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Abstract: The classical Gaussian 2F1 -series containing two free variables {x, y} and two integer parameters {m,n}
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1. Introduction and motivation
Let Z and N be the sets of integers and natural numbers with N0 = {0} ∪ N . For an indeterminate x and
n ∈ Z , define the rising and falling factorials by quotients of the Γ -function

(x)n =
Γ(x+ n)

Γ(x)
and ⟨x⟩n =

Γ(1 + x)

Γ(1 + x− n)
.

Following Bailey [1], the generalized hypergeometric series reads as

1+pFq

[
a0, a1, · · · , ap

b1, · · · , bq

∣∣∣ z] =

∞∑
k=0

(a0)k(a1)k · · · (ap)k
k!(b1)k · · · (bq)k

zk.

The multiparameter forms of the shifted factorials and the Γ -function will be abbreviated respectively as[
α, β, · · · , γ
A, B, · · · , C

]
n

=
(α)n(β)n · · · (γ)n
(A)n(B)n · · · (C)n

,

Γ

[
α, β, · · · , γ
A, B, · · · , C

]
=

Γ(α)Γ(β) · · ·Γ(γ)
Γ(A)Γ(B) · · ·Γ(C)

.

The aim of this paper is to investigate, by the linearization method, the following Gaussian 2F1 -series
with two free complex variables {x, y} :

Ωm,n(x, y) := 2F1

[
x, m− x

n+ 1
2

∣∣∣ y2] where m,n ∈ Z. (1)
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The domain of convergence for the above series is |y| ≤ 1 when n ≥ m and for |y| < 1 when n < m . This is
motivated by the two classical formulae (see Gradshteyn and Ryzhik [15, §9.12])

Ω0,0(x, y) =2F1

[
x, −x

1
2

∣∣∣ y2] = cos(2x arcsin y),

Ω1,1(x, y) =2F1

[
x, 1− x

3
2

∣∣∣ y2] =
sin((2x− 1) arcsin y)

(2x− 1)y
.

They have been employed by Chu [7, 12] and Chu and Zheng [13] to evaluate trigonometric sums and the
Riemann zeta series weighted by harmonic numbers.

The rest of the paper will be organized as follows. In the next section, we shall first reduce, by the
linearization method (cf. [3, 4, 8–10, 16–18]), the Ωm,n -series for m,n ∈ Z to the Ωm′,n′ -series for m′, n′ ∈ N0 ,
which will be expressed, in turn, as the Ωn′,n′ -series with the same n′ ∈ N0 . By means of Gould–Hsu [14]
inversions, we shall establish an explicit formula for this last series in terms of the Ω0,0 -series. Then, in Section 3,
the conclusive theorem is reached, which states that for any m,n ∈ Z , the Ωm,n(x, y) series can be evaluated
by a linear combination of Ω0,0(x

′, y) (with x being shifted to x′ by integers) in the number of terms being a
bivariate cubic polynomial of m and n . Several closed formulae for the Ωm,n -series are presented as examples.
Finally, in Section 4, the trigonometric integral approach will be illustrated that leads to further hypergeometric
series identities by lifting up 2F1 -series to 3F2 -series.

2. Reduction formulae via linearization

By means of the linearization method (cf. [3, 4, 8–10, 16, 18]), we shall establish, in this section, reduction
formulae for Ωm,n(x, y) so that it can be evaluated by the initial one Ω0,0(x, y) .

2.1. m,n ∈ Z

We start with the following linear representation lemma.

Lemma 1 (Linear representation) For λ ∈ N0 and three indeterminates {A,B,C} , there exist constants
{U i

λ}λi=0 such that

(A+ k)λ =

λ∑
i=0

(B + k)i(C + k)λ−iU
i
λ (2)

where U i
λ is independent of the variable k and given by the following expression:

U i
λ = (−1)i

(
λ

i

)
(C −B + λ− 2i)(A− C)i(A−B)λ−i

(C −B − i)λ+1
. (3)
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Proof Substituting (3) into (2), we can express the resulting binomial sum in terms of hypergeometric series
and then evaluate it as follows:

λ∑
i=0

(−1)i
(
λ

i

)
(B + k)i(C + k)λ−i

(C −B + λ− 2i)(A− C)i(A−B)λ−i

(C −B − i)λ+1

=

[
A−B,C + k

C −B

]
λ

× 5F4

[
B − C − λ, 1 + B−C−λ

2 , A− C, B + k, −λ
B−C−λ

2 , 1 +B −A− λ, 1− C − k − λ, 1 +B − C

∣∣∣ 1]

=

[
A−B,C + k

C −B

]
λ

×
[
1 +B − C − λ, 1−A− k − λ
1 +B −A− λ, 1− C − k − λ

]
λ

= (A+ k)λ,

where the last passage has been justified by Dougall’s summation formula (cf. Bailey [1, §4.3]) for the terminating
very well-poised 5F4 -series

5F4

[
a, 1 + a

2 , b, d, −n
a
2 , 1 + a− b, 1 + a− d, 1 + a+ n

∣∣∣ 1] =

[
1 + a, 1 + a− b− d
1 + a− b, 1 + a− d

]
n

.

Therefore, we have confirmed the linear relation (2) stated in the lemma. 2

For m,n ∈ Z with m < 0 and/or n < 0 , by specifying in Lemma 1

λ := max(−m,−n) and
{

A→ n+ 1
2

B → x
C → m− x

we get from (2) the equality

( 12 + n+ k)λ =

λ∑
i=0

(x+ k)i(m− x+ k)λ−iU i
λ

with the connection coefficient U i
λ being given by

U i
λ = (−1)i

(
λ

i

)
(λ− 2x+m− 2i)( 12 + x−m+ n)i(

1
2 − x+ n)λ−i

(m− 2x− i)λ+1
. (4)

Now putting the last equality inside the Ωm,n -series, we can manipulate, by interchanging the summation order,
the following double series:

Ωm,n(x, y) =
∑
k≥0

y2k
(x)k(m− x)k

k!( 12 + n)k

λ∑
i=0

(x+ k)i(m− x+ k)λ−i

( 12 + n+ k)λ
U i
λ

=

λ∑
i=0

U i
λ

(x)i(m− x)λ−i

( 12 + n)λ

∑
k≥0

(x+ i)k(λ+m− x− i)k

k!( 12 + n+ λ)k
y2k.

Writing the last sum in terms of Ωm,n -series, we find the reduction formula below.

Theorem 2 (Reduction formula) For m,n ∈ Z with m < 0 and/or n < 0 , define the natural number λ by
λ := max(−m,−n) and U i

λ by (4). Then the following formula holds:

Ωm,n(x, y) =

λ∑
i=0

U i
λ

(x)i(m− x)λ−i

( 12 + n)λ
Ωm+λ,n+λ(x+ i, y).
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This theorem will be shown useful because it transforms Ωm,n -series for m < 0 and/or n < 0 into
Ωm′,n′ -series with m′, n′ ∈ N0 .

2.2. m,n ∈ N0

In Lemma 1, dividing by Aλ across equation (2) and then letting A→ ∞ , we get the following limiting form.

Lemma 3 (Linear representation) For λ ∈ N0 and two indeterminates {B,C} , there exist constants
{U i

λ}λi=0 such that

1 =

λ∑
i=0

(B + k)i(C + k)λ−iV
i
λ, (5)

where V i
λ is independent of the variable k and given by the following expression:

V i
λ = (−1)i

(
λ

i

)
C −B + λ− 2i

(C −B − i)λ+1
. (6)

For m,n ∈ N0 with m < n , letting in Lemma 3

λ := n−m and
{
B → x
C → m− x

we get from (5) the equality

1 =

n−m∑
i=0

(x+ k)i(m− x+ k)n−m−iVi
m,n(x)

with the connection coefficient Vi
m,n(x) being given explicitly by

Vi
m,n(x) = (−1)i

(
n−m

i

)
n− 2x− 2i

(m− 2x− i)n−m+1
. (7)

By inserting the last relation inside the Ωm,n -series, we get the double series

Ωm,n(x, y) =
∑
k≥0

y2k
(x)k(m− x)k

k!( 12 + n)k

n−m∑
i=0

(x+ k)i(m− x+ k)n−m−iVi
m,n(x)

=

n−m∑
i=0

(x)i(m− x)n−m−iVi
m,n(x)

∑
k≥0

(x+ i)k(n− x− i)k

k!( 12 + n)k
y2k.

Writing the last sum in terms of Ωm,n -series, we find the following formula that expresses Ωm,n -series in terms
of Ωn,n .

Theorem 4 (Reduction formula) For m,n ∈ N0 with m < n , define the connection coefficient Vi
m,n by

(7). Then the following formula holds:

Ωm,n(x, y) =

n−m∑
i=0

(x)i(m− x)n−m−iVi
m,n(x) Ωn,n(x+ i, y).
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When m > n , we can express the Ωm,n -series by making use of the Pfaff–Euler transformation (cf. Bai-
ley [1, §1.2]):

2F1

[
a, b
c

∣∣∣ x] = (1− x)c−a−b × 2F1

[
c− a, c− b

c

∣∣∣ x] ,
as another Ωm,n -series,

Ωm,n(x, y) = (1− y2)
1
2−m+nΩ1+2n−m,n(

1
2 + x−m+ n, y). (8)

Observing the fact that
1 + 2n−m ≤ n ⇌ n < m,

we get, by applying Theorem 4 to the last series, another reduction formula.

Theorem 5 (Reduction formula) For m,n ∈ N0 with m > n , define the connection coefficient Vi
m,n by

(7). Then the following formula holds:

Ωm,n(x, y) = (1− y2)
1
2−m+n ×

m−n∑
j=1

( 12 + x−m+ n)j−1Vj−1
1+2n−m,n(

1
2 + x−m+ n)

×( 12 − x+ n)m−n−jΩn,n(x−m+ n+ j − 1
2 , y).

2.3. m = n ∈ N0

Finally, we are going to treat the remaining case m = n .

Lemma 6 (Linear representation) For λ ∈ N0 and three indeterminates {A,B,C} , there exist constants
{W i

λ}λi=0 such that

(A+ k)λ =

λ∑
i=0

⟨B + k⟩i(C + k)λ−iW
i
λ, (9)

where W i
λ is independent of the variable k and given by the following expression:

W i
λ = (−1)i

(
λ

i

)
(A− C)i(A−B + i)λ−i

(C −B)λ
. (10)

Proof Substituting (10) into (9), we can express the resulting binomial sum in terms of a hypergeometric
series:

λ∑
i=0

(−1)i
(
λ

i

)
(A− C)i(A−B + i)λ−i

(C −B)λ
⟨B + k⟩i(C + k)λ−i

=

[
A−B,C + k

C −B

]
λ
3F2

[
−λ, A− C, −B − k
A−B, 1− C − k − λ

∣∣∣ 1] .
In view of the summation formula due to Pfaff and Saalschutz (cf. Bailey [1, §2.2]) for terminating balanced
3F2 -series

3F2

[
−n, , a, b

c, 1 + a+ b− c− n

∣∣∣ 1] =

[
c− a, c− b
c, c− a− b

]
n
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the linear relation (9) stated in the lemma is confirmed by simplifying the following factorial product:[
A−B,C + k

C −B

]
λ

×
[
A+ k,C −B
A−B,C + k

]
λ

= (A+ k)λ.

2

For n ∈ N0 , by specifying in Lemma 6

λ→ n and
{

A→ x
B → 0
C → −x− n

we get from (9) the equality

(x+ k)n =

n∑
i=0

⟨k⟩i(k − x− n)n−iWi
n

with the connection coefficient Wi
n being given by

Wi
n = (−1)n−i

(
n

i

)
x(2x+ n)i
(x)i(x+ n)

.

Now putting the last equality inside the Ω0,0 -series, we can reformulate, by interchanging the summation order
and then making the replacement k = i+ j , the following double series:

Ω0,0(x+ n, y) =
∑
k≥0

y2k
(x+ n)k(−x− n)k

k!( 12 )k

n∑
i=0

Wi
n

⟨k⟩i(k − x− n)n−i

(x+ k)n

=

n∑
i=0

Wi
n

∑
k≥0

⟨k⟩i
k!

(x)k
(x)n

(−x− n)k+n−i

( 12 )k
y2k

=

n∑
i=0

(−1)nWi
n

(1 + x)i(x+ n)

( 12 )i(x+ i)
y2i

∑
j≥0

(x+ i)j(−x)j
j!( 12 + i)j

y2j .

Writing the last sum in terms of Ωi,i -series, we find the recurrence relation below.

Proposition 7 (Recurrence relation: n ∈ N0 )

Ω0,0(x+ n, y) =

n∑
i=0

(−1)i
(
n

i

)
(2x+ n)i

( 12 )i
y2iΩi,i(x+ i, y).

In order to find an explicit expression for Ωn,n(x, y) , we record here the well-known pair of inverse series
relations discovered in 1973 by Gould and Hsu [14], which has wide applications to terminating series identities
(see [2, 5, 6], for example).

Let {ai, bi} be any two complex sequences such that the ϕ -polynomials defined by

ϕ(x; 0) ≡ 1 and ϕ(x;n) =

n−1∏
i=0

(ai + xbi) for n ∈ N (11)
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differ from zero for x, n ∈ N0 . Then there hold the inverse series relations

f(n) =

n∑
i=0

(−1)i
(
n

i

)
ϕ(i;n) g(i), (12)

g(n) =

n∑
i=0

(−1)i
(
n

i

)
ai + ibi
ϕ(n; i+ 1)

f(i). (13)

Now rewrite first the binomial relation in Proposition 7 as

(2x)nΩ0,0(x+ n, y) =

n∑
i=0

(−1)i
(
n

i

)
(2x+ i)n

(2x)i

( 12 )i
y2iΩi,i(x+ i, y).

This matches perfectly to (12) under the following specifications:

ak = 2x+ k
bk = 1

}
and

{ f(n) = (2x)nΩ0,0(x+ n, y)

g(n) =
(2x)n

( 12 )n
y2nΩn,n(x+ n, y).

Then the dual relation corresponding to (13) reads as

(2x)n

( 12 )n
y2nΩn,n(x+ n, y) =

n∑
i=0

(−1)i
(
n

i

)
2x+ 2i

(2x+ n)i+1
(2x)iΩ0,0(x+ i, y).

Under the replacements x → x − n and i → n − k , we can highlight the resulting expression in the following
theorem.

Theorem 8 (Recurrence formula: n ∈ N0 )

Ωn,n(x, y) =
( 12 )n

y2n

n∑
k=0

(−1)n−k

(
n

k

)
2x− 2k

(2x− n− k)n+1
Ω0,0(x− k, y).

3. Conclusive theorem and examples

Based on the reduction formulae derived in the last section, we can evaluate, for any m,n ∈ Z , the Ωm,n series
in terms of Ω0,0 series by carrying out the following procedure:

• Step-A: If m,n ∈ Z with m < 0 and/or n < 0 , apply Theorem 2 to express Ωm,n in terms of Ωm′,n′

with both m′ ≥ 0 and n′ ≥ 0 .

• Step-B: If m,n ∈ N0 with m ̸= n , apply Theorems 4 and 5 to express Ωm,n in terms of Ωn,n with
n ≥ 0 .

• Step-C: If m,n ∈ N0 with m = n , apply Theorem 8 to express Ωn,n in terms of Ω0,0 explicitly.

Summing up, we have shown the following conclusive theorem.
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Theorem 9 (Conclusion) For any m,n ∈ Z , the Ωm,n(x, y) series can be evaluated by a linear combination
of Ω0,0(x

′, y) (with x being shifted to x′ by half integers and the coefficients being rational functions of x and
y ) in the number of terms being a bivariate cubic polynomial of m and n .

According to the procedure described at the beginning of this section, we have devised appropriate
Mathematica commands to compute closed expressions for Ωm,n(x, y) series. Our results suggest that, in general
for m,n ∈ Z , the series Ωm,n is just a linear combination of two trigonometric functions, cos(2x arcsin y) and
sin(2x arcsin y) , but with coefficients being functions that are “rational and algebraic” with respect to x and y ,
respectively. In view of transformation (8), these remarkable formulae are recorded in pairs, where the variable
x is shifted to x+ m

2 in Ωm,n(x, y) for symmetry.
The first two simplest pairs are included for integrity, even though they are well known (see [15, §9.12]

and [19, §7.3.1)], for example). Because the initial evaluation Ω0,0(x, y) is crucial, we present, in order to make
the paper self-contained, an elementary proof for its closed formula in the Appendix after the references.

Corollary 10 (Ω0,0(x, y) and Ω1,0(x+ 1
2 , y))

2F1

[
x, −x

1
2

∣∣∣ y2] = cos(2x arcsin y), (Ω0,0)

2F1

[
1
2 + x, 1

2 − x
1
2

∣∣∣ y2] =
cos(2x arcsin y)√

1− y2
. (Ω1,0)

Corollary 11 (Ω1,1(x+ 1
2 , y) and Ω2,1(x+ 1, y))

2F1

[
1
2 + x, 1

2 − x
3
2

∣∣∣ y2] =
sin(2x arcsin y)

2xy
, (Ω1,1)

2F1

[
1 + x, 1− x

3
2

∣∣∣ y2] =
sin(2x arcsin y)
2xy

√
1− y2

. (Ω2,1)

Corollary 12 (Ω−1,0(x− 1
2 , y) and Ω2,0(x+ 1, y))

2F1

[
x− 1

2 , −
1
2 − x
1
2

∣∣∣ y2] = Λ(x, y), (Ω−1,0)

2F1

[
1 + x, 1− x

1
2

∣∣∣ y2] =
Λ(x, y)√
(1− y2)3

; (Ω2,0)

where Λ(x, y) =
y

2x
sin(2x arcsin y) +

√
1− y2 cos(2x arcsin y).

Corollary 13 (Ω−1,−1(x− 1
2 , y) and Ω0,−1(x, y))

2F1

[
x− 1

2 , − 1
2 − x
− 1

2

∣∣∣ y2] = Λ(x, y), (Ω−1,−1)

2F1

[
x, −x

− 1
2

∣∣∣ y2] =
Λ(x, y)√
1− y2

; (Ω0,−1)

where Λ(x, y) =
√
1− y2 cos(2x arcsin y) + 2xy sin(2x arcsin y).
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Corollary 14 (Ω0,1(x, y) and Ω3,1(x+ 3
2 , y))

2F1

[
x, −x

3
2

∣∣∣ y2] = Λ(x, y), (Ω0,1)

2F1

[
3
2 + x, 3

2 − x
3
2

∣∣∣ y2] =
Λ(x, y)√
(1− y2)3

; (Ω3,1)

where Λ(x, y) =
y cos(2x arcsin y)− 2x

√
1− y2 sin(2x arcsin y)

(1− 4x2)y
√
(1− y2)3

.

Corollary 15 (Ω2,2(x+ 1, y) and Ω3,2(x+ 3
2 , y))

2F1

[
1 + x, 1− x

5
2

∣∣∣ y2] = Λ(x, y), (Ω2,2)

2F1

[
3
2 + x, 3

2 − x
5
2

∣∣∣ y2] =
Λ(x, y)√
1− y2

; (Ω3,2)

where Λ(x, y) =
6xy cos(2x arcsin y)− 3

√
1− y2 sin(2x arcsin y)

2xy3(1− 4x2)
.

Corollary 16 (Ω1,2(x+ 1
2 , y) and Ω4,2(x+ 2, y))

2F1

[
1
2 + x, 1

2 − x
5
2

∣∣∣ y2] = Λ(x, y), (Ω1,2)

2F1

[
2 + x, 2− x

5
2

∣∣∣ y2] =
Λ(x, y)√
(1− y2)3

; (Ω4,2)

where Λ(x, y) =
3
√
1− y2 cos(2x arcsin y)

4(1− x2)y2
− (3− 6y2) sin(2x arcsin y)

8x(1− x2)y3
.

Corollary 17 (Ω−2,−1(x− 1, y) and Ω1,−1(x+ 1
2 , y))

2F1

[
x− 1, −x− 1

− 1
2

∣∣∣ y2] = Λ(x, y), (Ω−2,−1)

2F1

[
1
2 + x, 1

2 − x
− 1

2

∣∣∣ y2] =
Λ(x, y)√
(1− y2)3

; (Ω1,−1)

where Λ(x, y) = (1− 2y2) cos(2x arcsin y) + 2xy
√
1− y2 sin(2x arcsin y).

Corollary 18 (Ω3,3(x+ 3
2 , y) and Ω4,3(x+ 2, y))

2F1

[
3
2 + x, 3

2 − x
7
2

∣∣∣ y2] = Λ(x, y), (Ω3,3)

2F1

[
2 + x, 2− x

7
2

∣∣∣ y2] =
Λ(x, y)√
1− y2

; (Ω4,3)

where Λ(x, y) =
15(3−2y2−4x2y2) sin(2x arcsin y)

8xy5(1− x2)(1− 4x2)
− 45

√
1−y2 cos(2x arcsin y)

4y4(1− x2)(1− 4x2)
.
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Corollary 19 (Ω−2,0(x− 1, y) and Ω3,0(x+ 3
2 , y))

2F1

[
x− 1, −x− 1

1
2

∣∣∣ y2] = Λ(x, y), (Ω−2,0)

2F1

[
3
2 + x, 3

2 − x
1
2

∣∣∣ y2] =
Λ(x, y)√
(1− y2)5

; (Ω3,0)

where Λ(x, y) =
(1−4x2+2y2+4x2y2) cos(2x arcsin y)

1− 4x2
− 6xy

√
1−y2 sin(2x arcsin y)

1− 4x2
.

Corollary 20 (Ω−1,1(x− 1
2 , y) and Ω4,1(x+ 2, y))

2F1

[
x− 1

2 , −x− 1
2

3
2

∣∣∣ y2] = Λ(x, y), (Ω−1,1)

2F1

[
2 + x, 2− x

3
2

∣∣∣ y2] =
Λ(x, y)√
(1− y2)5

; (Ω4,1)

where Λ(x, y) =
(1−4x2+2y2+4x2y2) sin(2x arcsin y)

8xy(1− x2)
+

3
√

1−y2 cos(2x arcsin y)

4(1− x2)
.

Corollary 21 (Ω−4,−2(x− 2, y) and Ω1,−2(x+ 1
2 , y))

2F1

[
x− 2, −x− 2

− 3
2

∣∣∣ y2] = Λ(x, y), (Ω−4,−2)

2F1

[
1
2 + x, 1

2 − x
− 3

2

∣∣∣ y2] =
Λ(x, y)√
(1− y2)5

; (Ω1,−2)

where Λ(x, y) =2xy(1− 2y2)
√
1− y2 sin(2x arcsin y)

+
(3− 8y2 + 8y4 − 4x2y2 + 4x2y4) cos(2x arcsin y)

3
.

Corollary 22 (Ω4,4(x+ 2, y) and Ω5,4(x+ 5
2 , y))

2F1

[
2 + x, 2− x

9
2

∣∣∣ y2] = Λ(x, y), (Ω4,4)

2F1

[
5
2 + x, 5

2 − x
9
2

∣∣∣ y2] =
Λ(x, y)√
1− y2

; (Ω5,4)

where Λ(x, y) =
105xy(15− 11y2 − 4x2y2) cos(2x arcsin y)

4xy7(1− x2)(1− 4x2)(9− 4x2)

−315
√

1− y2(5− 2y2 − 8x2y2) sin(2x arcsin y)
8xy7(1− x2)(1− 4x2)(9− 4x2)

.

4. Trigonometric integral approach
In a personal communication to Richard Askey in 1977, Bill Gosper discovered the following nonterminating
series identities.
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Proposition 23 (Nonterminating series evaluation)

3F2

[
1
2 + 3x, 12 − 3x, λ

1
2 , 3λ

∣∣∣ 3
4

]
= Γ

[ 1
3 + λ, 23 + λ

1
2 + λ+ x, 12 + λ− x

]
2 cos(πx)√

3
.

Proposition 24 (Nonterminating series evaluation)

3F2

[
1 + 3x, 1− 3x, λ

3
2 , 3λ− 1

∣∣∣ 3
4

]
= Γ

[
λ+ 1

3 , λ− 1
3

λ+ x, λ− x

]
2 sin(πx)
3
√
3x

.

New proofs by integrating trigonometric products were found by the author [11], who also derived two
further hypergeometric series identities.

Proposition 25 (Nonterminating series evaluation) Define

ψ(x, λ) := Γ

[ 1
3 + λ, 23 + λ

1
3 + λ+ x, 23 + λ− x

] cos(πx− π
6 )√

3
.

Then
3F2

[
3x,−3x, λ

1
2 , 3λ

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

Proposition 26 (Nonterminating series evaluation) Define

ψ(x, λ) := Γ

[
λ+ 1

3 , λ− 1
3

λ+ x+ 1
6 , λ− x− 1

6

] sin(πx+ π
6 )

6x
√
3

.

Then
3F2

[
1
2 + 3x, 12 − 3x, λ

3
2 , 3λ− 1

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

For the three variables {y, z, θ} related by z = 4
3y

2 and y = sin θ , we have the following beta integral:

∫ 1

0

zA−1(1− z)B−1y2kdz =
(3
4

)k
∫ 1

0

zk+A−1(1− z)B−1dz

=
(3
4

)k (A)k
(A+B)k

Γ

[
A,B
A+B

]
.

Then it is not hard to establish the following expression, which can be obtained as a particular case of
Rainville [20, Theorem 38(§56)]:

3F2

[
3x,m− 3x,A

n+ 1
2 , A+B

∣∣∣ 3
4

]
=

Γ(A+B)

Γ(A)Γ(B)

∫ 1

0

zA−1(1− z)B−1Ωm,n(3x, y)dz

=
22A+1

3A+B−1

Γ(A+B)

Γ(A)Γ(B)

∫ π
3

0

sin2A−1 θ(3− 4 sin2 θ)B−1Ωm,n(3x, y) cos θdθ.

(14)
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By making use of the trigonometric identity

sin 3θ = 3 sin θ − 4 sin3 θ

and two known integrals (cf. Gradshteyn and Ryzhik [15, Entries 3.631.1 & 3.631.8])

∫ π

0

sina−1 φ sin(cφ)dφ =
21−aπ sin πc

2

aB( 1+a+c
2 , 1+a−c

2 )
, (15)

∫ π

0

sina−1 φ cos(cφ)dφ =
21−aπ cos πc

2

aB( 1+a+c
2 , 1+a−c

2 )
, (16)

we can lift some identities from 2F1 -series to 3F2 -series. For instance, according to the closed formula of
Ω0,−1(3x, y) , we can first reformulate the function

Ω0,−1(3x, sin θ) cos θ = cos θ cos(6θx) + 6x sin θ sin(6θx)

=
1− 6x

2
cos(6θx+ θ) +

1 + 6x

2
cos(6θx− θ).

Then we can express, by choosing A = λ, B = 2λ and making the change of variable θ = φ/3 , the corresponding
integral (14) as follows: ∫ π

3

0

sin2λ−1 θ(3− 4 sin2 θ)2λ−1Ω0,−1(3x, sin θ) cos θdθ

=

∫ π

0

sin2λ−1 φ

{
1− 6x

6
cos(2φx+ φ

3 ) +
1 + 6x

6
cos(2φx− φ

3 )

}
dφ.

Evaluating the last integral by (16) and then appealing to the triplicate relation formula (cf. Rainville [20, §20])

Γ(3λ) =
33λ

2π
√
3
Γ(λ)Γ(λ+ 1

3 )Γ(λ+ 2
3 ),

we find the following hypergeometric 3F2 -series identity.

Proposition 27 (Nonterminating series from Ω0,−1(3x, y)) Define

ψ(x, λ) := Γ

[
λ+ 1

3 , λ+ 2
3

1
3 + λ+ x, 23 + λ− x

]
(1 + 6x) cos(πx− π

6 )√
3

.

Then
3F2

[
3x,−3x, λ

− 1
2 , 3λ

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

By applying the same approach, we can also derive the identities below.

Proposition 28 (Nonterminating series from Ω0,1(3x, y)) Define

ψ(x, λ) :=
Γ(λ+ 1

3 )Γ(λ− 1
3 )

(1− 36x2)
√
3

{
(1− 6x) sin(πx+ π

3 )

Γ(λ+x+ 1
3 )Γ(λ−x− 1

3 )
− 6x sin(πx)

Γ(λ+ x)Γ(λ− x)

}
.

1834



CHU/Turk J Math

Then
3F2

[
3x,−3x, λ

3
2 , 3λ− 1

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

Proposition 29 (Nonterminating series from Ω−1,0(3x− 1
2 , y)) Define

ψ(x, λ) :=
Γ(λ+ 1

3 )Γ(λ+ 2
3 )

12
√
3

{
6 cos(πx)

Γ( 1
2+λ+x)Γ( 1

2+λ−x)
+

(1 + 6x) cos(πx− π
3 )

xΓ( 1
6+λ+x)Γ( 5

6+λ−x)

}
.

Then
3F2

[
3x− 1

2 ,−3x− 1
2 , λ

1
2 , 3λ

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

Proposition 30 (Nonterminating series from Ω−1,−1(3x− 1
2 , y)) Define

ψ(x, λ) :=
Γ(λ+ 1

3 )Γ(λ+ 2
3 )

2
√
3

{
cos(πx)

Γ( 1
2+λ+x)Γ( 1

2+λ−x)
+

(1 + 6x) cos(πx− π
3 )

Γ( 1
6+λ+x)Γ( 5

6+λ−x)

}
.

Then
3F2

[
3x− 1

2 ,−3x− 1
2 , λ

− 1
2 , 3λ

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

Proposition 31 (Nonterminating series from Ω2,2(3x+ 1, y)) Define

ψ(x, λ) :=
2Γ(λ+ 1

3 )Γ(λ+ 2
3 )

λ(1− 36x2)
√
3

{
(6x− 1) sin(πx+ π

3 )

xΓ(λ+x+ 1
3 )Γ(λ−x− 1

3 )
− sin(πx)
xΓ(λ+x)Γ(λ−x)

}
.

Then
3F2

[
1 + 3x, 1− 3x, 1 + λ

5
2 , 3λ

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

Proposition 32 (Nonterminating series from Ω3,2(3x+ 3
2 , y)) Define

ψ(x, λ) := Γ

[
λ+ 1

3 , λ+ 2
3

λ+ x+ 1
6 , λ− x− 1

6

]
4(6x− 1) sin(πx+ π

6 )

λx(1− 36x2)
√
3

.

Then
3F2

[
3
2 + 3x, 32 − 3x, 1 + λ

5
2 , 3λ

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

Proposition 33 (Nonterminating series from Ω4,3(3x+ 2, y)) Define

ψ(x, λ) :=
20Γ(λ+ 1

3 )Γ(λ+ 2
3 )

(λ+1)(1−9x2)(1−36x2)
√
3

{
2(1−9x2) sin(πx)
xΓ(λ+x)Γ(λ−x) +

(1−9x+18x2) sin(πx+π
3 )

xΓ(λ+x+ 1
3 )Γ(λ−x− 1

3 )

}
.

Then
3F2

[
2 + 3x, 2− 3x, 2 + λ

7
2 , 1 + 3λ

∣∣∣ 3
4

]
= ψ(x, λ) + ψ(−x, λ).

Theoretically, for all the remaining 2F1 -series displayed in the preceding section, we can derive the
corresponding 3F2 -series identities, except for those with m−n > 1 , where the extra factor

√
(1− y2)ν = cosν θ

with ν > 1 appearing in the integrand as a denominator causes substantial difficulty in the integral evaluation.
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Appendix.

Proof [Proof of the formula for Ω0,0(x, y) .] Recalling the Pfaff–Euler transformation (cf. Bailey [1, §2.4]),

2F1

[
a, b
c

∣∣∣ x] = (1− x)−b × 2F1

[
c− a, b

c

∣∣∣ x

x− 1

]
,

we can deduce the binomial series expression

Ω0,0(x, y) =2F1

[
x,−x

1
2

∣∣∣ y2] = (1− y2)x2F1

[
−x, 12 − x

1
2

∣∣∣ −y2

1− y2

]

=(1− y2)x
∑
k≥0

(−2x)2k
(2k)!

( −y2

1− y2

)k

=(1− y2)x
∑
k≥0

(
2x

2k

)
(−1)ky2k

(1− y2)k

=
1

2

{(√
1− y2 + y

√
−1

)2x

+
(√

1− y2 − y
√
−1

)2x
}
.

Letting y = sin θ , we can simplify Ω0,0(x, y) further:

Ω0,0(x, y) =
1

2

{
e2xiθ + e−2xiθ

}
= cos(2xθ) = cos(2x arcsin y).

2
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