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Abstract: Let X be a locally compact and noncompact G−space with a compact group G . In this paper, we give
some useful description of a compactification of the orbit space X/G when it is an orbit space of a G−compactification
of X . As an application, we show that the closed bounded interval [a, b] is homeomorphic to the space of maximal ideals
with Stone topology of uniformly continuous even functions subring of C∗(R) .
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1. Introduction
By a topological transformation group, we mean a triple (X,G, θ) , where G is a topological group, X is a
Tychonoff space, and θ is a continuous action of G on X . That is to say, θ is a continuous mapping from
G×X onto X such that the following conditions are fulfilled:

1. θ(e, x) = x , for each x ∈ X (e denotes the identity element in G)

2. θ(g, θ(h, x)) = θ(gh, x) , for each g, h ∈ G and x ∈ X .

We shall write in generally gx for θ(g, x) . If (X,G, θ) is a transformation group then X will be called a
G−space. If X and Y are G−spaces, then a mapping f : X → Y is called equivariant whenever f(gx) = gf(x)

for all g ∈ G and x ∈ X .
A compact G−space γX is called a G−compactification of X , if there is an equivariant dense embedding

map i : X ↪→ γX . A Tychonoff space X may not have a G−compactification. For example, Megrelishvili [4]
established a Tychonoff G−space admitting no compact Hausdorff extension. However, suppose that X is a
locally compact G−space and aX = X ∪ {∞} is the (Alexandroff) one-point compactification of X . Then it
is clear that aX is a G−compactification of X defining g∞ = ∞ for all g ∈ G .

The following problems in the theory of G−spaces are well-known:
(1) the problem of existence of a G−compactification, say γX , of a Tychonoff G−space X such that

α(X/G) = γX/G for a given compactification, α(X/G) , of the orbit space X/G .
(2) in case of existence of this compactification, the question is how α(X/G) is uniquely described with

C∗(X) (i.e. bounded continuous function ring of X .)
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Srivastava [6] proved that and β(X/G) = βX/G for finite group G . (βX and β(X/G) are Stone-Cech
compactifications of X and X/G). However, by means of Gelfand’s method, Karapınar [3] described the
β(X/G) as a space of some maximal ideals of a certain subring of C∗(X) .

In this paper, for locally compact space X with compact G−action, we answer the question (2) above.
Specially, we describe the one-point compactification of the orbit space X/G by using the set of maximal ideals
of a complete subring of C∗(X) . Among different methods for constructing compactifications, we use Gelfand’s
method.

2. Preliminaries
In this section, we shall state a few definitions and facts about transformation groups and Gelfand’s method for
compactifications. We refer the reader to [1, 5] for more details.

Definition 1 ([1]) A subspace A of a G−space X is called invariant, if

θ(G×A) = A.

Definition 2 ([1]) If X is a G−space and x ∈ X , the subspace

G(x) = {gx : g ∈ G}

is called the orbit of x . Let X/G denote the set of all orbits G(x) of a G−space X and π : X → X/G denote
the orbit map taking x to G(x) . Then X/G endowed with the quotient topology relative to π is called the orbit
space of X .

Definition 3 ([1]) An action θ of a group G on a space X is called transitive, if G(x) = X for all x ∈ X .

Definition 4 ([5]) A topological space X is called locally compact if every point has a compact neighborhood.

Theorem 5 If X is a G− space with G compact, then

(1) X/G is Hausdorff.
(2) π : X → X/G is closed.
(3) π : X → X/G is proper (π−1 (compact) is compact).
(4) X is compact iff X/G is compact.
(5) X is locally compact iff X/G is locally compact.

Proof See [1, Theorem 3.1] 2

Definition 6 ([5]) For a topological space X , a compactification aX of X is called a one- point compactification
of X if aX −X is a singleton

Proposition 7 A topological space X has a one-point compactifications iff X is locally compact and not
compact.

Proof See [5, Proposition 4.3.c] 2
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Proposition 8 A noncompact, locally compact space X has a unique one- point compactification.

Proof See [5, Proposition 4.3.f] 2

Since a locally compact space is Tychonoff space, the following theorem and definitions about Tychonoff
space is valid for locally compact space. We will denote continuous and bounded real-valued function rings by
C∗(X) .

Definition 9 ([5]) Let X be a topological space. A subcollection B of subsets of X is called a closed base for
X , if each closed subset of X can be written as an intersection of sets belonging to B .

Definition 10 ([5]) Let Ω be a complete (with respect to the sup norm metric) subring of C∗(X) which
contains all constant functions and MΩX denotes the set of all maximal ideals of Ω . For each f ∈ Ω , define
S(f) = {M ∈MΩX : f ∈M} . It is easy to see that the family {S(f) : f ∈ Ω} is closed base for a topology on
MΩX which is called the Stone topology.

Theorem 11 MΩX with the Stone topology is a compact and Haussdorff space.

Proof See [5, Theorem 4.5.j] 2

Definition 12 ([5]) A complete subring Ω of C∗(X) with respect to the sup-norm metric is called regular, if it
contains all constant functions and Z(Ω) = {Z(f) : f ∈ Ω} is a closed base for X , where Z(f) is the zero-set
of f .

If x ∈ X and Ω is a regular subring of C∗(X) , then Mx = {f ∈ Ω : f(x) = 0} ∈ MΩX .
(See [5, Theorem 4.5.l]) Thus, we can define a continuous function λ : X →MΩX by λ(x) =Mx .

The proof of the following theorem is given in [2].

Theorem 13 (Gelfand, [2]) If Ω is a regular subring of C∗(X) for a space X , then λ : X →MΩX is a dense
embedding.

Definition 14 ([5]) A compactification γX of a Tychonoff space X is called a Gelfand compactification, if for
some regular subring Ω of C∗(X) , γX and MΩX are equivalent compactifications of X which is denoted by
γX ≡X MΩX (i.e. there exists a homeomorphism which is identitiy on X ).

For a given compactification γX of a Tychonoff space X , we denote by ΩγX the set of restricted functions
to X of C∗(γX) . The below theorem states that each compactification is a Gelfand compactification.

Theorem 15 ΩγX is a regular subring of C∗(X) and γX ≡X MΩγX
X .

Proof See [5, Theorem 4.5.o]. 2

3. Main result
From now on, X will be a locally compact and noncompact G−space where G is a compact group and bX

is a G−compactification of X . Then it is easy to see that the remainder X∗ = bX − X is an G− invariant
subspace of bX .
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Proposition 16 bX/G is a compactification of X/G

Proof Let i : X → bX denote dense embedding G−map. Then i induces a well-defined map by the
equivariance of i

i : X/G→ bX/G

G(x) 7→ G(i(x)),

and the following diagram commutes:

X
i //

π

��

bX

��

π′

��
X/G

i // bX/G

.

If i(G(x)) = i(G(y)) namely G(i(x)) = G(i(y)) , then there exists an element of g ∈ G such that i(y) = gi(x) =

i(gx) . Since i is one-to-one map, it follows that y = gx . Therefore, we conclude that i is also one-to-one map.
Since the canonical map π′ : bX → bX/G is closed, it follows from the above commutative diagram that

i is also closed.
Let G(p) ∈ bX/G . Since i(X) is dense subset of bX , then there exists a net (zλ) = (i(xλ)) in i(X) such

that zλ → p . Let us consider the net (G(xλ)) in the orbit space X/G . Then i(G(xλ) = G(i(xλ)) = G(zλ) →
G(p) which implies the density of i(X/G) in bX/G . Thus, bX/G is a compactification of X/G . 2

Now, we consider the Gelfand construction of bX . By Theorem 15 we have bX =MΩbX
X for the regular

subring ΩbX = {f |X : f ∈ C∗(bX)} .
Let Ω′

bX denote the set of all f ∈ ΩbX such that if G(x) is an orbit then the restriction of f to G(x) is
constant.

Lemma 17 Ω′
bX is a complete subring of C∗(X) .

Proof It is easy to see that Ω′
bX is a subring of C∗(X) which contains all constant functions.

Let (fn|X)n∈N be a Cauchy sequence in Ω′
bX . Since C∗(bX) is complete ring, there exists f ∈ C∗(bX)

such that limfn|X = f |X . Since each fn|X has constant value on orbits, fn(gx) = fn(hx) for each x ∈ X and
g, h ∈ G . Therefore,

f(gx) = lim fn(gx) = lim fn(hx) = f(hx),

which implies completeness of Ω′
bX . Therefore, by the Theorem 11, MΩ′

bX
X is a compact Hausdorff space. 2

Remark 18 Observe that Z(Ω′
bX) can be a closed base for X only in the case of trivial action of G . Indeed,

every set of Z(Ω′
bX) is a G− invariant subspace of X and hence, if Z(Ω′

bX) is a closed base for X , every closed
subset of invariant, in particular, every one-point set is invariant, that is the action of G is trivial.

Lemma 19 The rings Ω′
bX and ΩbX/G = {f |X/G : f ∈ C∗(bX/G)} are naturally isomorphic.
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Proof If f ∈ Ω′
bX , then f = f |X for some f ∈ C∗(bX) and f |G(x) is constant for each x ∈ X . Since X is

dense subspace of bX , for each p ∈ bX there exists a net (xλ) in X such that limxλ = p .
Furthermore, the nets (f(gxλ)) and (f(hxλ)) are equal for each g, h ∈ G . Thus,

f(gp) = lim f(gxλ) = lim f(hxλ) = f(hp)

which implies that f |G(p) is indeed constant for each p ∈ bX . Therefore, there exists a unique hf ∈ C∗(bX/G)

such that f = hf ◦ π′ , where π′ is the orbit map (i.e. hf (G(p)) = f(p) for each p ∈ bX ). Let hf denote the
restriction of hf to the orbit space X/G .

The isomorphism between Ω′
bX and ΩbX/G established by the well-defined map φ : Ω′

bX → ΩbX/G given
by f 7→ hf . This map obviously preserves the ring operations.

Similarly, if f ∈ ΩbX/G , then f = f |X/G for some f ∈ C∗(bX/G) and clearly (f ◦ π′)|X ∈ Ω′
bX . Thus,

it is easy to see that φ is isomorphism because it has inverse ring homomorphism φ−1 : ΩbX/G → Ω′
bX given

by f 7→ (f ◦ π′)|X . 2

Theorem 20 bX/G is homeomorphic to the compact Hausdorff space MΩ′
bX
X .

Proof Since bX/G is a compactification of X/G , we have bX/G =MΩbX/G
(X/G) from the Theorem 15.

On the other hand, the above ring isomorphism φ : Ω′
bX → ΩbX/G induces the map, Mφ : MΩ′

bX
X →

MΩbX/G
(X/G) , defined by Mφ(P ) = φ(P ) = {hf : f ∈ P} . If f ∈ ΩbX/G ,

M−1
φ (S(f)) = {P : f ∈ φ(P )} = {P : (f ◦ π′)|X ∈ P} = S((f ◦ π′)|X)

Then Mφ is a continuous map.
Similarly, the inverse ring isomorphism φ−1 : ΩbX/G → Ω′

bX induces the map Mφ−1 : MΩbX/G
(X/G) →

MΩ′
bX
X , defined by Mφ−1(P ) = φ−1(P ) . If f ∈ Ω′

bX ,

M−1
φ−1(S(f)) = {P : f ∈ φ−1(P )} = {P : hf ∈ P} = S(hf )

which implies the continuity of Mφ−1 and it is easily checked that

MφMφ−1(P ) = P for each P ∈MΩbX/G
(X/G)

and,
Mφ−1Mφ(P ) = P for each P ∈MΩ′

bX
X

2

Remark 21 KG(X) denotes the category of G−compactifications of X . Here ObjKG(X) =all G−compacti-
fications of X and if αX ,γX ∈ ObjKG(X) then the morphism set;

Hom(αX, γX) = {f : f : αX → γX equivariant map and f(x) = x for all x ∈ X}.

Theorem 22 The description of bX/G in Theorem 20 is functorially unique.
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Proof Let bX, αX ∈ KG(X) and bX/G = αX/G . Suppose that Hom(bX, αX) ̸= ∅ or Hom(αX, bX) ̸= ∅ .
Without loss of generality, we may assume that Hom(bX, αX) ̸= ∅ . Consider a map ψ ∈ Hom(bX, αX) . It is
easy to see that ψ induces a ring homomorphism

ψ : Ω′
αX → Ω′

bX , ψ(f |X) = (f ◦ ψ)|X .

Since ψ(x) = x for each x ∈ X , we have hf = hf◦ψ for each f ∈ Ω′
αX .

Therefore, we have the following commutative diagram

Ω′
αX

ψ //

φ

��

Ω′
bX

��

φ

��
ΩαX/G

≃ // ΩbX/G

.

Note that the vertical homomorphisms are ring isomorphisms by Lemma 19. It follows that ψ is a ring
isomorphism as desired. 2

4. Applications

Now, we focus on one-point compactification of the orbit space X/G . The below proposition states that the
one-point compactification of the orbit space can be characterized by the G−compactifications such that the
restricted action on X∗ is transitive.

Proposition 23 bX/G = a(X/G) iff the restricted action of G on X∗ = bX −X is transitive.

Proof If bX/G = a(X/G) , it is clear that the remainder (X/G)∗ = bX/G − X/G = a(X/G) − X/G is
singleton. Since (X/G)∗ = X∗/G , it follows the restricted action on X∗ is transitive.

Conversely, assume that the restricted action of G on X∗ is transitive. Then the orbit space X∗/G is
singleton. Since the orbit space bX/G is disjoint union the orbit spaces X/G and X∗/G , we have bX/G−X/G

is singleton. Therefore, by Theorem 5 and Proposition 8, we obtain that bX/G = a(X/G) . 2

Remark 24 The one-point compactification aX = X ∪ {∞} of a G−space X is a G−compactification with
g∞ = ∞ for all g ∈ G . Since the restricted action of G on X∗ = {∞} is transitive, we have aX/G = a(X/G) .

Now consider a G− compactification bX of X such that the restricted action of G on X∗ = bX −X is
transitive.

Corollary 25 The one-point compactification of the orbit space X/G is uniquely described with bX as stated
in Theorem 20.

Proof Consider the map ψ : bX → aX defined by ψ(x) = x for each x ∈ x and ψ(p) = ∞ for each p ∈ X∗ .
Since X is locally compact, X is open subset of bX and also aX . Moreover, since ψ|X = Id|X , ψ is continuous
on X .
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If p ∈ X∗ and ψ(p) is contained in an open set W in aX , then p is contained the open set H =

bX−(X−W ) in bX and clearly H ⊆ ψ−1(W ) . This implies the continuity of ψ . Since ψ is a clearly G−map,
ψ ∈ Hom(bX, aX) . Then it follows from Theorem 22, Proposition 23, and Remark 24 that the one-point
compactification a(X/G) is uniquely described as the maximal ideals of the complete ring Ω′

aX . 2

Example 26 Consider the antipodal action of G = Z2 on X = (−1, 1) . Let bX = [−1, 1] be two-point compact-
ification of X . It is easy to see that bX is a G-compactification of X and the orbit space bX/G = [0, 1] . Fur-
thermore, the orbit space of X/G = [0, 1) . Thus, one-point compactification of a(X/G) = bX/G . By Theorem
20, we have that bX/G is homeomorphic to the space MΩ′

bX
X = {P : P is a maximal ideal of the ring Ω′

bX}
with Stone topology, where

Ω′
bX = {f |(−1,1) : f ∈ C∗([−1, 1]) and f(−x) = f(x) for each x ∈ [−1, 1]}.

Since a continuous function f : (−1, 1) → R can be extended continuously to [−1,+1] iff f is uniformly
continuous, then we conclude that any closed bounded interval [a, b] is homeomorphic to the space of all maximal
ideals of the ring of uniformly continuous, bounded and even functions on R .
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