Theorem 3 leads to the convergence of the sequence ∆m to ∆∗ as m → ∞ . This gives
the uniform convergence of the sequences λ(m)(x) , λ̇(m)(x) , µ(m)(t) , µ̇(m)(t) to λ∗(x) , λ̇∗(x) , µ∗(t) , µ̇∗(t) ,
respectively, as m→ ∞ . The functions λ∗(x) and µ∗(t) are continuous and continuously differentiable on [0, ω]

and [0, T ] , respectively. Based on estimates (37)–(39), we establish the uniform convergence of the sequences
ṽ(m)(t, x), w̃(m)(t, x) , ũ(m)(t, x) to the functions ṽ∗(t, x) , w̃∗(t, x) , ũ∗(t, x) , respectively, with respect to
(t, x) ∈ Ω . Obviously, the functions ũ∗(t, x) , ṽ∗(t, x) , and w̃∗(t, x) are continuous on Ω . Solving the problems
on the (m + 1)th step of the algorithm and passing to the limit as m → ∞ , we obtain that the functions
ũ∗(t, x), λ∗(x), µ∗(t) together with their derivatives satisfy the Goursat problem (4)–(6) and boundary value
problems with integral condition (15), (12) and (16), (11).

Carry out the inverse transition from problem (15), (12) to relation (7), and pass from problem (16), (11)
to relation (8). Then the triple of functions (ũ∗(t, x), λ∗(x), µ∗(t)) is a solution to problem (4)–(8).

Prove the uniqueness of a solution to problem (4)–(8). Let the function triples
(ũ∗(t, x), λ∗(x), µ∗(t)) and (ũ∗∗(t, x), λ∗∗(x), µ∗∗(t)) be two solutions to the problem. We introduce the following
notation:

∆̃ = max
(

max
x∈[0,ω]

|λ∗(x)− λ∗∗(x)|+ max
t∈[0,T ]

|µ∗(t)− µ∗∗(t)|,

max
x∈[0,ω]

|λ̇∗(x)− λ̇∗∗(x)|, max
t∈[0,T ]

|µ̇∗(t)− µ̇∗∗(t)|
)
.

After calculation, analogically with (34)–(39), we get

∆̃ ≤ q∆̃. (41)

By condition (5) of Theorem 3, we have q < 1 . Then inequality (41) takes place only for ∆̃ ≡ 0, which implies
λ∗(x) = λ∗∗(x) , µ∗(t) = µ∗∗(t) , and ũ∗(t, x) = ũ∗∗(t, x) . Therefore, the solution to problem (4)–(8) is unique.
Theorem 3 is proved.

2

From equivalence of problem (1)–(3) to problem (4)–(8), the next assertion follows.

Theorem 4 Let conditions (1)–(5) of Theorem 3 be fulfilled.
Then problem (1)–(3) has a unique classical solution.

Proof Conditions (1)–(5) of Theorem 3 imply the existence of a unique solution (ũ∗(t, x), λ∗(x), µ∗(t)) to
problem (4)–(8). According to the algorithm offered above, for each m = 0, 1, 2, ..., this triple is determined as
the limit of the triples sequence (ũ(m)(t, x), µ(m)(t)) , λ(m)(x)) as m→ ∞.

Then the solution to problem (1)–(3), the function u∗(t, x), exists and is determined by the equality
u∗(t, x) = ũ∗(t, x) + λ∗(x) + µ∗(t) .

Theorem 4 is proved.
2
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