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Abstract: We analyze how a set of 6 points of RP2 in general position changes under quadratic Cremona transformations
based at triples of points of the given six. As an application, we give an alternative approach to determining the
deformation types (i.e. icosahedral, bipartite, tripartite and hexagonal) of 36 real Schläfli double sixes on any nonsingular
real cubic surface performed by Segre.

1. Introduction
1.1. Motivation and the principal result

We call a set of six distinct points of P2 in general position a typical 6-point configuration; ”generality” here
means that no triple of points is collinear and all six are not coconic. Typical 6-point configurations and related
to them Schläfli double sixes are classical objects. In our recent work [5], we intended to revisit certain aspects of
these topics, where we were motivated by a deformation classification of such 6-point configurations in RP2 , by
searching for a relation between Segre’s deformation classification of real Schläfli double sixes and Mazurovskiĭ’s
deformation classification of six skew lines in RP3 .

The general study of plane Cremona transformations which are birational transformations of a projective
plane to itself was first originated in [1, 2]. The special examples of plane Cremona transformations are the
quadratic Cremona transformations, Crijk , given as follows: blowing up projective plane P2 at three points
pi, pj , pk and blowing down the proper transformations of three lines passing through each pair of these points.
Such transformations play a fundamental role in the theory of Cremona transformations since by Noether’s
Factorization Theorem, any Cremona transformation can be factorized into a finite sequence of quadratic
Cremona transformations.

In this paper, we revisit other related results that are based on a study of the behavior of typical 6 -
point configurations P under internal quadratic Cremona transformations. The latter are quadratic Cremona
transformations generated by triples of points of P . We study such transformations in a real setting.

The deformation classification of typical 6 -point configurations in RP2 was given by Segre [7], §62, who
proved that there are four classes: I, II, III and IV. In fact, he used the term primary instead of typical. He
pointed representatives of typical 6-point configurations {p1, . . . , p6} for each of them as shown in Figure 1.
We enhance these representative configurations to decorated adjacency graphs introduced in Subsection 2.2.
According to the shape of the graphs, we call these 6-point configurations hexagonal, bipartite, tripartite, and
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icosahedral and denote by QC6
i , i = 1, 2, 3, 6 their deformation classes, respectively. By deformation, we mean

a path in the space of typical 6 -point configurations (for more details, see Subsection 2.1).

I. Icosahedral II. Bipartite III. Tripartite IV. Hexagonal
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Figure 1. Four deformation classes of typical 6-point configurations.

On each of the four kinds of typical 6 -point configurations P = {p1, . . . , p6} , Segre (see [7], §61) built
a simple full topological invariant in a form of plane pentagrams that depend up to homeomorphism. Namely,
let us denote by Li6 , i = 1, . . . , 5 the line passing through points pi and p6 and numerate the lines in the
pencil of lines passing through point p6 . Then the five intersection points pi = Q6 ∩ Li6 , i = 1, . . . 5 follow on
the conic Q6 (passing all points of P except for p6 ) in some (cyclic) order pσ(1), . . . , pσ(5) , where σ ∈ S5 is a
permutation. The diagram of P is obtained from a regular pentagon whose vertices are cyclically numerated
by 1, . . . , 5 and connected by a broken line σ(1) . . . σ(5)σ(1) (see Figure 2). This pentagram does not depend
on both the numeration of points of P and the choice of p6 .

(12345)(12354) (21435)(13524)

I II III IV

Figure 2. Pentagrams associated to the four deformation classes.

We scheme the modification of typical 6 -point configurations in RP2 under internal quadratic Cremona
transformations as a well-defined weighed directed graph, where vertices represent their deformation classes
QC6

i , edges represent internal quadratic Cremona transformations which take a 6 -point configuration P of
type QC6

i to the one of type QC6
j and weights of the edges represent the number of triples pm, pn, pr of points

of P so that Crmnr(P) ∈ QC6
j . We call this graph the Cremona-Segre transformation graph.

Our principal result is the following statement, which is proved in Subsection 3.2.
Theorem 1.1 Cremona-Segre transformation graph is like indicated in Figure 3.

Corollary 1.2 Any typical 6-point configuration in RP2 is obtained from a hexagonal (and tripartite) one by
an internal quadratic Cremona transformation. In contrast, icosahedral typical 6-point configurations are never
obtained from an icosahedral (or a bipartite) one by such a transformation.

1.2. Complementary 6-point configurations

It is well known that blowing up P2 at six points of a typical 6-point configuration P = {p1, . . . , p6} is a del
Pezzo surface XP that can be realized by anticanonical embedding as a nonsingular cubic surface in P3 . This
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Figure 3. Cremona-Segre transformation graph.

surface contains the marking, EP = {E1, . . . , E6} , formed by the exceptional divisors of blowing up at pi , as

well as its complementary marking, Q̃P = {Q̃1, . . . , Q̃6} , in which Q̃i is the proper transformation of conic

Qi ⊂ P2 passing through the five points of P other than pi . Blowing down six lines of Q̃P we obtain a typical
6 -point configuration, P̃ , in P̃2 . In the real setting, for P ⊂ RP2 , XP is a real cubic M -surface (i.e. the real

locus RXP ⊂ XP is homeomorphic to RP2#6RP2 ), and P̃ ⊂ RP̃2 .

Remark 1.3 The configurations P and P̃ belong to different planes. However, QC6(P2)/PGL(3,R) =

QC6(P̃2)/PGL(3,R) is a canonical identification, where QC6(P2),QC6(P̃2) are respectively the sets of typical

6 -point configurations in P2 , P̃2 , and the corresponding deformation classes in QC6(P2) and QC6(P̃2) are
identified with the connected components of the corresponding quotient.

The planes P2 and P̃2 obtained by blowing down EP and Q̃P , respectively are called the complementary planes,
and the configurations P ⊂ P2 and P̃ ⊂ P̃2 obtained as the result of blowing down EP and ẼP , respectively
are called the complementary 6-point configurations.

As a first application of Theorem 1.1, we can see the following statement that is proved in Section 3.4.

Theorem 1.4 Assume that P , P̃ are complementary typical 6-point configurations. Then they belong to the
same deformation class (i.e. QC6

1 , or QC6
2 , or QC6

3 , or QC6
6 ).

1.3. Real Schläfli double sixes
A Schläfli double six (L,L′) is a pair of sextuple of skew lines, L = {L1, . . . , L6} , L′ = {L′

1, . . . , L
′
6} in P3 such

that Li and L′
j intersect at a point if i ̸= j and are disjoint if i = j . It is well known that any Schläfli double

six determines a unique nonsingular cubic surface. By a real Schläfli double six, we mean a Schläfli double six
consisting of 12 real lines. Only nonsingular real cubic M -surfaces may contain real Schläfli double sixes.

The classification of real Schläfli double sixes (L,L′) up to continuous deformations of the real nonsingular
cubic surface defined by them was given by Segre [7] who found 4 types of them. One way to distinguish the 4
classes is to blow down six lines of L (or L′ ) on the cubic surface, which gives a typical 6 -point configuration,
PL (or PL′ ) in RP2 . It is claimed in Theorem 1.4 that PL and PL′ have the same deformation types (that
is, they both belong to QC6

i , i = 1, 2, 3, 6), and so we can speak of the four types of real Schläfli double sixes
corresponding to 4 types of typical 6 -point configurations as shown on Figure 5.
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Schläfli [6] observed that any nonsingular cubic surface contains 36 Schläfli double sixes. In the case of
real cubic M -surfaces, all of them are real. As a second application of Theorem 1.1, we determine the types of
36 real Schläfli double sixes by using the analysis of internal quadratic Cremona transformations. The following
statement is proved in Section 3.5.

Theorem 1.5 Among 36 real Schläfli double sixes, 10 are hexagonal, 15 are bipartite, 10 are tripartite, and
the remaining one is icosahedral.

In fact, a similar combinatorial description was given by Segre [7] in the context of studying elliptic lines
(for definition and more details, see Subsection 2.5 below): 1 double six of the 1st kind that contains 12 elliptic
lines (for us, it corresponds to QC6

6 ): 15 double sixes of the 2nd kind that contain 4 elliptic lines consisting of
2 pairs of incident lines without common points (for us, they correspond to QC6

2 ); 20 double sixes of the 3rd
kind that contains 6 elliptic lines consisting of a pair of triple of skew lines such that each line from one of two
sets is incident with each of three lines of the other one. According to the type of the pair of triple of lines, he
divided double sixes of the 3rd kind into two types: the 1st and 2nd type. Ten of 20 double sixes of the 3rd
kind are of the 1st type (for us, they correspond to QC6

3 ), and the other 10 are of the 2nd type (for us, they
correspond to QC6

1 ).

1.4. Structure of the paper

In Section 2 we recall from [4] the concepts of deformation of 6-point configurations and the monodromy groups
of typical 6 -point configurations. Then, we describe the action of these groups on the triples of points among
the given six (Proposition 2.2). This result is used to prove our main theorem. In Section 3, we show how
a typical 6 -point configuration in RP2 is changing under the internal quadratic Cremona transformations.
We give a simple explicit composition of such Cremona transformations taking a 6-point configuration to its
complemantary one. The results are applied to prove Theorems 1.4 and 1.5.

2. Preliminaries
2.1. Deformation classes of 6-point configurations

For us, a deformation of a 6 -point configuration (i.e. it is a projective configuration of 6 distinct points in
plane) is a continuous family Pt , t ∈ [0, 1] , formed by 6 -point configurations. We call it L-deformation if Pt

are simple 6 -point configurations that are 6 -point configurations in which no triple of points is collinear and
Q-deformation (or just deformation) if Pt are typical ones.

We know from [3] that there are 4 deformation classes of simple 6-point configurations shown in Figure 4.
In this figure, we sketched configurations P together with some edges (line segments in RP2 ) joining pairs of
points if and only if they have no intersections with the lines connecting pairwise the remaining four points.
The graph, ΓP , that we obtain for a given configuration P will be called the adjacency graph of P .

Figure 4. Four kinds of simple 6-point configurations with adjacency graphs.
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As we observed in [4], two classifications are coincided: typical 6-point configurations can be connected
by an L-deformation if and only if they can be connected by a Q-deformation.

2.2. Coloring graphs ΓP for typical 6-point configurations

Given a typical 6 -point configuration P , we say that its point p ∈ P is dominant (subdominant) if it lies
outside (respectively, inside) conic Qp that passes through the remaining 5 points of P . Here, by points inside
(outside of) Qp we mean points lying in the component of RP2 ∖ Qp homeomorphic to a disc, (respectively,
in the other component). We color the vertices of adjacency graph ΓP the dominant points of P in black and
subdominant ones in white, see Figure 5 for the result.

QC6
6 QC6

2 QC6
3

QC6
1

Figure 5. Decorated adjacency graphs.

Remark 2.1 Let P ′ = {p1, . . . , p5} be a set of 5 points in RP2 containing no collinear triples of points, and
let assume that the numeration of the points of P ′ is cyclic as shown in Figure 6. Take a point p6 ∈ RP2

different than points of P ′ . We showed in [4] that the new configuration P = P ′ ∪{p6} belongs to deformation
class QC6

i , i = 1, 2, 3, 6 , if the point p6 lies in the region labeled by i as shown in this figure. Notice that for
region 1, the sixth point can lie either outside or inside the conic. In the former possibility, this point will be
dominant whereas it will be subdominant for the latter one.

1

2
3

6

p1

p2

p3

p4p5
1

Figure 6. Labels i = 1, 2, 3, 6 of regions represent the corresponding class QC6
i of P = {p1, ..., p5, p6} , where p6 lies in

region i .

2.3. The monodromy group of 6-point configurations

By the L-deformation monodromy group of a simple 6 -point configuration P in RP2 we mean the subgroup,
AutL(P) , of the permutation group S(P) realized by L-deformations (using some fixed numeration of points
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of P , we can and will identify S(P) with the symmetric group S6 ). For a typical 6 -point configuration P ,
we similarly define the (Q-deformation) monodromy group Aut(P) ⊂ S(P) ∼= S6 formed by the permutations
realized by Q-deformations.

The L-deformation monodromy groups for simple 6-point configurations were given in [3]. We showed in
[4], §2.1 and §2.6, monodromy groups for typical 6-point configurations are the same except for the hexagonal
ones. That is, for configurations P from deformation classes QC6

2 , QC6
3 , and QC6

6 , groups Aut(P) are
respectively Z/4 , D3 , and the icosahedral group. However, for P ∈ QC6

1 , Aut(P) is not D6 , but its subgroup
D3 that consists of the permutations of D6 preserving the colors of vertices of the corresponding graph in Figure
5. In fact, monodromy groups for the latter ones were described by Segre [7] as well (§62 of his book) without
proof. However, there was a mistake for the case QC6

2 . In this case, he claimed that monodromy group is Z2 .

2.4. Aut(P)-action on triples

For a given typical 6 -point configuration P = {p1, . . . , p6} , let TP be the set of
(
6
3

)
triples of points of P .

Consider the action of monodromy group Aut(P) on TP defined by σ({pi, pj , pk}) = {pσ(i), pσ(j), pσ(k)} , where
σ ∈ Aut(P) and pi, pj , pk ∈ P . We denote the orbit of a triple {pi, pj , pk} of points by [{pi, pj , pk}] or (abuse
of the notation) by [ijk] .

The following statement describes the action of the monodromy group on the set of triples of points
among the given six.

Proposition 2.2 Let P be a typical 6-point configuration. Then, the action of Aut(P) on TP

(a) has six orbits if P is either hexagonal or tripartite: two consist of six elements, two consist of three
elements and each of the remaining ones consists of one element.

(b) has six orbits if P is bipartite: four consist of four elements, each of the remaining ones consists of two
elements.

(c) has two orbits if P is icosahedral: each consists of ten elements.

Proof Let P ∈ QC6
i , i = 1, 2, 3, 6 . For each i , assume that the numeration p1, . . . , p5 of points of P other

than p6 is cyclic such that point p6 is inside the region i as shown in Figure 6. In addition, without loss of
generality we can assume that point p6 is subdominant when P is hexagonal (i.e. P ∈ QC6

1 ). We label a point
p ∈ P at some level with an index which represents a numeration of points of P up to the action of Aut(P) .
The numeration that we start stands with the labeling at the first level. For a certain choice of numerations,
we get Figure 7, where there are 6 levels for P ∈ QC6

i , i = 1, 3, 6 and 4 levels for P ∈ QC6
2 .

We start to consider a triple of points at the first level. The corresponding triples at the other levels in
this figure represent the elements of orbits of the initial triple. For example, let P be hexagonal, and let us
consider the triple of points p1, p2, p3 ∈ P . Its corresponding triples from the first level to the sixth one are
123 , 156 , 345 , 156 , 345 , and 123 , respectively. Thus, [123] = {123, 156, 345} . Now, let us consider triple
of points p1, p2, p4 ∈ P . In this case, we get [124] = {124, 256, 346, 146, 245, 236} . By proceeding the same
way for any other triple of points of P , we can find all distinct orbits. For the cases P ∈ QC6

i , i = 2, 3 ,
the idea is the same. Now, suppose that P ∈ QC6

6 . We start with the triple of points p2, p3, p6 ∈ P .
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Figure 7. Numerations of six points of P at levels induced by its monodromy group by starting the fixed one.

Its corresponding triples are 236 , 126 , 156 , 456 , 346 , and 135 . However, the corresponding triples of
p1, p2, p4 ∈ P are 124 , 135 , 245 , 134 , 235 , and 126 . Two orbits of 236 and 124 contain common elements,
so [236] = {236, 126, 156, 456, 346, 135, 124, 245, 134, 235} = [124] . In the same manner, for triple of points
p3, p4, p5 we get [345] = {345, 234, 123, 125, 145, 146, 356, 246, 136, 256} = [146] . To show why two orbits [236]

and [345] are not equal, consider the icosahedron whose 12 vertices are the preimage of points of P under
the double covering ϕ : S2 → RP2 . Notice that icosahedral group preserves faces of this icosahedron, which
correspond to the triples in [236] . However, there are also triples in [345] which do not correspond to the
faces. 2

2.5. Elliptic and hyperbolic lines

According to Segre [7], a real line on a nonsingular real cubic surface X can be divided in two types: hyperbolic
and elliptic. Namely, let L be a real line on X , and consider the one parameter family of planes πt ⊂ P3 , t ∈ P1 ,
containing this line. Then, X ∩πt = L∪Ωt , where Ωt are residual conics. For each t ∈ P1 , Ωt∩L = {qt, q

′

t} .
The pencil {Ωt : t ∈ P1} of residual conics defines a double covering φ : L → P1 such that φ : {qt, q

′

t} → t .
Two branch points of φ are called the Segre points. A real line on X is called hyperbolic if the Segre points are
real, and called elliptic if they are complex conjugates to each other.

Recall that blowing up P2 at six points of a given typical 6 -point configuration P = {p1, . . . , p6} in
RP2 , we get a nonsingular cubic surface with 27 real lines: 6 exceptional divisors Ei over blown up points
pi , the proper transformations Aij of 15 lines Lij joining two of the blown up points pi, pj , and the proper
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transformations Q̃i of 6 conics Qi through all but one of the blown up points pi .

Segre (see [7], §31) showed that for icosahedral typical 6-point configurations, E1, . . . , E6 and Q̃1, . . . , Q̃6

are all elliptic lines. The following statement describes the type (elliptic or hyperbolic) of line Aij for any
typical 6-point configuration.

Proposition 2.3 Let P = {p1, . . . , p6} be a typical 6-point configuration, and let Aij be as introduced above.
Then, Aij is hyperbolic if the subconfiguration P \ {pi, pj} are in convex position in RP2 \ Lij , and elliptic
otherwise.

Proof The residual pencil Ωt associated to line Aij is the pencil of conics passing through the four points
other than pi and pj . Consider all possible mutual positions (up to homeomorphism) of Lij and this pencil.
For each of the possibilities, the intersection points of Lij ∩ Ωt lie on line Lij like indicated in Figure 8a, b if
the four points are in convex position or not, respectively. The former one guarantees that Aij is hyperbolic,
and the latter guarantees that Aij is elliptic. 2

qt0q′t0 qt1q′t1 qt2q′t2
(a) Hyperbolic

q′t0q′t1q′t2 qt0qt1qt2

(b) Elliptic

Figure 8. The points qt, q
′
t of the intersection Ωt ∩ Lij .

3. Cremona transformations of 6-configurations
3.1. Method of real Cremona transformations
An internal real quadratic Cremona transformation, Crijk : RP2 → RP2 , based at a triple of points {pi, pj , pk} ⊂
P transforms a typical 6-point configuration P = {p1, . . . , p6} to another typical 6-point configuration Pijk =

Crijk(P) formed by the three points different from pi, pj , pk , and the three images of Lij , Ljk , Lki , which are
denoted by pij , pjk , pki , or (abuse of the notation if it does not lead to a confusion) by pk, pi, pj , respectively.

By the definition of the monodromy group of a given configuration, we immediately get the following
observation.

Proposition 3.1 Let P be a typical 6-point configuration. The deformation class of Pijk is invariant with
respect to the action of Aut(P) on the set TP of triples, .

Theorem 3.2 Let P ∈ QC6
i , i = 1, 2, 3, 6 . For each i , assume that the numeration p1, . . . , p5 of points of P

other than p6 is cyclic such that the point p6 lies in the region i as shown in Figure 6. In addition, if P
is hexagonal (i.e. P ∈ QC6

1 ), we assume that p6 is dominant. Then, the modifications of P under internal
quadratic Cremona transformations up to the action of Aut(P) on the set TP of triples are like indicated in
Figure 9.

Proof By Propositions 2.2 and 3.1, we know that for P ∈ QC6
i ,i = 1, 2, 3 , the action of Aut(P) on TP have

six orbits while it has two orbits for icosahedral ones, and that the deformation type of Pklm = Crklm(P) does
not depend on the representative triples pk, pl, pm chosen from the orbits. We obtain Figure 9 as a result of
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Figure 9. Modifications of 6 -point configurations under the Cremona transformations, where □ and ◦ represent the
corresponding hyperbolic and elliptic lines, respectively. The colors black and white show the dominant and subdominant
points, respectively.

case-by-case consideration how a typical 6-point configuration (at the center) from each of the 4 classes changes
under internal quadratic Cremona transformations by considering concrete choice of triple of points from the
orbits.

For the description of ellipticity and hyperbolicity of six real lines Ei over blown up points pi for each of
classes QC6

1 and QC6
3 , we start with the icosahedral typical 6-point configuration P in Figure 9d. We already

showed that its images under Cr236 and Cr345 are hexagonal and tripartite, respectively. Recall that the images
of points pi, pj , pk ∈ P under Cremona transformation Crijk are respectively points pi, pj , pk which are the
blowing down of the proper transformations of lines Ljk , Lik , Lij . By Proposition 2.3, lines L36 , L26 , and L23
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correspond to hyperbolic lines, so exceptional curves E2, E3, E6 of blowing up at p2 , p3 , p6 that are the images
of these lines under Cr236 are also hyperbolic. However, the exceptional curves E1, E4, E5 are elliptic as before.
Thus, by starting icosahedral 6-point configuration we described types of six real lines over blown up points
for hexagonal ones. Similarly, we can see that for the tripartite 6-point configuration Cr345(P) , exceptional
curves E3, E4, E5 over p3 , p4 , p5 are hyperbolic while E1, E2, E6 are elliptic. To describe types of six real
lines over blown up points for bipartite ones, we can start with heptagonal or tripartite 6-point configurations
for which we have already determined points corresponding to elliptic and hyperbolic lines. Choose the starting
configuration and use the same idea for this case.

2

Corollary 3.3 The kinds (i.e. dominant and subdominant) of three points pi, pj , pk of a typical 6-point
configuration are preserved under Crijk .

3.2. Proof of Theorem 1.1

Let P be a typical 6 -point configuration in QC6
i , i = 1, 2, 3, 6 . Denote by Mij the number of the internal

quadratic Cremona transformations which takes P to a 6 -point configuration of type QC6
j . We start to assume

that P is hexagonal (that is, P ∈ QC6
1 ) and use Theorem 3.2 and Proposition 2.2 to count representative

triple of points pm, pn, pr of P so that Crmnr(P) = Pmnr belongs to QC6
j , j = 1, 2, 3, 6 . From Figure 9, we see

that Pmnr is also hexagonal only if {n,m, r} = {1, 2, 3} . From Figure 7, we extract that orbit [123] consists
of three elements. Thus, M11 = 3 . Configuration Pmnr belongs to QC6

2 if {m,n, r} is equal to either {2, 3, 6}
or {2, 3, 4} . From Figure 7, we see that orbits [236] and [234] consist of six and three elements, respectively.
Thus, M12 = 6 + 3 = 9 . By proceeding the same way, we can find M13 = 7 and M16 = 1 . For the cases
P ∈ QC6

i , i = 2, 3, 6 , the idea is the same.

3.3. Modifications of lines and conics
The following result shows the modification of lines and conics under elementary quadratic Cremona transfor-
mations.

Proposition 3.4 Let P = {p1, . . . , p6} be a typical 6-point configuration and let Lij and Qi be a line joining
points pi, pj ∈ P and a conic passing through all points of P except for pi , respectively. Then:

(a) the image of line Lij under Crijk for some k ∈ {1, . . . , 6} \ {i, j} is a point. However, its image under
Crklm for some k, l,m ∈ {1, . . . , 6} \ {i, j} is a conic passing through the five points pi , pj , pk , pl , pm

of Pklm .

(b) the image of conic Qi under Crjkl for some j, k, l ∈ {1, . . . , 6}\{i} is a line joining two points pn, pm ∈ P ,
where n,m ∈ {1, . . . , 6} \ {i, j, k, l} . However, its image under Crijk for some j, k ∈ {1, . . . , 6} \ {i} is a
conic passing through all points of Pijk except for pi .

Proof Its proof is a straightforward analysis using the model [x : y : z] 7→ [yz : xz : xy] of a quadratic
Cremona transformation. 2
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Corollary 3.5 Let P = {p1, . . . , p6} be a typical 6-point configuration and EP , Q̃P be the sets as introduced

in Section 1.2. Then, the modification of lines of EP and Q̃P under Cr123 ◦Cr456 ◦Cr123 are like indicated in
Figure 10, in which Aij ⊂ XP for i ̸= j are the proper transformations of lines Lij .

˜

Q3

E1 A23
˜

Q1

E2 A13

˜

Q2

E3 A12

E4 E4 A56

˜

Q4

E5
E5 A46

˜

Q5

E6 E6 A45

˜

Q6

Cr123 Cr123Cr456
˜

Q1

˜

Q2

˜

Q3

Figure 10. The modification of two markings {E1, . . . , E6} , {Q̃1, . . . , Q̃6} on a cubic surface which form a real Schläfli
double six.

The following statement provides a simple explicit series of internal quadratic Cremona transformations
whose composition transforms a given typical 6-configuration in its complementary one.

Lemma 3.6 If P ⊂ P2 and P̃ ⊂ P̃2 are complementary typical 6-point configurations, then the composition
Cr123 ◦Cr456 ◦Cr123 transforms the plane P2 into the plane P̃2 , and sends P to P̃ .

Proof Let P = {p1, . . . , p6} and P̃ = {p̃1, . . . , p̃6} be complementary configurations to each other. Blowing

up P2 and P̃2 at six points of P and P̃ , we obtain cubic surfaces XP and XP̃ together with a sextuple of skew

lines EP = {E1, . . . , E6} and EP̃ = {Ẽ1, . . . , Ẽ6} formed by the exceptional divisors over blown up points,
respectively. According to the definition of complementary configurations (see Section 1.2), XP is identical to

XP̃ . In addition, there is a natural identification between EP̃ and Q̃P = {Q̃1, . . . , Q̃6} , where Q̃i , i = 1, . . . , 6 ,
are represented in the P2 by conics Qi passing through the points of P other than pi . By Figure 10, we see
that the map Cr123 ◦Cr456 ◦Cr123 sends EP to Q̃P , or vice versa. This completes the proof.

2

Proposition 3.7 The deformation type of a typical 6-point configuration is preserved under the composite
function Crijk Crmnr Crijk , where i, j, k,m, n, r ∈ {1, . . . , 6} are all distinct.

Proof Let P ∈ QC6
i , i = 1, 2, 3, 6 . For each i , assume that the numeration p1, . . . , p5 of points of P other

than p6 is cyclic such that the point p6 is inside the region i as shown in Figure 6. In addition, without loss
of generality we can assume that point p1 is subdominant when P is hexagonal. Using Figure 9, we obtain
Figure 11, where one concludes that deformation type of P is not changing under Crijk Crmnr Crijk .

2

3.4. Proof of Theorem 1.4

Let P ⊂ P2 and P̃ ⊂ P̃2 be complementary 6 -point configurations to each other. Due to Lemma 3.6, the
map Cr123 ◦Cr456 ◦Cr123 sends P to P̃ . Using Proposition 3.7, we conclude that P and P̃ have the same
deformation class.
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p2
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p5

p6

p4 p5

p6 p4

p1 p2

p3

p1

p2
p3

p4p5

p6p1

p3

Figure 11. The modification of a 6 -point configuration from each of classes QC6
i , i = 1, 2, 3, 6 , under

Cr123 ◦Cr456 ◦Cr123 .

3.5. Proof of Theorem 1.5

Let X be a nonsingular real cubic M -surface and let ni be the number of real Schläfli double sixes (L, L̃) on
X , which correspond to QC6

i , i = 1, 2, 3, 6 , that is to say, the typical 6 -point configuration obtained by blowing

down six lines of L (or L̃) belongs to QC6
i . Any nonsingular real cubic M -surface has 36 real Schläfli double

sixes, so we have immediately n1 + n2 + n3 + n6 = 36 .
According to Cremona-Segre transformation graph given in Theorem 1.1, we know the numbers of internal

quadratic Cremona transformations between real Schläfli double sixes of types QC6
i and the ones of type

QC6
j on a fixed cubic surface. Thus, we have 9n1 = 6n2 , 7n1 = 7n3 , n1 = 10n6 , and 6n2 = 9n3 . Since

n1 + n2 + n3 + n6 = 36 we get

n1 +
3

2
n1 + n1 +

1

10
n1 = 36

36

10
n1 = 36

n1 = 10

Therefore, n2 = 15 , n3 = 10 and n6 = 1 .

Acknowledgments

I would like to thank Sergey Finashin for his many useful advices in the preparation of this paper.

1848



ZABUN/Turk J Math

References

[1] Cremona L. Sulle transformazioni geometriche delle figure piane. Mem Accad Bologna (2) 2, 1863; 40: 621-630 (in
Italian).

[2] Cremona L. Sulle transformazioni geometriche delle figure piane. Mem Accad Bologna (2) 5, 1865; 62: 3-35 (in
Italian).

[3] Finashin S. Projective configurations and real algebraic curves. PhD, Leningrad State University, Saint Petersburg,
Russia, 1985.

[4] Finashin S, Zabun RA. Deformation classification of typical configurations of 7 points in the real projective plane.
Topology and its Applications, 2015; 194: pp. 358-385.

[5] Finashin S, Zabun RA. Topology of real Schlafli six-line configurations on cubic surfaces and in RP3 . Proceedings
of the American Mathematical Society, 2018; doi: https://doi.org/10.1090/proc/14340.

[6] Schläfli L. An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such
surfaces into species in reference to the reality of the lines upon the surface. Quarterly Journal of Pure and Applied
Mathematics 2, 1858; pp. 55-65.

[7] Segre B. The Non-Singular Cubic Surfaces. A New Method of Investigation with Special Reference to Questions of
Reality. London, England: Oxford, The Clarendon Press, 1942.

1849


	Introduction
	Motivation and the principal result
	Complementary 6-point configurations
	Real Schläfli double sixes
	Structure of the paper

	Preliminaries
	Deformation classes of 6-point configurations
	Coloring graphs ¶ for typical 6-point configurations
	The monodromy group of 6-point configurations
	Aut(¶)-action on triples 
	Elliptic and hyperbolic lines

	Cremona transformations of 6-configurations
	Method of real Cremona transformations
	Proof of Theorem 1.1
	Modifications of lines and conics
	Proof of Theorem 1.4
	Proof of Theorem 1.5


