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Abstract: Let X be a locally compact and noncompact G—space with a compact group G. In this paper, we give
some useful description of a compactification of the orbit space X /G when it is an orbit space of a G— compactification
of X. As an application, we show that the closed bounded interval [a, b] is homeomorphic to the space of maximal ideals

with Stone topology of uniformly continuous even functions subring of C*(R).
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1. Introduction

By a topological transformation group, we mean a triple (X, G, 0), where G is a topological group, X is a
Tychonoff space, and 6 is a continuous action of G on X. That is to say, 6 is a continuous mapping from
G x X onto X such that the following conditions are fulfilled:

1. O(e,x) =z, for each € X (e denotes the identity element in G)
2. 6(g,0(h,x)) = 0(gh,x), for each g,h € G and z € X.

We shall write in generally gz for 0(g,z). If (X,G,0) is a transformation group then X will be called a
G—space. If X and Y are G—spaces, then a mapping f : X — Y is called equivariant whenever f(gz) = gf(x)
forall ge G and z € X.

A compact G—space vX is called a G— compactification of X | if there is an equivariant dense embedding
map i : X — yX. A Tychonoff space X may not have a G—compactification. For example, Megrelishvili [4]
established a Tychonoff G—space admitting no compact Hausdorff extension. However, suppose that X is a
locally compact G—space and aX = X U {oo} is the (Alexandroff) one-point compactification of X . Then it
is clear that aX is a G—compactification of X defining goo = oo for all g € G.

The following problems in the theory of G—spaces are well-known:

(1) the problem of existence of a G—compactification, say vX , of a Tychonoff G—space X such that
a(X/G) =~vX /G for a given compactification, a(X/G), of the orbit space X/G.

(2) in case of existence of this compactification, the question is how «(X/G) is uniquely described with

C*(X) (i.e. bounded continuous function ring of X .)
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Srivastava [6] proved that and 5(X/G) = X /G for finite group G. (X and S(X/G) are Stone-Cech
compactifications of X and X/G). However, by means of Gelfand’s method, Karapmar [3] described the
B(X/G) as a space of some maximal ideals of a certain subring of C*(X).

In this paper, for locally compact space X with compact G—action, we answer the question (2) above.
Specially, we describe the one-point compactification of the orbit space X /G by using the set of maximal ideals
of a complete subring of C*(X). Among different methods for constructing compactifications, we use Gelfand’s
method.

2. Preliminaries
In this section, we shall state a few definitions and facts about transformation groups and Gelfand’s method for

compactifications. We refer the reader to [1, 5] for more details.

Definition 1 ([1]) A subspace A of a G—space X s called invariant, if
(G x A) = A.
Definition 2 ([1]) If X is a G—space and x € X, the subspace
G(x) ={g9z:9€G}

is called the orbit of x. Let X /G denote the set of all orbits G(x) of a G—space X and 7 : X — X /G denote
the orbit map taking x to G(z). Then X /G endowed with the quotient topology relative to 7 is called the orbit
space of X .

Definition 3 (/1]) An action 6 of a group G on a space X is called transitive, if G(z) = X for all v € X .
Definition 4 (/5]) A topological space X is called locally compact if every point has a compact neighborhood.

Theorem 5 If X is a G— space with G compact, then

1) X/G is Hausdorff.
2) m: X = X/G is closed.

(1)
(2)
(3) m: X — X /G is proper (7! (compact) is compact).
(4) X is compact iff X /G is compact.

(5)

5) X is locally compact iff X /G is locally compact.

Proof See [1, Theorem 3.1] O

Definition 6 ([5]) For a topological space X , a compactification aX of X is called a one- point compactification
of X if aX — X is a singleton

Proposition 7 A topological space X has a one-point compactifications iff X s locally compact and not
compact.

Proof See [5, Proposition 4.3.c] O
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Proposition 8 A noncompact, locally compact space X has a unique one- point compactification.

Proof See [5, Proposition 4.3.1] O

Since a locally compact space is Tychonoff space, the following theorem and definitions about Tychonoff
space is valid for locally compact space. We will denote continuous and bounded real-valued function rings by

C*(X).

Definition 9 (/5]/) Let X be a topological space. A subcollection B of subsets of X is called a closed base for

X, if each closed subset of X can be written as an intersection of sets belonging to B.

Definition 10 (/5/) Let Q be a complete (with respect to the sup norm metric) subring of C*(X) which
contains all constant functions and MqX denotes the set of all mazimal ideals of Q). For each f € ), define
S(f)={M € MaqX : f € M}. It is easy to see that the family {S(f): f € Q} is closed base for a topology on
MqX which is called the Stone topology.

Theorem 11 MaX with the Stone topology is a compact and Haussdorff space.

Proof See [5, Theorem 4.5.j] O

Definition 12 (/5]) A complete subring Q of C*(X) with respect to the sup-norm metric is called regular, if it
contains all constant functions and Z(Q) = {Z(f) : f € Q} is a closed base for X, where Z(f) is the zero-set

of f.

If x € X and Q is a regular subring of C*(X), then M, = {f € Q : f(x) = 0} € MaX.
(See[5, Theorem 4.5.1]) Thus, we can define a continuous function A : X — MqX by A(z) = M,.

The proof of the following theorem is given in [2].

Theorem 13 (Gelfand, [2]) If Q is a regular subring of C*(X) for a space X , then A : X — MqX is a dense
embedding.

Definition 14 (/5]) A compactification vX of a Tychonoff space X is called a Gelfand compactification, if for
some regular subring Q of C*(X), vX and MqX are equivalent compactifications of X which is denoted by
vX =x MqX (i.e. there exists a homeomorphism which is identitiy on X ).

For a given compactification X of a Tychonoff space X, we denote by €2, x the set of restricted functions

to X of C*(vX). The below theorem states that each compactification is a Gelfand compactification.
Theorem 15 2, x is a regular subring of C*(X) and vX =x Mq , X .

Proof See [5, Theorem 4.5.0]. O

3. Main result
From now on, X will be a locally compact and noncompact G—space where G is a compact group and bX
is a G—compactification of X . Then it is easy to see that the remainder X* = X — X is an G—invariant

subspace of bX .
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Proposition 16 bX /G is a compactification of X /G

Proof Let i : X — bX denote dense embedding G—map. Then ¢ induces a well-defined map by the

equivariance of i
i: X/G—bX/G

G(x) = G(i(x)),

and the following diagram commutes:

X/G : bX /G

If i(G(z)) = i(G(y)) namely G(i(z)) = G(i(y)), then there exists an element of g € G such that i(y) = gi(z) =
i(gr). Since i is one-to-one map, it follows that y = gz. Therefore, we conclude that i is also one-to-one map.
Since the canonical map 7 : bX — bX /G is closed, it follows from the above commutative diagram that

i is also closed.
Let G(p) € bX/G. Since i(X) is dense subset of bX , then there exists a net (z)) = (i(zy)) in i(X) such

that 2z, — p. Let us consider the net (G(z,)) in the orbit space X/G. Then i(G(x)) = G(i(z))) = G(z)) —
G(p) which implies the density of i(X/G) in bX/G. Thus, bX /G is a compactification of X /G. O
Now, we consider the Gelfand construction of bX . By Theorem 15 we have bX = Mg, , X for the regular
subring Qpx = {f|x : f € C*(bX)}.
Let €}y denote the set of all f € Qx such that if G(x) is an orbit then the restriction of f to G(z) is
constant.

Lemma 17 Q} is a complete subring of C*(X).

Proof It is easy to see that €}, is a subring of C*(X) which contains all constant functions.
Let (fn|x)nen be a Cauchy sequence in €} . Since C*(bX) is complete ring, there exists f € C*(bX)

such that limf,|x = f|x. Since each f,|x has constant value on orbits, f,,(gz) = f.(hz) for each z € X and
g,h € G. Therefore,

f(gx) =1im f(gz) = lim fr (ha) = f(hz),

which implies completeness of € . Therefore, by the Theorem 11, Mg, X is a compact Hausdorff space. O

Remark 18 Observe that Z(§y) can be a closed base for X only in the case of trivial action of G. Indeed,
every set of Z(Qx) is a G— invariant subspace of X and hence, if Z(Q ) is a closed base for X , every closed

subset of invariant, in particular, every one-point set is invariant, that is the action of G is trivial.

Lemma 19 The rings Q5 and Qx,6 = {f|x/c: f € C*(bX/G)} are naturally isomorphic.

2028



KARAPINAR and OZKURT /Turk J Math

Proof If f € Q},then f = f|x for some f € C*(bX) and fla(z) is constant for each x € X. Since X is
dense subspace of bX , for each p € bX there exists a net (z) in X such that limz) = p.
Furthermore, the nets (f(gxy)) and (f(hxy)) are equal for each g,h € G. Thus,

f(gp) =lim f(gzx) = lim f(hxy) = f(hp)

which implies that ?|G(p) is indeed constant for each p € bX . Therefore, there exists a unique hy € C*(bX/Q)
such that f = hyon', where 7' is the orbit map (i.e. h#(G(p)) = f(p) for each p € bX). Let hy denote the
restriction of hy to the orbit space X/G'.

The isomorphism between Q- and x /¢ established by the well-defined map ¢ : Q; x — Qpx /¢ given

by f+ hy. This map obviously preserves the ring operations.
Similarly, if f € Qyx/¢, then f = f|x,g for some f € C*(bX/G) and clearly (fon')|x € Q. Thus,
it is easy to see that ¢ is isomorphism because it has inverse ring homomorphism =1 : Q,x /¢ — Qyx given

by fr (for)|x. O
Theorem 20 bX /G is homeomorphic to the compact Hausdorff space Mgq; X

Proof Since bX /G is a compactification of X /G, we have bX /G = Mg, (X /G) from the Theorem 15.
On the other hand, the above ring isomorphism ¢ : €}y — Qyx /¢ induces the map, M, : Mo, X —
Mg,y ,c(X/G), defined by M,(P) = ¢(P) = {hy: f € P}. If f €x)a,

MZNS(f) =A{P: f € p(P)} ={P: (for)lx € P} = S((fom')x)

Then M, is a continuous map.
Similarly, the inverse ring isomorphism ¢~ : Qyx /¢ — €} ¢ induces the map M, : Mo, ,(X/G) —
Mg X, defined by M, (P) = e Y(P). If feQy,

ML (S(f) ={P:feo ' (P)} ={P:hy € P} =5S(hy)
which implies the continuity of M,-1 and it is easily checked that
MyM,-1(P) = P for each P € Mg, ,.(X/G)

and,
M,-1M,(P) = P for each P € Mg, X

O

Remark 21 Kqg(X) denotes the category of G— compactifications of X. Here ObjKqg(X) =all G— compacti-
fications of X and if aX ,vX € ObjKg(X) then the morphism set;

Hom(aX,vX)={f:f:aX = ~vX equivariant map and f(x) = x for all x € X}.

Theorem 22 The description of bX /G in Theorem 20 is functorially unique.
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Proof Let bX,aX € Kg(X) and bX/G = aX/G. Suppose that Hom(bX,aX) # 0 or Hom(aX,bX) # 0.
Without loss of generality, we may assume that Hom(bX,aX) # (. Consider a map ¥ € Hom(bX,aX). It is

easy to see that 1 induces a ring homomorphism

P Qy = Yy, O(flx) = (fov)|x.

Since 9 (z) = x for each © € X, we have hy = hyoy for each f € Qf .

Therefore, we have the following commutative diagram

»
QixX Q?)X

Qox/c ——— Yxja

Note that the vertical homomorphisms are ring isomorphisms by Lemma 19. It follows that v is a ring

isomorphism as desired. O

4. Applications

Now, we focus on one-point compactification of the orbit space X /G. The below proposition states that the
one-point compactification of the orbit space can be characterized by the G—compactifications such that the
restricted action on X* is transitive.

Proposition 23 bX /G = a(X/G) iff the restricted action of G on X* =bX — X is transitive.

Proof 1If bX/G = a(X/G), it is clear that the remainder (X/G)* = bX/G — X/G = o(X/G) — X/G is
singleton. Since (X/G)* = X*/G, it follows the restricted action on X* is transitive.

Conversely, assume that the restricted action of G on X* is transitive. Then the orbit space X*/G is
singleton. Since the orbit space bX /G is disjoint union the orbit spaces X /G and X*/G, we have bX /G- X /G
is singleton. Therefore, by Theorem 5 and Proposition 8, we obtain that bX /G = a(X/G). O

Remark 24 The one-point compactification aX = X U{oo} of a G—space X is a G— compactification with
goo = oo for all g € G. Since the restricted action of G on X* = {oco} is transitive, we have aX /G = a(X/G).

Now consider a G— compactification bX of X such that the restricted action of G on X* =bX — X is
transitive.

Corollary 25 The one-point compactification of the orbit space X /G is uniquely described with bX as stated

in Theorem 20.

Proof Consider the map ¢ : bX — aX defined by ¥ (x) = x for each x € 2 and ¥ (p) = oo for each p € X*.

Since X is locally compact, X is open subset of X and also aX . Moreover, since ¥|x = Id|x, 9 is continuous
on X.
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If p € X* and ¥(p) is contained in an open set W in aX, then p is contained the open set H =
bX — (X —W) in bX and clearly H C +—1(W). This implies the continuity of v. Since 1 is a clearly G—map,
¥ € Hom(bX,aX). Then it follows from Theorem 22, Proposition 23, and Remark 24 that the one-point

compactification a(X/G) is uniquely described as the maximal ideals of the complete ring €, . O

Example 26 Consider the antipodal action of G = Zy on X = (=1,1). Let bX = [—1,1] be two-point compact-
ification of X . It is easy to see that bX is a G -compactification of X and the orbit space bX /G = [0,1]. Fur-
thermore, the orbit space of X /G =[0,1). Thus, one-point compactification of a(X/G) = bX /G . By Theorem
20, we have that bX /G is homeomorphic to the space Mo, X = {P : P is a maximal ideal of the ring (x }
with Stone topology, where

px = Ul f € C*([-1,1]) and f(—x) = f(x) for each z € [-1,1]}.

Since a continuous function f : (=1,1) — R can be extended continuously to [—1,4+1] iff f is uniformly
continuous, then we conclude that any closed bounded interval |a,b] is homeomorphic to the space of all mazimal

ideals of the ring of uniformly continuous, bounded and even functions on R.
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