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Abstract: The subject of this paper is the Zariski topology on a multiplication module M over a commutative ring R.
We find a characterization for the radical submodule radas(0) and also show that there are proper ideals I1,...,I, of R
such that rada(0) = rada ((11...1n) M) . Finally, we prove that the spectrum Spec(M) is irreducible if and only if M

is the finite sum of its submodules, whose 7 -radicals are prime in M .
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1. Introduction

Throughout this study, R and M denote a commutative ring with identity and a unitary R-module, respec-
tively. We also use Spec(M) for the spectrum of prime submodules. In [4], the author investigated some
properties of Zariski topology of multiplication modules. Motivated by this study, we generalize some impor-
tant results in [4] and also give a characterization for the intersection of all prime submodules of M. Then M
is said to be a multiplication R-module if for each submodule N of M, there exists an ideal I of R such that
N = IM . For example, invertible ideals and projective ideals of R are multiplication R-modules. Since every
cyclic module is a multiplication module and every finitely generated Artinian multiplication module is cyclic,
there is a close relationship between multiplication modules and cyclic modules and so there are many studies
related to these important concepts in module theory ([1, 4, 6, 8]).

A proper submodule P of an R-module M is said to be prime if for a« € R and m € M, am € P
implies that m € P or aM C P. The radical of a submodule N in M denoted by rady;(N) is defined as the
intersection of all prime submodules of M containing N .

In [11], V(N) was defined as the set {P € Spec(M): N C P} for any submodule N of an R-module
M. Note that V(M) = 0, V(0) = Spec(M) and () V(NN;) is equivalent to V (Z Ni) for any family of

ieA i€A
submodules N; of M.

Let I'(M) = {V(N) : N is a submodule of M}. If I'(M) is closed under finite union, I'(M) satifies the
axioms of closed subsets of a topological space. Then it is said that M is a module with a Zariski topology.

A topological space X is said to be Noetherian if the closed subsets of X satisfy the descending chain
condition. X is said to be irreducible if X # () and for every decomposition X = X; U X5 with closed subsets
X1, Xo C X, wehave X = X; or X = X5. D C X is said to be dense in X if for every nonempty open
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set U C X, UND # ) holds. X is said to be quasi-compact if every open cover of X has a finite subcover
([7, 10]).

The aim of this paper is to study Zariski topology of multiplication modules over commutative ring with
identity.

Section 2 is devoted to the study of a subspace associated with a submodule. We begin by giving
a base for complement Zariski topology of a submodule N in a module M. We show that rady (N) =
rady (Rmy + ...+ Rmy,), where m; € M if X is quasicompact (Theorem 2.4). We also prove that Ay (0) is a
prime submodule of M if and only if X is irreducible (Theorem 2.8). Moreover, we give equivalent conditions
for Spec(M) (Theorem 2.10).

In Section 3, we are interested in the relationships between the complement Zariski topologies and
submodules of a module M to find some algebraic and topological tools for submodules and find some
characterizations for the modules. We show that there are proper ideals I, ..., I, of R such that rads(0) =

radp((Ih...I,) M), where M is a finitely generated multiplication R-module satisfying the 7 -condition for

n
every submodule (Theorem 3.9). Consequently, we prove that X = |J X7, ar, where X7, is irreducible if and
i=1

only if M = (E Ii> M and N7, 5/(0) is a prime submodule of M (Theorem 3.10).
i=1

2. The subspace associated with a submodule
Let M be a multiplication R-module and let N = IM be a submodule of M, where I is an ideal of R. Let
Xy = Spec(M)\V(IM) and V(JM) =V (JM)\V(IM), where .J is an ideal of R. Then

I'y = {V(JM) :J is an ideal of R}

satisfies the axioms for closed sets of a topological space on Xy . We name this topology as the complement

Zariski topology of N in M.

Example 2.1 Let R=7, M = 6Z and N = 30Z. Then M is a multiplication Z-module. It is clear that
Spec(M) = {6aZ : a € P}, V(30Z) = {30Z}, V(36Z) = {12Z,18Z} and V(90Z) = {18Z,30Z}, where P is the

set of prime numbers. Thus we have

Xy = Spec(M)\V (30Z) = {6aZ : a € P\{5}},

V(36Z) = V(362)\V(30Z) = {127, 18Z}\{30Z} = {127,187},

V(90Z) = V(90Z)\V (30Z) = {187, 30Z}\{30Z} = {18Z}.

We fix the submodule N as N = IM, where I is an ideal of R, and the module M as a multiplication

module in this section.

Lemma 2.2 Let N = IM be a submodule of a multiplication R-module M , where I is an ideal of R. For

any ideal J of R, the set (Xn)"M = Xn\V(JM) forms a base for the complement Zariski topology of N in
M on Xy.
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Proof If Xy, is empty, then (XIM)JM = (), which is the trivial case. Therefore, we can assume that Xy # 0.

Let U C Xy be an open set. Let Y. Rm; = N, where m; € M. Then U = Xy\V(JM), where JM is
ieA
a submodule of M. Thus,

U = Xiu\V <Z Rmi> = X1\ m V(Rm;)

€A 1EA

= J@n\V(Bm:)) = | (&)

i€A €A

Thus, it is proved that (X7ar)”M is a base for the complement Zariski topology of N in M. O

We are interested in the properties of the complement Zariski topology of a submodule N of a module
M . The following proposition reveals some connections between X7j; and a submodule IM . One can easily
prove Proposition 2.3.

Proposition 2.3 Let N = IM be a submodule of a multiplication R-module M , where I is an ideal of R.
The following statements hold:

i) (Xn)"M = XN\V(JM) = Spec(M)\V(IJM) for J is an ideal of R.

ii) (Xn)M N (Xn)2M = (X)) T2IM for every ideal Jy,Jo of R.

iii) (Xn)"™ =0 if and only if rady (IJM) C rady(0) for every ideal J of R.

iv) (XN)"M = (XN)72M if and only if rady (IJ,M) = rady (IJoM) for every ideal Jy,Jo of R.
v) If (Xn)"M = Xy, then we have rady (IJM) = rady (IM) for every ideal J of R.

Let M be an R-module and let N be a proper submodule of M. Then we will say that N satisfies the
condition (x) if there is a finite subset A of A such that rady (({m; € M :i € A})) = radp(({m; : j € A})),
whenever rady (N) C radpy ({{m; € M :i € A})). Tt is clear that if M /rady(N) is a Noetherian module, N

satisfies the condition (x).

In the following theorem, we give an algebraic property belonging to a submodule N and a topological
property belonging to X .

Theorem 2.4 Let N = IM be a proper submodule of a multiplication R-module M , where I is an ideal of

R. Let (Xn)"™ = XN\V(JM) = Spec(M)\V (IJM) for any ideal J of R. Then the following statements are
true.

i) (Xn)"M is quasicompact for every ideal J of R.
1) If Xn is quasicompact, then rady (N) = radpy(Rmy + ... + Rmy,), where m; € M .

iti) If N satisfies the condition (%), then XN is quasicompact.

Proof i) Obvious.

1) Let Xn be quasicompact.
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Let N = (m;:i€A). Then V({{m;:i € A}))=V(N) and so V (Z Rmi) = (). Thus,
FISHN

Xy = Xn\0=2XN\V {Z Rmi} = Xn\ (ﬂ V(Rmi)>

i€EA i€EA

i€A ieA
Since Xy is quasicompact, there is a finite set A = {1,2,..n} C A such that Xy = | (An)F™ =
IEA
XN\V ((m1,ma,....,my)). Then V((my,ma,...,my,)) C V(N) and so rady (N) C rady((my, ma, ...,my)). On
the other hand, we have rady;({m1, ma, ..., my)) C rady (N), which means rady;(N) = radp (Rmi+...4+Rmy,).
i73) Let N satisfy the condition (x).
Let {A; :i € A} be an open cover of X . Since A; can be expressed as a union of the sets of (X )#™

we may assume that A; = (Xy)*™ for every i € A. Then

Xn

U™ = (an\V (ko))

€A €A
= N\ [ V(Bm:)

iEA

xy\V (Z Rmi> .

iEA

Thus, V (Z Rmi> =0 and so V (z le) C V(N).

i€EA i€EA

In this case, rady(N) C rady (E Rmi> . By the condition (x), there is a finite subset A C A such
i

that rady, (Z Rmi> = rady <Z Rmi>. Then V (Z Rmi> C V(N) and so 1%4 (Z Rmi> = (). Then

€A IEA IEA i€EA
Xy = Xy\V (Z Rm¢> = Xy\ [ V(Rm))
1EA €A

U (XN\V(Rmi)> = |

1€EA 1EA

Rmi

Since Xy is covered by a finite number (Xy) , Xn is quasicompact. O

Theorem 2.4 also generalizes Theorem 3.7 in [4].

We now introduce the new submodule class which is a generalization of radical submodule of a module.

Definition 2.5 Let N be a submodule of an R-module M. The set Ny(T) is defined as the intersection of

all prime submodules containing submodule T which does not contain N .
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It is clear that Ny (T) is equivalent to the radical of a submodule 7" when M = N. Then Nx(T) is a

generalization of radical submodule.

Example 2.6 Let M = 7 be an Z-module. Let N = 12Z and T = 20Z be submodules of M. Then
N127(20Z) = 5Z but radz(20Z) = 10Z. Thus N127(207Z) is different from radz(207Z).

The following lemma deals with algebraic properties of submodule Ny (7).

Lemma 2.7 Let N = 1M be a proper submodule of a multiplication R-module M , where I is an ideal of R.

The following statements are true:
i) Nn(T) is a submodule of M .
it) Ny/k(T/K) =Nn(T)/K, where K C T is a submodule of M .
ii1) Nn(0) = Nyad,, (3 (0).

Proof The proof is straightforward. O

The following theorem gives a connection between topological property of the complement Zariski topol-

ogy Xn and algebraic property of submodule Ay (0).

Theorem 2.8 Let N = IM be a proper submodule of a multiplication R-module M and radpy (IM) #
radp(0). Then Ny (0) is a prime submodule of M if and only if Xn is irreducible.

Proof Let Ay(0) be a prime submodule of M and K be a nonempty open subset of Xrp;. Then K =
XN\V (JM) = Spec(M)\ (V(IM)UV(JM)), where JM is a submodule of M. Take P € K. Then we have
P ¢ V(IM)UV(JM), which means that IM ¢ P and JM ¢ P. Thus, Ny(0) C P,so JM € Ny(0) C P.
This implies that Ny (0) ¢ V(JM) and by the definition of N (0), we get Ny (0) ¢ V(IM). Thus, Ny (0) € K.
Therefore, any nonempty open subset of X contains Ay (0). This means that Xy is irreducible.

Let Xy be irreducible. Suppose that Ay (0) is not a prime submodule of M. Then there exists elements
a € R and m € M such that am € Ny (0), m ¢ Nny(0) and aM C Ny (0).

Since rady(N) = rady(IM) # rady(0) and m € M\Ny(0), it follows that V(Rm) # 0 and
V(Rm) # Xy, which implies (Xx)®™ # §. This can also be used to prove that (Xy)*™ is a nonempty

open subset. Therefore, we get
(XN)aM N (XN)Rm — (XN)RmﬁaM C XN\V(am)
AN \V (N (0))
Spec(M)\ (V(Nn(0)) UV(N)) = 0.

N

This contradicts the hypothesis. Thus, Ny (0) is a prime submodule of M . O
We now need a condition on the submodules Ay, which helps us out with going further in finding more
connections between topological space and module.
A module M is said to satisfy T -condition for a submodule N , if for any chain Ny (U3 M) C Ny (U M) C
Nn(UsM) C ..., where U; is an ideal of R, there is an integer m such that Ny (U, M) = Ny (Up4:M) for all

positive integers <.
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Theorem 2.9 Let N = IM be a proper submodule of a multiplication R-module M , where I is an ideal of
R .Then the following statements are equivalent:

i) M satisfies the T -condition.

1) Xn is a Noetherian topological space.

Proof (i) = (ii) Assume that M satisfies the T -condition. Take the sequence V(U1 M) 2 V(UyM) D
V(UsM) D ..., where U;M is a submodule of M. Then we have the sequence Ny (Ui M) C Ny (UsM) C
Ny (UsM) C ... and there exists an integer m such that Ny (U, M) = Nn(UpmisM) for all positive integers
i since M satisfies the T -condition. Therefore, we have V(U,, M) = V(U,,1;M) for all positive integers i.
Thus, X' is Noetherian.

(17) = (i) Let Xy be a Noetherian topological space. Take the sequence Ny (U1 M) C Ny (UaM)

Ny (UsM)..., where U;M is a submodule of M. Then this yields the sequence V(U M) D V(UyM)

V(UsM) D ... Since Xy is Noetherian, there exists an integer m such that V(U M) = V(U,,1;M) for
all positive integers i. This implies Ny(UpM) = Ny(UyyiM) for all positive integers 4. Therefore M
satisfies the 7T -condition. O

We close this section with the following theorem, which reveals the connections between algebraic and

c
2

topological properties.

Theorem 2.10 Let N = IM be a submodule of a multiplication R-module M , where I is an ideal of R.
Then the following are equivalent:

i) X is a Noetherian topological space.
1) Xn 1is a Noetherian topological space for every submodule N of M .
1) M satisfies the T -condition.

w) M satisfies ascending chain condition on the radical submodules of M .

Proof (i) = (i), (i) < (i#) and (iv) < (i) are clear.
(73) = (i) Take the sequence V(U M) D V(UsM) D V(UsM) D ..., where U; is an ideal of R. Let
I = NU; be an ideal of R. Consider the complement Zariski topology X7p;. Then we have the sequence

V(U\M) D V(UyM) D V(UsM) D ... Since Xy is Noetherian, there exists an integer m such that
V(UpM) = V(UppiM) for all positive integers i. Thus, we have V(UpnM) = V(UpyiM) for all positive
integers ¢. Thus, X is Noetherian. O

3. The connections between subspaces and submodules

This section deals with the relationships between the complement Zariski topologies and submodules of a module

to find some algebraic and topological tools for submodules and find some characterizations for modules.

Theorem 3.1 Let M be a multiplication R-module and let I, J, and K be proper ideals of R. Then we have
the following.

i) Any open set of X is of the form Xrns .
1) Xy = Xya if and only if radpy (IM) = rady (JM).
ZZZ) X]M N XJM = XKM Zf and only Zf radM(IJM) = T'ad]u(KM).

2005



ONES and ALKAN/Turk J Math

w) Xy C Xy if and only if rady (IM) C rady (JM).

Proof It is straightforward. O

Corollary 3.2 Let M be a multiplication R-module and let I, J be proper ideals of R. Then XN Xy =0
if and only if radpy (ITJM) = radp(0).

Theorem 3.3 Let M be a multiplication R-module and let I be a proper ideal of R. Then Xyp; is dense in
X if and only if rady (IJM) # radp(0) for every proper ideal J such that JM is not contained in rady;(0).

Proof Let Xjp be dense in X and let J be any proper ideal of R, where JM is not in rady(0). Then
Xyn = Spec(M)\V(JM) is a nonempty open set in the Zariski topology and by the hypothesis, the intersection
of Xy and Xy is nonempty. Thus, rady (IJM) # rady (0) by Corollary 3.2.
Let radp(IJM) # rady(0) for every proper ideal J of R, where JM is not in radys(0). By Corollary
3.2, since Xra N Xy # 0, it follows that X7 is dense in X. O
The following theorem gives a characterization for the module M /rady(0) by using topological proper-

ties.

Theorem 3.4 Let M be a faithful multiplication R-module. The following statements are equivalent:
i) radp(0) is a prime submodule of M .
1) Spec(M) is irreducible.
iii) Every submodule of M [rady(0) is essential.
iv) Every open subset of Spec(M) is dense.

Proof (i) < (i) By [5], it can be easily proved.
(#7i) = (iv) Let Xjp and Xjpr be open subsets for any ideals I, J of R. Then (JM + radp(0)) /rady(0)

and (IM + radp(0)) /rady (0) are submodules of M /rady(0). Since () (I;M) = (ﬂ Ii> M , we observe that

i€EA i€EA

rads (ﬂ (IZM)> = radys ((ﬂ IZ-) M> = <radR (ﬂ L>> M , then

radp (0)  #  rady [(JM + radp(0)) N (IM + rady (0))]
= rady [(J +radg(0))M)N (I + radr(0))M)]
= rady [(J +radr(0)) N (I 4+ radr(0))M]
= radg[IJ + radr(0)] M
= rady [IJM + radp(0))

and so rady (IJM) # rady(0), which means that X7ps is dense.
(iv) = (i1) = (4i4) One can prove it by the above method. O

Theorem 3.5 Let M be a finitely generated multiplication R-module and let I; be a proper ideal of R for all

i€AN. Then |J Xr,m = Xpy for any ideal D of R if and only if rady (DM) = radys <<Z Ii> M) .
i€A i€A
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Proof Assume that |J X,n = Xpa for any ideal D of R.
i€EA
Let P be a prime submodule of M such that DM C P. Then P ¢ Xpy andso P ¢ |J X, , implying
i€EA
P ¢ Xj,p for all i. Then I;M C P for all ¢ and so <Z Ii) M C P, which implies radys ((Z IZ-> M) -
iEA €A
radpy (DM).

Let (Z IZ-) M C P, where P is a prime submodule of M. Then I;M C P for all 4, implying P ¢ X,
FISHN

for all . Thus, P ¢ |J X,m = Xpm and so DM C P. This means that rady (DM) C rady (<Z Ii> M>
i€EA i€A

Assume that rady (DM) = rady, ((Z IZ) M) .

iEA
Let P € Xpy. Then DM ¢ P and rady ((Z Ii) M) ¢ P and so <Z Ii)M ¢ P, implying
€A iEA

LM ¢ P for all i. Then P € X, andso P e |J Xy, um-
ieA

The converse can be proved with the above method, which completes the proof. O

The following corollary is a special case of Theorem 3.5.

Theorem 3.6 Let M be a finitely generated multiplication R-module, I; proper ideals of R for all i € A and
D a finitely generated ideal of R. Then the following statements are equivalent:

i) U X,m=Xpur.
iEA
1) There is a finite subset A of A such that \J Xi,pm = Xpw -
IEA

i1i) There is a finite subset A of A such that rady (( > IZ-) M) = rady (DM).
i€eA

Proof (i) = (i4i) Let rady (DM) = radys ((Z Ii> M) and let D be an ideal finitely generated by the
€A

set {dy,...,d;}. For each d;M, there is a positive number n; such that d;*M C <Z Ii) M and so there
i€EA
is a finite subset A; of A such that d"M C (Z Ii> M. If n = max{ny,..n;} and A = [J A; then
i€A i=1
radM ((Z Ii> M) = radM(DM).
IEA
(#9i) = (i1) By Theorem 3.5.
(73) = (1) It is clear. O

The following corollary is a special case of Theorem 3.6.

Corollary 3.7 Let M be a finitely generated multiplication R-module and let I; be a proper ideal of R for all

i € A. Then the following statements are equivalent:
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7,) U XI,;M = Spec(M).
€A
i1) There is a finite subset A of A such that |J Xp,m = Spec(M).
iEA

iii) There is a finite subset A of A such that (Z IZ) M=M.
1€EA

Corollary 3.8 Let M be a finitely generated multiplication R-module and let D be a finitely generated ideal
of R. Then Xpp is quasicompact.

Using topological properties, we are now ready to prove the following characterization for radys(0).

Theorem 3.9 Let M be a finitely generated multiplication R-module satisfying the T -condition for every
submodule. Then there are proper ideals Iy,...,I, of R such that rady(0) = rady ((I1...I,) M) .

Proof Let X = Spec(M) be Noetherian topological space. By [9], X has only a finite number of distinct

n
irreducible components U; such that |J U; = X. It is well known that any irreducible component in a
i=1

1=

topological space is closed and so for each i, there is an ideal I; such that U; = V(I;M). Then
b=x\{Jvm) =

i=1 2

(X\V(L:M)) = () Xpna-
1 i=1

n
Thus, by Theorem 3.1, radp(0) = () rady (L;M) = radpy ((Iy...In) M). O
i=1

(2

By using Theorems 2.8 and 3.5, we close the paper with the following result.

Theorem 3.10 Let M be a finitely generated multiplication R-module and let I; be an ideal of R. Then

K2

X = U X5,nm, where Xy, pr is irreducible, if and only if M = (Z Ii> M and Nt,0(0) is a prime submodule
=1 i=1

of M.
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