
Turk J Math
(2019) 43: 2010 – 2024
© TÜBİTAK
doi:10.3906/mat-1811-95

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Studying new generalizations of Max-Min matrices with a novel approach

Emrah KILIÇ1, Talha ARIKAN2,∗

1Department of Mathematics, TOBB Economics and Technology University, Ankara, Turkey
2Department of Mathematics, Hacettepe University, Ankara, Turkey

Received: 21.11.2018 • Accepted/Published Online: 19.06.2019 • Final Version: 31.07.2019

Abstract: We consider new kinds of max and min matrices,
[
amax(i,j)

]
i,j≥1

and
[
amin(i,j)

]
i,j≥1

, as generalizations of

the classical max and min matrices. Moreover, their reciprocal analogues for a given sequence {an} have been studied.
We derive their LU and Cholesky decompositions and their inverse matrices as well as the LU -decompositions of their
inverses. Some interesting corollaries will be presented.
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1. Introduction
There are many interesting and useful combinatorial matrices defined by a given sequence {an}n≥0 . One of
them is known as the Hankel matrix and defined as follows:

a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
...

...
... . . .


for more details see [17]. Considering some special number sequences instead of {an}n≥0 , there are many
special matrices with nice algebraic properties. Some authors [8, 19] studied the Hankel matrix by considering
the reciprocal sequence of {an}n≥0 of the form



1
a0

1
a1

1
a2

· · ·

1
a1

1
a2

1
a3

· · ·

1
a2

1
a3

1
a4

· · ·
...

...
... . . .


.

They are called the Hilbert and Filbert matrices when an = n+1 and an = Fn+1, respectively, where Fn stands
for the nth Fibonacci number. Kılıç and Prodinger [10] gave some parametric generalizations and variants of
the Filbert matrix.
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In this paper, we define four new combinatorial matrices, which we called max and min matrices and
their reciprocal analogues whose entries run in left-reversed and up-reversed L -shaped pattern, respectively.
By a given sequence {an} , we define the matrices M1 , M2 , M1 and M2 as

(M1)ij = amax(i,j), (M2)ij =
1

amax(i,j)

and

(M1)ij = amin(i,j), (M2)ij =
1

amin(i,j)
.

Clearly, the matrices M1 and M1 have the forms

M1 =



a1 a2 a3 · · · an · · ·
a2 a2 a3 · · · an · · ·
a3 a3 a3 · · · an · · ·
...

...
... . . . ... . . .

an an an · · · an
. . .

...
...

... . . . . . . . . .


and

M1 =



a1 a1 a1 · · · a1 · · ·
a1 a2 a2 · · · a2 · · ·
a1 a2 a3 · · · a3 · · ·
...

...
... . . . ... . . .

a1 a2 a3 · · · an
. . .

...
...

... . . . . . . . . .


.

It is worthwhile to note that if the sequence {an} is increasing, then amax(i,j) = max (ai, aj) and
amin(i,j) = min (ai, aj) . Conversely, if the sequence {an} is decreasing, then amax(i,j) = min (ai, aj) and
amin(i,j) = max (ai, aj) . Thus, our matrices are the generalizations of the classical max and min matrices.

For some particular sequences, some special cases of these matrices were studied in [3, 5, 6, 13, 20].

• Frank [6] studied the matrix
[max (n+ 1− i, n+ 1− j)]1≤i,j≤n ,

which is called the Frank matrix.

• Choi [3] gave the Cholesky decomposition of the matrix[
max

(
1

i+ 1
,

1

j + 1

)]
i,j≥1

,

which is called the loyal companion of the Hilbert matrix.

The above matrices are the special cases of the matrix M1.

The following matrices are the particular cases of the matrix M1 , which were studied before.
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• Trench [20] found eigenvalues and eigenvectors of the matrices

[min(i, j)]1≤i,j≤n and [min(2i− 1, 2j − 1)]1≤i,j≤n .

Afterwards, Kovacec [13] presented a different proof for the same problem.

• Fonseca [5] studied general cases of the matrices considered in [13, 20] by defining the matrix
[min(ai− b, aj − b)]1≤i,j≤n for a > 0 and a ̸= b. Then he computed eigenvalues and eigenvectors of this
matrix by computing its inverse. He also presented a result without proof in Remark 2.1. Our results will
be given for the matrix M1 would provide a proof for this remark.

Recently, Mattila and Haukkanen [14] studied more general matrix families. Let T = {a1, a2, . . . , an} be a
finite multiset of real numbers, such that a1 ≤ a2 ≤ · · · ≤ an. They considered the matrices [max(ai, aj)]1≤i,j≤n

and [min (ai, aj)]1≤i,j≤n defined on the set T . They computed the determinants, inverses, Cholesky decompo-
sitions of these matrices and examined positive definiteness of them. They used the meet and join matrices, see
[7], as a tool to obtain their results. Moreover, they indicated that it is difficult to verify their results by using
only basic linear algebra methods.

We will study various properties of the matrices M1 , M2 , M1 , and M2, defined by any sequence {an} ,
such as LU -decomposition, inverse, Cholesky decomposition. In Section 2, we focus on the matrices M1 and
M2. We will only give the proofs of the results related with the matrix M1. The others can be similarly done.
In Section 3, we examine the matrices M1 and M2. This section will show us how Lemma 2 is useful, which
we will give at the end of this section, to derive new combinatorial identities.

One can derive many results on the above mentioned combinatorial matrices by applying our results to
some particular sequences {an}n≥0 . Additionally, our results provide alternative proofs for the results given in
[14].

Finally, we give some further applications of our main results. For example, we shall give an idea about
how we could obtain a sequential generalization of the Lehmer matrix and its reciprocal analogue.

Throughout the paper, we use the letters L , U, and, L̂, Û for the LU -decompositions of a given matrix
and its inverse, respectively. We denote the (i, j)th entries of a given matrix M and its inverse M−1 by Mij

and M−1
ij , respectively. Similarly calligraphic letters will be used for the results related with a matrix in written

calligraphic font. Also we assume that {an} is any sequence such that ai ̸= 0 and ai ̸= ai+1 for all i ≥ 1.

In general, for each section, the size of the matrix does not really matter except the results about inverse
matrix, so that we may think about an infinite matrix M and restrict it whenever necessary to the first n rows
resp. columns and use the notation Mn.

The matrix D (a) = [Dij ] stands for a diagonal matrix constructed via the given sequence {an} , defined
by

Dij =

{
ai if i = j,
0 otherwise.

We have the following lemmas for later use.

Lemma 1 Let {an} be a real sequence. Then for all i, j > 0, we have

amax(i,j)amin(i,j) = aiaj .
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Lemma 2 Let H = [Hij ] be a square matrix and suppose that its LU -decomposition, inverse, LU -decomposition
of its inverse and Cholesky decomposition are known with the matrices L = [Lij ] , U = [Uij ] , H−1 =

[
H−1

ij

]
,

L̂ =
[
L̂ij

]
, Û =

[
Ûij

]
and C = [Cij ] , respectively. Assume that a new square matrix H = [Hij ] is defined with

the entries of the matrix H and terms of given nonzero sequences {sn} and {mn} such that Hij = Hijsimj .

Then we can determine the LU -decomposition, inverse, LU -decomposition of its inverse and Cholesky decom-
position of the matrix H as shown

Lij = Lij
si
sj

and Uij = Uijsimj ,

L−1
ij = L−1

ij

si
sj

and U−1
ij = U−1

ij

1

sj

1

mi
,

H−1
ij = H−1

ij

1

sj

1

mi
,

L̂ij = L̂ij
mj

mi
and Ûij = Ûij

1

sj

1

mi
,

L̂−1
ij = L̂−1

ij

mj

mi
and Û−1

ij = Û−1
ij simj

and when for all i ≥ 1, si = mi,

Cij = Cijsi.

Proof By our assumption for the matrix H , first we can write

H = D (s) ·H ·D (m) .

Since the LU -decomposition of the matrix H is known, namely H = L · U, we write

H = D (s) · L · U ·D (m) = D (s) · L ·D
(
1

s

)
·D (s) · U ·D (m) .

Here we see that D (s) ·L ·D
(
1
s

)
is a unite lower triangular matrix and D (s) ·U ·D (m) is an upper triangular

matrix. So

L = D (s) · L ·D
(
1

s

)
and U = D (s) · U ·D (m) ,

which gives the LU -decomposition of H. Moreover, we immediately derive

H−1 = D

(
1

m

)
·H−1 ·D

(
1

s

)
.

For the Cholesky decomposition of H , consider

H = D (s) ·H ·D (s) = D (s) · C · CT ·D (s)
T
= (D (s) · C) · (D (s) · C)

T
,

as claimed. 2

Lemma 2 allows us to derive many new matrix identities. For instance, the Pascal matrix
[(

i+j
i

)]
i,j≥0

and its some variants have been studied by many authors, for more details see [4, 11, 18]. In [18], the LU -
decomposition of the Pascal matrix was given. Since

(i+ j)! =

(
i+ j

i

)
× i!× j!,
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by choosing si = i! and mj = j! in Lemma 2, one can easily find the related results for the matrix [(i+ j)!]i,j≥0 .

For more identities, we refer to [12].

2. Max-matrices and their reciprocal analogues

In this section, we derive the LU -decompositions, inverses, Cholesky decompositions and LU -decompositions
of the inverses of the matrices M1 and M2 , respectively.

2.1. Max-Matrix M1

We start with the LU -decomposition, M1 = L · U :

Theorem 1 For i, j ≥ 1,

Lij =

{ ai
aj

if i ≥ j,

0 otherwise

and

Uij =



aj if i = 1,

aj (ai−1 − ai)

ai−1
if j ≥ i > 1,

0 otherwise.

Now we shall give the inverse matrices L−1 and U−1 by the following result.

Theorem 2 For i, j ≥ 1,

L−1
ij =

{
(−1)

i+j ai
aj

if 0 ≤ i− j ≤ 1,

0 otherwise

and

U−1
ij =



(−1)
i+j aj−1

ai (aj−1 − aj)
if 0 ≤ j − i ≤ 1 and j ̸= 1,

1

a1
if i = j = 1,

0 otherwise.

Now we compute the inverse matrix (M1)
−1
n as follows.
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Theorem 3 For 1 ≤ i, j ≤ n, (M1)
−1
n is the symmetric tridiagonal matrix defined by

(M1)
−1
ij =



1

a1 − a2
if i = j = 1,

ai−1 − ai+1

(ai+1 − ai) (ai − ai−1)
if 1 ̸= i = j ̸= n,

an−1

an (an−1 − an)
if i = j = n,

1

ai − ai−1
if i = j + 1.

For the Cholesky decomposition, M1 = C · CT , we have the following result.

Theorem 4 For i, j ≥ 1, C is the lower triangular matrix defined by

Cij =


ai√
a1

if j = 1,

ai
ajaj−1

√
ajaj−1 (aj−1 − aj) if j > 1.

We will give the LU -decomposition of (M1)
−1
n , that is (M1)

−1
n = L̂n · Ûn , and also the inverses of these

factor matrices by the following results.

Theorem 5 For 1 ≤ i, j ≤ n,

L̂ij =

{
(−1)

i+j if 0 ≤ i− j ≤ 1,
0 otherwise

and

Ûij =



1

an
if i = j = n,

(−1)
i+j 1

(ai − ai+1)
if 0 ≤ j − i ≤ 1 and i ̸= n,

0 otherwise.

Theorem 6 For 1 ≤ i, j ≤ n,

L̂−1
ij =

{
1 if i ≥ j,
0 otherwise

and

Û−1
ij =

 an if j = n,
aj − aj+1 if i ≤ j < n,

0 otherwise.

Remark 1 If the sequence {an} is positive and decreasing, then the matrix M1 is a positive definite matrix,
which can be easily seen from its LU -decomposition. On the other hand, the sequence {an} is negative and
increasing, then the matrix M1 is a negative definite matrix.

2015



KILIÇ and ARIKAN/Turk J Math

2.2. Proofs
Now we will present the proofs of the results given in the previous subsection.

In order to prove M1 = L · U, it is sufficient to show that

min(i,j)∑
d=1

LidUdj = amax(i,j).

Consider

min(i,j)∑
d=1

LidUdj =
ai
a1

aj +

min(i,j)∑
d=2

ai
ad

aj (ad−1 − ad)

ad−1

= aiaj

 1

a1
+

min(i,j)∑
d=2

(
1

ad
− 1

ad−1

) =
aiaj

amin(i,j)
,

which, by Lemma 1, equals amax(i,j), as expected.

Define the matrix T = [Tij ] with

Tij =

{
1 if i ≥ j,
0 otherwise.

It is easy to see that

T−1
ij =

{
(−1)

i+j if 0 ≤ i− j ≤ 1,
0 otherwise.

Thus, the proofs related with L−1, U−1, L̂−1
n and Û−1

n follow from Lemma 2.

In order to prove the LU -decomposition of (M1)
−1
n , it is sufficient to show that (M1)n = Û−1

n · L̂−1
n .

Consider

n−1∑
d=max(i,j)id

Û−1
id L̂−1

dj =

n−1∑
d=max(i,j)

(ad − ad+1) + an = amax(i,j),

as desired.
For the Cholesky decomposition, i.e. M1 = C · CT , consider

min(i,j)∑
d=1

CidCjd =
aiaj
a1

+

min(i,j)∑
d=2

aiaj
adad−1

(ad−1 − ad) = amax(i,j),

which completes the proof.

Finally, in order to prove M1 ·M−1
1 = I , we have three cases: j = 1 , 1 < j < n and j = n. For these
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cases, consider the following equalities, respectively.

n∑
d=1

(M1)id (M1)
−1
d1 =

amax(i,1)

a1 − a2
+

amax(i,2)

a2 − a1
= δi,1,

n∑
d=1

(M1)id (M1)
−1
dj =

amax(i,j−1)

aj − aj−1
+

amax(i,j) (aj−1 − aj+1)

(aj+1 − aj) (aj − aj−1)
+

amax(i,j+1)

aj+1 − aj
= δi,j ,

n∑
d=1

(M1)id (M1)
−1
dn =

amax(i,n−1)

an − an−1
+

an−1amax(i,n)

an (an−1 − an)
= δi,n,

where δi,j is Kronecker delta. By all of them, the proofs are complete.

2.3. Reciprocal Max-matrix M2

Similarly we shall give all results related with the matrix M2 without proofs. All the proofs can be similarly
done as in the previous subsection.

Theorem 7 For i, j ≥ 1,

Lij =

{ aj
ai

if i ≥ j,

0 otherwise

and

Uij =



1

aj
if i = 1,

(ai − ai−1)

ajai
if j ≥ i > 1,

0 otherwise.

Theorem 8 For i, j ≥ 1,

L−1
ij =

{
(−1)

i+j aj
ai

if 0 ≤ i− j ≤ 1,

0 otherwise

and

U−1
ij =


(−1)

i+j aiaj
(aj − aj−1)

if 0 ≤ j − i ≤ 1 and j ̸= 1,

a1 if i = j = 1,
0 otherwise.
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Theorem 9 For 1 ≤ i, j ≤ n, (M2)
−1
n is the symmetric tridiagonal matrix defined by

(M2)
−1
ij =



a1a2
(a2 − a1)

if i = j = 1,

a2i (ai+1 − ai−1)

(ai+1 − ai) (ai − ai−1)
if 1 ̸= i = j ̸= n,

a2n
(an − an−1)

if i = j = n,

aiaj
(ai−1 − ai)

if i = j + 1.

Theorem 10 For i, j ≥ 1, C is the lower triangular matrix defined by

Cij =


√
a1
ai

if j = 1,

√
aj − aj−1

ai
if j > 1.

Theorem 11 For 1 ≤ i, j ≤ n,

L̂ij =

{
(−1)

i+j if 0 ≤ i− j ≤ 1,
0 otherwise

and

Ûij =



an if i = j = n,

(−1)
i+j ai+1ai

(ai+1 − ai)
if 0 ≤ j − i ≤ 1,

0 otherwise.

Theorem 12 For 1 ≤ i, j ≤ n,

L̂−1
ij =

{
1 if i ≥ j,
0 otherwise

and

Û−1
ij =



1

an
if j = n,

aj+1 − aj
aj+1aj

if i ≤ j < n,

0 otherwise.

3. Min-matrices and their reciprocal analogues
In this section, we list the LU -decompositions, inverses, Cholesky decompositions and LU -decompositions of
the inverse matrices of M1 and M2 , respectively. We omit the results related with L−1 , U−1, L̂−1 and Û−1

here. They could be easily obtained as in the proof in Section 2.2.
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Theorem 13 For the matrix M1,

Lij =

{
1 if i ≥ j,
0 otherwise,

Uij =

 a1 if i = 1,
ai − ai−1 if j ≥ i > 1,

0 otherwise,

(M1)
−1
ij =



a2
a1 (a2 − a1)

if i = j = 1,

(ai+1 − ai−1)

(ai+1 − ai) (ai − ai−1)
if 1 ̸= i = j ̸= n,

1

(an − an−1)
if i = j = n,

1

(ai−1 − ai)
if i = j + 1,

Cij =


√
a1 if j = 1,√

aj − aj−1 if j > 1,
0 otherwise,

L̂ij =

{
(−1)

i+j aj
ai

if 0 ≤ i− j ≤ 1,

0 otherwise,

Ûij =



(−1)
i+j ai+1

aj (ai+1 − ai)
if 0 ≤ j − i ≤ 1 and i ̸= n,

1

an
if i = j = n,

0 otherwise.

Note that the inverse matrix (M1)
−1 is a symmetric tridiagonal matrix of order n .

Remark 2 By the LU -decomposition of the matrix M1 , it is seen that if a1 is a positive real number and the
sequence {an} is increasing, then the matrix M1 is a positive definite matrix. Conversely, if a1 is a negative
real number and the sequence {an} is decreasing, then the matrix M1 is a negative definite matrix.

Theorem 14 For the matrix M2, we have

Lij =

{
1 if i ≥ j,
0 otherwise,

Uij =



1

a1
if i = 1,

ai−1 − ai
aiai−1

if j ≥ i > 1,

0 otherwise,
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(M2)
−1
ij =



a21
(a1 − a2)

if i = j = 1,

a2i (ai−1 − ai+1)

(ai+1 − ai) (ai − ai−1)
if 1 ̸= i = j ̸= n,

anan−1

(an−1 − an)
if i = j = n,

aiaj
(ai − ai−1)

if i = j + 1,

Cij =


1

√
a1

if j = 1,

1

ajaj−1

√
ajaj−1 (aj−1 − aj) if j > 1,

0 otherwise,

L̂ij =

{
(−1)

i+j ai
aj

if 0 ≤ i− j ≤ 1,

0 otherwise,

Ûij =


(−1)

i+j aiaj
aj (ai − ai+1)

if 0 ≤ j − i ≤ 1,

an if i = j = n,
0 otherwise.

Proof By Lemma 1, we can write

amin(i,j) =
aiaj

amax(i,j)
and 1

amin(i,j)
=

amax(i,j)

aiaj
.

So all claimed results follow by Lemma 2 and the results of Section 2. 2

Note that the inverse matrix (M2)
−1 mentioned in Theorem 14 is a symmetric tridiagonal matrix of

order n .

4. Applications

First, we present an application which is a prototype to derive some determinant identities.

Corollary 1 Let T1 and T2 be the matrices defined by [max (i, j)]1≤i,j≤n and [min (i, j)]1≤i,j≤n , respectively.
Then

detT1 = (−1)
n−1

n and detT2 = 1.

Proof Let {an} be the sequence of natural numbers, an = n, which is increasing. Thus, amax(i,j) = max (i, j)
and amin(i,j) = min (i, j) . Determinant of a matrix is equal to product of elements of the main diagonal entries
of the triangular matrix U , which comes from its LU -decomposition. Thus, by the LU -decompositions of M1
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and M1, we obtain

detT1 =

n∏
d=2

(−1) d

d− 1
= (−1)

n−1
n,

detT2 =

n∏
d=1

1 = 1,

as claimed. 2

Recall the well-known Lehmer matrix H (see [16]) defined by

Hij =
min (i, j)

max (i, j) .

By Lemma 1, one can write the (i, j)th entry of it as:

min (i, j)

max (i, j) =
ij

(max (i, j))2
=

ij

max (i2, j2) .

Using Lemma 2 and the results for the matrix M2 by taking an = n2, i.e. amax(i,j) = max
(
i2, j2

)
, it is

easily rediscovered the LU -decomposition, inverse and Cholesky decomposition of the Lehmer matrix. Also,
the results of [1, 9] can be reobtained by using similar approach.

Moreover, our results give us an idea to find a sequential generalization of the Lehmer matrix. For
example, we define the matrix H = [Hij ] for any positive and strictly increasing sequence {an} by

Hij =
min (ai, aj)

max (ai, aj)
=

aiaj

max
(
a2i , a

2
j

) .
Thus, by our general results, the LU -decomposition, inverse and Cholesky decomposition of the matrix H

could be derived but we omit the details here due to the similarities with the following example. The interested
reader could find a lattice-theoretic generalization of the Lehmer matrix in [2].

The following example will be a reciprocal-sequential generalization of the Lehmer matrix.

Corollary 2 Let {an} be a positive and strictly increasing sequence and H = [Hij ] be the matrix defined by

Hij =
max (ai, aj)
min (ai, aj)

.

Then

Lij =

{ ai
aj

if i ≥ j,

0 otherwise,

Uij =


aj
a1

if i = 1,

aj (bi−1 − bi)

aibi−1
if j ≥ i > 1,

0 otherwise,
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Cij =


ai√
b1

if j = 1,

ai
bjbj−1

√
bjbj−1 (bj−1 − bj) if j > 1,

0 otherwise,

H−1
ij =



b1
(b1 − b2)

if i = j = 1,

bi (bi−1 − bi+1)

(bi+1 − bi) (bi − bi−1)
if 1 ̸= i = j ̸= n,

bn−1

(bn−1 − bn)
if i = j = n,

aiaj
(bi − bi−1)

if i = j + 1,

where H−1 is a symmetric tridiagonal matrix of order n and bi = a2i .

Proof Since {an} is a positive and strictly increasing, by Lemma 1, we have

Hij =
max (ai, aj)
min (ai, aj)

=
aiaj

bmin(i,j)
.

Hence, the proof follows by Lemma 2 and the results of the matrix M2 for the sequence {bn} . 2

Note that when an = n , we get the reciprocal analogues of the usual Lehmer matrix. By using same
approach, one can also derive related results for any positive and strictly decreasing sequence {an} .

Now we would like to give a useful note for the reader. There are some classes of matrix families, whose
LU -decomposition, inverse, determinant etc. cannot be directly derived by our results. Nevertheless our results
allow to guess their properties such as LU -decomposition, inverse with less effort. One of the examples of these
kinds of matrix families is the matrix family obtained by deleting certain band entries starting from the upper
right corner or the left down corner of the matrices M1 , M2 , M1 , or M2 . Then our results will give inspiration
to obtain their properties. To show this, we shall give an example.

Corollary 3 For positive integer r , define the matrix F = [Fij ] with entries

Fij =

{
amax(i,j) if i ≥ j − r,

0 otherwise.

Then for i, j ≥ 1, the LU -decomposition of the matrix F is

Lij =

{ ai
aj

if i ≥ j,

0 otherwise,

and

Uij =


aj if i = 1 and j ≤ r + 1,
aj if j > r + 1 and i = j − r,

aj (ai−1 − ai)

ai−1
if i+ r − 1 > j ≥ i > 1,

0 otherwise.
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Clearly, for n = 8 and r = 3, it takes the form

F8 =



a1 a2 a3 a4 0 0 0 0
a2 a2 a3 a4 a5 0 0 0
a3 a3 a3 a4 a5 a6 0 0
a4 a4 a4 a4 a5 a6 a7 0
a5 a5 a5 a5 a5 a6 a7 a8
a6 a6 a6 a6 a6 a6 a7 a8
a7 a7 a7 a7 a7 a7 a7 a8
a8 a8 a8 a8 a8 a8 a8 a8


.

The matrix F is obtained from the max-matrix by deleting the entries after r th superdiagonal (Note that
similar example can be obtained for the matrix which is obtained by applying the same process to min-matrix).

Now we prove the claimed LU -decomposition of the matrix F just above.

Proof We should show that

Fij =

min(i,j)∑
d=1

LidUdj .

The proof for the case j ≤ r + 1 can be similarly done as in Subsection 2.2. Now consider for j > r + 1 and
i ≥ j − r,

min(i,j)∑
d=1

LidUdj =
aiaj
aj−r

+

min(i,j)∑
d=j−r+1

LidUdj =
aiaj
aj−r

+ aiaj

min(i,j)∑
d=j−r+1

(
1

ad
− 1

ad−1

)

=
aiaj

amin(i,j)
= amax(i,j).

And the final cases j > r + 1 and i < j − r can be easily computed as 0 , which completes the proof. 2

The particular case r = 1 can be found in [6].
In general, we encounter a special family of the Hessenberg matrices for the case r = 1. By its LU -

decomposition, we can compute their determinants. It would be valuable to note that Hessenberg matrices are
very important combinatorial matrices. We could refer to a recent work [15] to see how Hessenberg matrices are
useful matrices for deriving combinatorial identities involving integer partitions and multinomial coefficients.

One can also obtain similar results for the matrix which is derived by deleting the entries of max-matrix
(or min-matrix) after r th subdiagonal. We left the details to the interested reader.

As a conclusion remark, our results cover the results for the matrices [max (ai, aj)]i,j>0 and [min (ai, aj)]i,j>0

(also their reciprocals analogues) when the sequence {an} is increasing or decreasing. Unfortunately, if a se-
quence {cn} is neither increasing nor decreasing, such as unimodal sequences, then our results do not work for
the matrices [max (ci, cj)]i,j>0 and [min (ci, cj)]i,j>0 .
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