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is complete, minimal, or it forms a basis for a Morrey-type space.

Key words: Exponential system, basicity, Morrey space

1. Introduction
Basis properties of the following exponential system are studied in this work

Eβ;µ ≡
{
ei(nt+λn(t))

}
n∈Z

, (1.1)

where λn (t) = − (βt+ µ signt) sign n ; β, µ ∈ R are real parameters, and Z is the set of integers. This system
is a modification of the following perturbed exponential system

eβ ≡
{
ei(n+βsignn)t

}
n∈Z

,

which has been considered by many mathematicians. The study of basis properties of eβ (such as completeness,
minimality, and basicity) has a long history. It dates back to the works by Paley and Wiener [33] and Levinson
[23, 24]. Basicity (Riesz basicity) criterion for the system eβ in L2 (−π, π) with respect to the real parameter
β ∈ R follows from the results obtained by Levinson [23, 24] and Kadets [22], and this criterion is the inequality
|β| < 1

4 . Basicity criterion for the system eβ in the Lebesgue spaces Lp (−π, π) , 1 < p < +∞ , with respect to
the parameter β has been obtained later by Sedletski [36] and Moiseev [25]. Basis properties of eβ are closely
related to the similar properties of perturbed sine systems

{sin (n− β) t}n∈N , (1.2)

and cosine systems
1 ∪ {cos (n− β) t}n∈N , (1.3)
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{cos (n− β) t}n∈Z+
(Z+ = {0} ∪N) , (1.4)

in corresponding Banach spaces of functions on [0, π] . These systems arise when solving partial differential
equations of mixed (or elliptic) type using the Fourier method in special domains. To justify the formally
constructed solution, it is very important to study the basis properties of these systems in appropriate spaces of
functions (see, e.g., [26, 34]). Many authors have studied the basis properties of systems in various functional
spaces (mainly Lebesgue spaces and their weighted versions; see, e.g., [2–7, 12–14, 27–29, 31, 37, 38]). The
works which consider the approximation properties of the systems (1.1)–(1.4) can be divided into two groups.
The first one includes the works which used the methods of the theory of entire functions (see, e.g., [22–
25, 33, 36]), and the second group consists of those which used the methods of boundary value problems for
analytic functions (see, e.g., [10, 27, 31, 32, 34]). The latter idea originated from Bitsadze [15], later to be
successfully used in [25, 27, 34]. Further development of this approach, used in establishing basis properties
of perturbed trigonometric systems and power systems, was by Bilalov [2, 3, 7, 11, 14]. Similar problems are
studied in [32, 38].

In the context of applications to some problems of mechanics and mathematical physics, recently there
has been great interest in the nonstandart spaces of functions. As examples of this kind of spaces, we can
mention Lebesgue space with the variable summability index, Morrey space, Companato space, etc. The theory
of differential equations and its relationship with the harmonic analysis requires the study of many cornerstone
issues of analysis in these spaces. A lot of classical facts about harmonic analysis have been extended to these
spaces (for detailed information about these matters see Xianling and Dun [39], Zorko [40], Morrey [30], Cruz-
Uribe and Fiorenza [16], Adams [1], etc.). Along with this, of course you have to study approximation matters
in suchlike spaces. Approximation matters have been (and are being) relatively well studied in generalized
Lebesgue spaces by Sharapudinov [37], Israfilov [20, 21], Bilalov and Huseynov [12, 13], etc. (see e.g., [19, 31]).
The situation is different in the case of Morrey-type spaces. Only recently the approximation matters began to
be studied in these spaces, and many problems in this field still remain to be solved. Apparently the works by
Israfilov [20, 21], Bilalov and Guliyeva [14], Gasymov and Guliyeva [18] have been pioneers in this field.

In this paper a perturbed system of exponents with a piecewise linear phase depending on two real
parameters is considered. The sufficient conditions for these parameters are found, under which the considered
system of exponents is complete, minimal, or it forms a basis for a Morrey-type space. It should be noted that
the basis properties of the system (1.1) are completely different from those of the system eβ . Basis properties
of eβ in Morrey-type spaces have been fully studied in the recent work by Bilalov [9].

2. Preliminaries

In this section we state some notations and facts which will be used to obtain our main results. Let us first
define the Morrey space on the unit circle γ = {z ∈ C : |z| = 1} on the complex plane C . Next, ω = intγ will
denote the unit ball in C . By L0 (−π, π) we denote the linear space of all (Lebesgue-) measurable functions on
(−π, π) . X∗ will denote the conjugate space of a space X . T ∗ will denote the adjoint operator of a operator
T .

By Lp,α (γ) , 1 ≤ p < +∞, 0 ≤ α ≤ 1 , we will denote the normed space of all measurable functions f (·)
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on γ with the finite norm

∥f∥Lp,α(γ) = sup
B

(
|B ∩ γ|α−1

γ

∫
B∩γ

|f (ξ)|p |dξ|
)1/p

< +∞,

( |B ∩ γ|γ − is the linear measure of intersection B ∩ γ ), where sup has taken over all balls centered at γ with
an arbitrary positive radius. Lp,α (γ) is a Banach space with respect to this norm. We also define the space
Lp,α (−π, π) , 1 ≤ p < +∞, 0 ≤ α ≤ 1 , which consists of measurable functions f (·) on (−π, π) with the finite
norm

∥f∥Lp,α(−π,π) = sup
I⊂[−π,π]

(
|I|α−1

∫
I

|f (t)|p |dt|
)1/p

< +∞,

where sup has taken over all intervals I ⊂ [−π, π] . It is not difficult to see that the correspondence f (t) =:

F
(
eit
)
, t ∈ (−π, π) , F (·) ∈ Lp,α (γ) , establishes an isometric isomorphism between the spaces Lp,α (γ) and

Lp,α (−π, π) . Therefore, in what follows we will equate these spaces and denote Lp,α with the norm ∥·∥p,α .

It is not difficult to see that for 0 ≤ α1 ≤ α2 ≤ 1 the following continuous embedding holds Lp,α1 ⊂ Lp,α2 .
Moreover, it is clear that Lp,1 = L1 (−π, π) and Lp,0 = L∞ (−π, π) . We also have Lp,α ⊂ L1 (−π, π) , ∀α ∈
[0, 1] , ∀p ≥ 1 .

Weighted version of the space Lp,α is defined in a natural way. Namely, if ρ : [−π, π] → R+ = (0,+∞)

(or ρ : γ → R+ ) is some weight function, then the weighted version of the space Lp,α is a normed space of
measurable functions with the norm

∥f∥p,α:ρ = ∥fρ∥p,α , ∀f ∈ Lp,α
ρ .

In the sequel we will use the notation f (x) ∼ g (x) , x ∈ M , which means

∃δ ∈ (0, 1) : δ ≤
∣∣∣∣f (x)

g (x)

∣∣∣∣ ≤ δ−1, ∀x ∈ M.

The similar meaning is carried by f (x) ∼ g (x) , x → a .
The lemma below was proved in [9]:

Lemma 2.1 [9] The space L∞ (and so C [−π, π] too) is not dense in Lp,α for 1 ≤ p< +∞ and ∀α ∈ (0, 1) .

It follows that the sequence of bounded functions cannot be complete in Lp,α . In what follows, we will
assume, if needed, that the function f ∈ Lp,α is periodically (with period 2π ) extended to the whole real
axis R . Following Lemma 2.1, we will consider the subspace Mp,α of functions f (·) the shifts of which are
continuous in Lp,α , i.e.

∥f (·+ δ)− f (·)∥p,α → 0, δ → 0.

The following lemma holds.

Lemma 2.2 [9] The space Mp,α , 1 ≤ p < +∞ , 0 < α ≤ 1 , is a Banach space and C∞
0 [−π, π] is dense in it,

where C∞
0 [−π, π] is the subspace of functions , which has finite support and infinite differentiable on [−π, π] .
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It is not difficult to see that the system Eβ,µ belongs to Mp,α : Eβ,µ ⊂ Mp,α . Therefore it is clear that
the closure of the linear span of Eβ,µ also belongs to Mp,α , i.e. spanEβ,µ ⊂ Mp,α . So it is quite natural to
study basis properties of the system Eβ,µ in the space Mp,α .

We will use in this work the following result obtained in [10].

Lemma 2.3 Let f (·) ∈ L∞ (−π, π) and g (·) ∈ Mp,α, 1 ≤ p < +∞, 0 < α ≤ 1 . Then f (·) g (·) ∈ Mp,α .

Finally, we state the following easy-to-prove lemma which will be frequently used throughout this work.

Lemma 2.4 Let {τk}k=1,m ⊂ γ− be different points. Then the finite product

ω (τ) =

m∏
k=1

|τ − τk|αk , τ ∈ γ,

belongs to the space Lp,α, 1 ≤ p < +∞, 0 < α < 1 , if and only if the inequalities αk ≥ −α
p , ∀k = 1,m , hold.

We will also use the following

Lemma 2.5 Let γ > −α
p , 1 ≤ p < +∞, 0 < α ≤ 1 . Then ∥|t|γ χE (t)∥p,α → 0 as |E| → 0 , where

E ⊂ [−π, π]− is an arbitrary interval and |E| − is the length of this interval.

Remark 2.6 It is obvious that Lemma 2.5 stays true for the function |t− t0|γ , too, where t0 ∈ [−π, π] is an
arbitrary point. In other words, if γ > −α

p , 1 ≤ p < +∞, 0 < α ≤ 1 , then

lim
|E|→0

∥|t− t0|γ χE (t)∥p,α = 0.

Moreover, it is not difficult to see that this does not hold true for γ = −α
p .

Using the results of Lemma 2.5 and Remark 2.6, it is easy to prove the validity of the following

Lemma 2.7 Let γk > −α
p , k = 0, r; and {tk}r0 ∈ [−π, π]− be different points. Then the following relation

is true
lim

|E|→0
∥ω (t)χE (t)∥p,α = 0,

where

ω (t) =

r∏
k=0

|t− tk|
γk

.

3. Morrey–Hardy spaces

Let us state some facts about the theory of Hardy spaces. Define the Morrey–Hardy class Hp,α
+ , 1 ≤ p <

+∞, 0 ≤ α ≤ 1 , of functions f (·) analytic inside ω endowed with the norm

∥f∥Hp,α
+

= sup
0<r<1

∥fr (·)∥p,α ,
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where fr (t) = f
(
reit
)
. It is not difficult to see that the inclusion Hp,α

+ ⊂ H+
1 , 1 ≤ p < +∞, holds, where

H+
1 − is a usual Hardy class. Therefore, every function f (·) ∈ Hp,α

+ has nontangential boundary values f+ (·)
on γ .

Take ∀f (·) ∈ Lp,α, 1 ≤ p < +∞, 0 < α ≤ 1 , and consider the following Cauchy-type integral

F (z) =
1

2πi

∫
γ

f (ξ) dξ

ξ − z
, z /∈ γ.

Recall the following well-known Sokhotski–Plemelj formula

F± (τ) = ±1

2
f (τ) + (Sf) (τ) , τ ∈ γ,

where F+ (τ) (F− (·))− are nontangential boundary values of F (·) inside (outside) the unit ball ω on γ , and
S− is a singular integral

(Sf) (τ) =
1

2πi

∫
γ

f (ξ) dξ

ξ − τ
, τ ∈ γ.

Later in this work we will often use the following result of [35].

Theorem 3.1 [35] Let the weight function ρ (·) be defined as follows

ρ (t) =

m∏
k=1

|t− tk|αk , {tk}m1 ⊂ γ, ti ̸= tj , i ̸= j.

Then the singular operator S− is bounded in the weighted space Lp,α
ρ , 1 < p < +∞, 0 < α < 1 , if and only

if the following inequalities hold

−α

p
< αk < −α

p
+ 1, k = 1,m.

The following theorem is true.

Theorem 3.2 [9] Let f (·) ∈ Hp,α
+ , 1 < p < +∞, 0 < α ≤ 1 . Then f+ (·) ∈ Lp,α and the Cauchy formula

f (z) =
1

2πi

∫
γ

f+ (τ) dτ

τ − z
, z ∈ ω, (3.1)

holds, where f+ (·)−are nontangential boundary values of f (·) on γ . Conversely, if f+ (·) ∈ Lp,α , 1 < p <

+∞, 0 < α ≤ 1 , then the function f (·) , defined by the Cauchy-type integral (3.1), belongs to the class Hp,α
+ .

Using this theorem, it is easy to prove the analog of the Smirnov theorem.

Theorem 3.3 Let f ∈ Hp,α
+ , 1 ≤ p < +∞, 0 < α ≤ 1 and f+ ∈ Lq,β ; q > p, 0 < β ≤ 1 , where f+−are

nontangential boundary values of f (·) on γ . Then f ∈ Hq,β
+ .
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Consider the space Hp,α
+ . Denote by Lp,α

+ the subspace of Lp,α generated by the restrictions of the
functions from Hp,α

+ to γ , i.e. Lp,α
+ = Hp,α

+ /γ . From the uniqueness theorem for analytic functions and
Theorem 3.2 it follows that the spaces Hp,α

+ and Lp,α
+ are isomorphic and the restriction operator J :Hp,α

+ ↔Lp,α
+ ;

(Jf) (τ) = f+ (τ) , τ ∈ γ, ∀f ∈ Hp,α
+ , performs the corresponding isomorphism. Let Mp,α

+ = Mp,α ∩ Lp,α
+

with the norm ∥·∥p,α . It is clear that Mp,α
+ is a subspace of Mp,α (because Mp,α and Lp,α

+ both are the

closed subspaces of Lp,α ). Let MHp,α
+ = J−1

(
Mp,α

+

)
. Obviously, MHp,α

+ is a subspace of Hp,α
+ . It follows

from the above considerations that for ∀f ∈ Hp,α
+ the norm ∥f∥Hp,α

+
can be defined also by the relation

∥f∥Hp,α
+

= ∥f+∥p,α , where f+− are nontangential boundary values of f on γ .

Absolutely similar to the classical case, we define the Morrey–Hardy class outside the unit circle ω . Let
ω− = C\ω̄ (ω̄ = ω ∪ γ) . We will say that the function f analytic in ω− has a finite order m at infinity, if its
Laurent decomposition at infinitely remote point has the following form

f (z) =

m∑
k=−∞

akz
k, am ̸= 0. (3.2)

Thus, for m > 0 the function f has a pole of order m at z = ∞; for m = 0 , it is bounded in the
vicinity of z = ∞; and in case m < 0 it has a zero of order (−m) at z = ∞ . Let f (z) = f0 (z) + f1 (z) , where
f0 (z) is the principal part (i.e. f0 (z) =

∑m
k=0 akz

k ), and f1 (z) is the regular part of decomposition (3.2).
Consequently, f0 (z) ≡ 0, for m < 0 , and f0 is a polynomial of degree m , i.e. deg f0 = m , if m ≥ 0 . We will

say that the function f belongs to the class mHp,α
− , if deg f0 ≤ m and F ∈ Hp,α

+ , where F (z) = f1
(
1
z̄

)
, z ∈ ω .

Absolutely similar to the case of MHp,α
+ , we define the class mMHp,α

− . In other words, mMHp,α
− is a

subspace of functions from mHp,α
− , whose shifts are continuous on γ with respect to the norm ∥·∥p,α .

Consider the weighted versions of above spaces. First define the weighted space Mp,α
ρ with some weight

function ρ : [−π, π] → R+ = (0,+∞) . Consider the weighted space Lp,α
ρ and let f ∈ Lp,α

ρ − be some function.
If needed, we will assume that the function f (·) is extended outside [−π, π] by evenness, i.e.

f (x) =

{
f (−2π − x) , x ∈ [−3π,−π) ,
f (2π − x) , x ∈ (π, 3π] .

(the extended function will also be denoted by f (·)). Let

Mρ =
{
f ∈ Lp,α

ρ : ∥f (·+ δ)− f (·)∥p,α;ρ → 0, δ → 0
}
.

It is absolutely clear that Mρ is a linear subspace of Lp,α
ρ . Denote the closure of Mρ in Lp,α

ρ by Mp,α
ρ ,

i.e. Mp,α
ρ is a subspace of Lp,α

ρ . It is not difficult to see that if ρ ∈ Lp,α , then C [−π, π] ⊂ Mp,α
ρ . In fact, let

f ∈ C [−π, π] be an arbitrary function and δ be a number sufficiently small in absolute value. Obviously, the
function f (·) extended to [−3π, 3π] is also continuous. We have

∥f (·+ δ)− f (·)∥p,α;ρ = sup
I⊂(−π,π)

(
1

|I|1−α

∫
I

|(f (t+ δ)− f (t)) ρ (t)|p dt

)1/p

≤
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≤ sup
t∈(a,b)

|f (t+ δ)− f (t)| ∥ρ∥p,α → 0, δ → 0.

The last relation follows from the uniform continuity of f (·) in [−3π, 3π] .
Based on the restriction operator J , absolutely similar to previous cases we define the corresponding

Morrey–Hardy classes of functions analytic in ω and ω− , respectively. Namely, a weighted Hardy–Morrey
space Hp,α

ρ;+ is defined by means of the norm

sup
0<r<1

∥fr (t)∥p,α;ρ < +∞, ∀f ∈ Hp,α
ρ;+,

where fr (t) = f
(
reit
)
. Denote Lp,α

ρ;+ = Hp,α
ρ;+

/
γ . The spaces Lp,α

ρ;+ and Hp,α
ρ;+ are isomorphic. Let Mp,α

ρ;+ =

Mp,α
ρ ∩ Lp,α

ρ;+ and MHp,α
ρ;+ = J−1

(
Mp,α

ρ;+

)
. Then, MHp,α

ρ;+ is a subspace of Hp,α
ρ;+ . Absolutely similar to the

previous case, we define the weighted Hardy–Morrey classes mHp,α
ρ;− and mMHp,α

ρ;−− of functions analytic outside
the unit circle γ .

The following theorem is true.

Theorem 3.4 Let the singular operator S be bounded in Lp,α
ρ , 1 < p < +∞, 0 < α ≤ 1 . Then Mp,α

ρ is its
invariant subspace.

4. The space (Lp,α)
′

When treating basis properties of systems, one often has to use a conjugate space. As we do not yet have a
description for a space conjugate to Lp,α, in the form of functional space (see, e.g., [1]), it suffices to consider

some subspace of (Lp,α)
∗
, denoted (Lp,α)

′
and defined by

(Lp,α)
′
=

{
g ∈ L0 (−π, π) : sup

f∈Sp,α

∥fg∥L1(−π,π) < +∞

}
,

with the norm
∥g∥

(p,α)
′ = sup

f∈Sp,α

∥fg∥L1
, (4.1)

where Sp;α =
{
f ∈ Lp,α : ∥f∥p,α = 1

}
− is a unit sphere in Lp,α .

The following theorem is true.

Theorem 4.1 (Lp,α)
′
, 1 ≤ p < +∞, 0 ≤ α ≤ 1 , is a Banach space with respect to the norm (4.1).

In what follows, we will often use the following lemma.

Lemma 4.2 Let t0 ∈ [−π, π]− be an arbitrary point. Then the function g (t) = |t− t0|β belongs to the space

(Lp,α)
′
, 1 ≤ p < +∞, 0 < α ≤ 1 , if and only if β ∈

(
α
p − 1,∞

)
.

Remark 4.3 Let J ⊂ [−π;π] be an arbitrary interval and t0 ∈ J . It is not difficult to see that the proof of

Lemma 4.2 is also applicable if J is taken instead of [−π;π] , i.e. |t− t0|β ∈ (Lp,α (J))
′

holds if and only if

β ∈
(
−1 + α

p , +∞
)

.
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Using Lemma 4.2, it is easy to prove the following lemma.

Lemma 4.4 The finite product

ν (t) =

m∏
k=1

|t− tk|βk , {tk}k=____
1,m

⊂ [−π, π] , ti ̸= tj , i ̸= j,

belongs to the space (Lp,α)
′
, 1 ≤ p < +∞, 0 < α ≤ 1 , if and only if βk ∈

(
−1 + α

p ,+∞
)
, ∀k = 1,m .

This lemma has the following immediate corollary.

Corollary 4.5 Let −π = s0 < s1 < ... < sr < π− be arbitrary points. Then the finite product

µ (t) =

r∏
k=0

∣∣∣∣sin t− sk
2

∣∣∣∣αk

, t ∈ (−π, π) ,

belongs to the space (Lp,α)
′
, 1 ≤ p < +∞, 0 ≤ α ≤ 1, if and only if αk ∈

(
−1 + α

p ,+∞
)
, ∀k = 0, r.

5. General solution of homogeneous Riemann problem in Hardy–Morrey classes

To establish the basicity of the exponential system (1.1) for Morrey-type spaces Mp,α , we will use the method
of Riemann boundary value problems developed by Bilalov (see, e.g., [2, 3, 7, 8, 10–14]). Consider the following
homogeneous Riemann problem

F+ (τ)−G (τ)F− (τ) = 0, τ ∈ γ,
F+ (·) ∈ Hp,α

+ ;F− (·) ∈m Hp,α
− ,

}
(5.1)

1 < p < +∞, 0 < α ≤ 1, where G
(
eit
)
=
∣∣G (eit)∣∣ eiθ(t), t ∈ [−π, π]− is the coefficient of the problem.

By the solution of the problem (5.1) we mean a pair of functions (F+;F−) ∈ Hp,α
+ ×m Hp,α

− such that the
nontangential boundary values F+ (τ) inside ω and F− (τ) outside ω satisfy the relation (5.1) a.e. on γ .
Introduce the following piecewise analytic functions on the complex plane cut byγ :

X1 (z) ≡ exp
{

1

4π

∫ π

−π

ln
∣∣G (eit)∣∣ eit + z

eit − z
dt

}
,

X2 (z) ≡ exp
{

1

−4iπ

∫ π

−π

θ (t)
eit + z

eit − z
dt

}
, z /∈ γ.

Let

Zk (z) =

{
Xk (z) , |z| < 1,

(Xk (z))
−1

, |z| > 1,

and Z (z) = Z1 (z)Z2 (z) , z /∈ γ .
Function Z (·) will be called a canonical solution of homogeneous problem.
Regarding the coefficient G (·) of the problem (5.1), we will assume that the following conditions hold:
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i) G±1 (·) ∈ L∞ (−π, π) ;

ii) θ (t) = argG
(
eit
)
− is a piecewise Hölder function on [−π, π] , and let hk = θ (sk + 0)− θ (sk − 0) , k =

1, r− be the jumps of this function at the points of discontinuity {sk}r1 : −π < s1 < .... < sr < π .
Bilalov [9] proved the following:

Theorem 5.1 [9] Let the coefficient G (·) of the problem (5.1) satisfy the conditions i), ii) and the jumps
{hk}r0 of the function θ (t) = argG

(
eit
)
on [−π, π] , where h0 = θ (π)− θ (−π) , satisfy the inequalities

−1 +
α

p
<

hk

2π
≤ α

p
, k = 0, r.

Then:
α) for m ≥ 0 the problem (5.1) has a general solution of the form

F (z) ≡ Z (z)Pk (z) , (5.2)

where Z (z)− is a canonical solution of this problem, and Pk (z)− is an arbitrary polynomial of degree k ≤ m;

β) for m < 0 the problem (5.1) has only a trivial solution.

Using this theorem, it is easy to prove the following one.

Theorem 5.2 [9] Let the coefficient G (·) satisfy the conditions i) , ii) and the jumps {hk}r0 of the function
θ (·) satisfy the inequalities

−1 +
α

p
<

hk

2π
<

α

p
, k = 0, r.

Then:
α) for m ≥ 0 the problem (5.1) has a general solution of the form (5.2) in the Morrey–Hardy classes

MHp,α
+ ×m MHp,α

− , 1 < p < +∞, 0 < α ≤ 1;

β) for m < 0 the problem (5.1) has only a trivial solution in the Morrey–Hardy classes MHp,α
+ ×m

MHp,α
− , 0 < α < 1, 1 < p < +∞ .

6. Nonhomogeneous Riemann problem in Morrey–Hardy classes
Consider the nonhomogeneous Riemann problem

F+ (τ)−G (τ)F− (τ) = f (arg τ) , τ ∈ γ, (6.1)

in the Morrey–Hardy classes Hp,α
+ ×mHp,α

− , 1 < p < +∞, 0 < α < 1 , where f ∈ Lp,α− is some given function.
f (·) is called the right-hand side, and G (·)− is called the coefficient of the problem (6.1).

Let us state the result obtained by Bilalov [9] concerning the solvability of the problem (6.1).

Theorem 6.1 [9] Let the coefficient G (·)− of the problem (6.1) satisfy the conditions i); ii) and {hk}r1 −be
the jumps of the function θ (t) = argG

(
eit
)

in (−π, π) at the points of discontinuity {sk}r1 ⊂ (−π, π) : h0 =

θ (π)− θ (−π) . Let the inequalities

−1 +
α

p
<

hk

2π
<

α

p
, k = 0, r
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hold. Then, the following assertions are true regarding the solvability of nonhomogeneous Riemann problem
(6.1) in the Morrey–Hardy classes Hp,α

+ ×m Hp,α
− , 1 < p < +∞, 0 < α < 1 :

α) for m ≥ −1 the problem (6.1) has a general solution of the form

F (z) = Z (z)Pm (z) + F1 (z) ,

where Z (·)− is a canonical solution of corresponding homogeneous problem (5.1), Pm (·)− is an arbitrary
polynomial of degree k ≤ m (P−1 (z) ≡ 0) , F1 (·)− is a particular solution of the problem (6.1) of the form

F1 (z) =
Z (z)

2π

∫ π

−π

f (t)

Z+ (eit)
Kz (t) dt, (6.2)

where Kz (·) = 1
eit−z is a Cauchy kernel, and f ∈ Lp,α− is an arbitrary function;

β) for m < −1 the problem (6.1) is solvable if and only if the right-hand side f (·) ∈ Lp,α satisfies the
orthogonality conditions ∫ π

−π

f (t)

Z+ (eit)
eiktdt = 0, k = 1,−m− 1, (6.3)

and then the problem (6.1) has a unique solution F (z) = F1 (z) , where F1 (·)− is defined by (6.2).

This theorem has the following immediate corollary.

Corollary 6.2 Let all the conditions of Theorem 6.1 hold. Then for ∀f ∈ Lp,α, 1 < p < +∞, 0 < α < 1 ,
the problem (6.1) has a unique solution in the Morrey–Hardy classes Hp,α

+ ×−1H
p,α
− , which can be represented

in terms of Cauchy-type integral of the form (6.2).

Consider the case where the right-hand sidef (·) of the problem (6.1) belongs to the space Mp,α, i.e.
f (·) ∈ Mp,α . In this case, the solution is sought in the classes MHp,α

+ ×m Mp,α
− .

Bilalov [9] proved the following:

Theorem 6.3 [9] Let all the conditions of Theorem 6.1 hold and the right-hand side f (·) of the nonhomogeneous
Riemann problem (6.1) belong to Mp,α , 1 < p < +∞, 0 < α < 1 . Then the following assertions are true
concerning the solvability of this problem in classes MHp,α

+ ×m MHp,α
− :

α) for m ≥ −1 the problem (6.1) has a general solution of the form

F (z) = Z (z)Pm (z) + F1 (z) ,

where Z (·)− is a canonical solution of the problem (5.1), Pm (·)− is an arbitrary polynomial of degree k ≤ m

(P−1 (z) ≡ 0) , F1 (·)− is a particular solution of the problem (6.1) defined by (6.2);
β) for m < −1 the problem (6.1) is solvable if and only if f (·) satisfies the orthogonality conditions

(6.3), and then the problem (6.1) has a unique solution F (z) = F1 (z) , defined by (6.2).

This theorem has the following immediate

Corollary 6.4 Let all the conditions of Theorem 6.3 hold. Then, for ∀f ∈ Mp,α , 1 < p < +∞, 0 < α < 1, the
problem (6.1) has a unique solution in Morrey–Hardy classes MHp,α

+ ×−1 MHp,α
− , defined by the Cauchy-type

integral (6.2).
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7. Main results
To determine the basicity of the exponential system Eβ;µ in Morrey spaces Mp,α , we will use the method of
boundary value problems. This method requires the determination of basicity of parts of exponential system
for Morrey–Hardy spaces MHp,α

+ and −1MHp,α
− . Based on the results of Section 3, we equate these spaces

with the spaces Mp,α
+ and −1M

p,α
− =−1 MHp,α

− /γ− (restriction to γ ). It is not difficult to prove the following

Theorem 7.1 [9] The system
{
eint

}
n∈Z+

({
e−int

}
n∈N

)
forms a basis for the space Mp,α

+

(
for −1M

p,α
−
)
,

0 < α < 1, 1 < p < +∞ .

Now we pass to the basicity of the perturbed exponential system Eβ;µ for Morrey space Mp,α, 0 < α <

1, 1 < p < +∞. We will follow the techniques used in [2, 3, 12]. Consider the following nonhomogeneous
Riemann boundary value problem

F+
(
eit
)
− ei2λ(t)F− (eit) = eiλ(t)f (t) , t ∈ (−π, π) , (7.1)

where f (·) ∈ Mp,α is some function and λ (t) = − (β t+ µ sign t) . The solution of the problem (7.1) is
sought in Morrey–Hardy classes MHp,α

+ ×−1 MHp,α
− . Let us make use of Theorem 6.3. Let β; µ ∈ R be real

parameters. We have
θ (t) = 2λ (t) = −2 (βt+ µ sign t) , t ∈ [−π, π] .

The function θ (·) has a unique discontinuity point t = 0 in the interval (−π, π) . The corresponding jump at
this point is

h1 = θ (+0)− θ (−0) = −4µ .

We have
h0 = θ (π)− θ (−π) = −4 (β + µ) .

We will follow Corollary 6.4. Suppose that the inequalities

−1 +
α

p
< −2µ

π
<

α

p
; −1 +

α

p
< −2β − 2µ

π
<

α

p

hold. Then, as follows from Corollary 6.2, problem (7.1) has a unique solution in the Morrey–Hardy classes
MHp,α

+ ×−1MHp,α
− for an arbitrary right-hand side f (·) ∈ Mp,α and this solution is representable by a Cauchy

type integral

F (z) =
Z (z)

2π

∫ π

−π

f (t)

Z+ (eit)
Kz (t) dt,

where Z (·)− is a canonical solution of the corresponding homogeneous problem, Kz (·) = 1
eit−z is a Cauchy

kernel.
In what follows we will need some properties of a canonical solution. Let us represent the function θ (·)

in the following form
θ (t) = θ0 (t) + θ1 (t) ,

where θ0 (·)− is its continuous (Hölder) part, and θ1 (·) is a jump function defined by

θ1 (−π) = 0 , θ1 (s) =
∑

k:−π<sk<s

hk , ∀s ∈ (−π, π] .
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Let
h
(0)
0 = θ0 (π)− θ0 (−π) ,

and

u0 (t) =

∣∣∣∣sin t+ π

2

∣∣∣∣−
h
(0)
0
2π

exp
(
− 1

4π

∫ π

−π

θ0 (τ) ctg
t− τ

2
dt

)
.

By the results of [9], the boundary values of the canonical solution Z (·) can be represented as

∣∣Z− (eit)∣∣ = ∣∣G (eit)∣∣− 1
2 |u0 (t)|

r∏
k=0

∣∣∣∣sin t− sk
2

∣∣∣∣−
hk
2π

.

It is absolutely clear that the function θ0 (·) is a Hölder function on [−π, π] . Then again, by the results of [35],
we have

sup vrai
[−π,π]

|u0 (t)|±1
< +∞.

As θ (·) is a Hölder function on [−π, π] , then the corresponding jump function vanishes, i.e. θ1 (t) ≡ 0, t ∈
[−π, π] , and it is clear that θ (t) ≡ θ0 (t) , t ∈ [−π, π] .

Taking into account the equality∣∣Z+
(
eit
)∣∣ = ∣∣G (eit)∣∣ ∣∣Z− (eit)∣∣ ,

from the previous relations we obtain ∣∣Z+
(
eit
)∣∣ ∼ const, t ∈ (−π, π) .

By the results of Corollary 6.4 for ∀f ∈ Mp,α , the problem (7.1) has a unique solution (F+;F−) in the classes
MHp,α

+ ×−1 MHp,α
− . Denote by T+

+

(
T−
−
)

the operator which maps the function f (·) to the function F+ (·)

(F− (·)) ,T+
+

(
T−
−
)

i.e. T+f = F+ (T−f = F−) . It is absolutely clear that T± is a linear operator. In the
sequel, we will equate the function F+ (·) ∈ MHp,α

+

(
F− (·) ∈ −1MHp,α

−
)

to its boundary values F+
(
eit
)
∈

MHp,α
+

(
F− (eit) ∈ −1MHp,α

− ≡ −1MHp,α
− /γ

)
.

Applying Sokhotski–Plemelj formulas, we obtain

F± (τ) = Z± (τ)

[
1

2π

∫ π

−π

f (t)

Z+ (eit)

eitdt

eit − z

]±
γ

=

= Z± (τ)

(
±1

2

[
Z+ (τ)

]−1
f (arg τ)−

[
Z+ (τ)

]−1
(Kf) (τ)

)
,

where [ · ]±γ − denotes the boundary values on γ from inside ω (with “+”) and outside ω (with “-”), respectively,
and K− is a singular Cauchy integral of the form

(Kf) (τ) =
Z+ (τ)

2π

∫ π

−π

f (t)

Z+ (eit)
Kτ (t) dt, τ ∈ γ.
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It is absolutely clear that

f (t)
[
Z+

(
eit
)]−1 ∈ Lp,α.

Then, as the singular operator acts boundedly in Lp,α , from the previous relation we obtain

∃M > 0 : ∥T+f∥ρ,α =
∥∥F+

∥∥
ρ,α

≤ M ∥f∥ρ,α .

Consider the relation
e−iλ(t)F+

(
eit
)
+ eiλ(t)F− (eit) = f (t) , t ∈ (−π, π) .

Expand the functions F+
(
eit
)
, F− (eit) in the space MHp,α with respect to the systems

{
eint

}
n∈Z+

and{
e−int

}
n∈N

, respectively. We have

e−iλ(t)
∞∑

n=0

V +
n

(
F+
)
eint + eiλ(t)

∞∑
n=0

V −
n

(
F−) e−int = f (t) ,

where

V +
n (g) =

1

2π

∫ π

−π

g (t) eintdt, n ∈ Z+,

V −
k (g) =

1

2π

∫ π

−π

g (t) eiktdt, k ∈ N.

For convenience, let
V +
n (g) =

(
g; e−int

)
, n ∈ Z+, V

−
k (g) =

(
g; eikt

)
, k ∈ N ,

where (g; f) =
∫ π

−π
g (t) f (t)dt . Thus, the following relations hold

V +
n

(
F+
)
=
(
F+; e−int

)
=
(
T+f ; e−int

)
=
(
f ;T ∗

+e
−int

)
, n ∈ Z+,

V −
k

(
F−) = (F−; eikt

)
=
(
T−f ; eikt

)
=
(
f ;T ∗

−e
ikt
)
, k ∈ N,

V +
n ∈

(
MHp,α

+

)∗
,∀n ∈ Z+, V

−
n ∈

(
−1MHp,α

−
)∗

,∀k ∈ N.

We have
T+ : Mp,α → Mp,α

+ ;T− : Mp,α → −1M
p,α
− .

Consequently
T ∗
+ :
(
Mp,α

+

)∗ → (Mp,α)
∗
,

T ∗
− :
(
−1M

p,α
−
)∗ → (Mp,α)

∗
.

Then it is clear that the following inclusions hold

T ∗
+V

+
n ∈ (Mp,α)

∗
,∀n ∈ Z+, T ∗

−V
−
k ∈ (Mp,α)

∗
,∀k ∈ N.

Denote V ±
n = T ∗

±V
±
n . Then we have

V ±
n

(
F+
)
= V ±

n (T±f) = T ∗
±V

±
n (f) = V ±

n (f) .
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Considering these expressions for f (·) , we have the expansion

f (t) = eiλ(t)
∞∑

n=0

V +
n (f) eint + e−iλ(t)

∞∑
n=0

V −
n (f) e−int.

It is absolutely clear that

F+
(
eit
)
=

∞∑
n=0

V +
n (f) eint;

F− (eit) = ∞∑
n=1

V −
n (f) e−int.

Now take f (t) = e−iλ(t)eikt as a function f (·) , where k ∈ Z+− is some fixed number. In this case, the solution
of the problem (7.1) is

F+ (z) =
∑∞

n=0 V
+
n

[
e−iλ(t)eikt

]
zn,

F− (z) =
∑∞

n=1 V
−
n

[
e−iλ(t)eikt

]
z−n.

 (7.2)

On the other hand, the functions below are also the solution

F+ (z) = zk, |z| < 1,
F− (z) = 0, |z| > 1.

}
(7.3)

Comparing the relations (7.4) and (7.3), from the uniqueness of the solution we obtain

V +
n

[
e−iλ(t)eikt

]
=

{
1, n = k,
0, n ̸= k,

V +
n

[
e−iλ(t)eikt

]
= 0,∀n ∈ N, ∀k ∈ Z.

Similarly, if we take f (t) = eiλ(t)e−ikt, as a function f (·) , where k ∈ N is some fixed number, then we
obtain the following relations

V +
n

[
ei λ(t)e−ikt

]
= 0,∀n ∈ Z+,∀k ∈ N,

V −
n

[
eiλ(t)e−ikt

]
= δn,k,∀n, k ∈ N.

From these relations it immediately follows that the system
{
V +
n , V −

n+1

}
n∈Z+

is biorthogonal to the system

(1.1); therefore, the system (1.1) is minimal in Mp,α . Thus, the following theorem is proved.

Theorem 7.2 Let the real parameters β;µ ∈ R satisfy the following inequalities

−1 +
α

p
< −2µ

π
<

α

p
; −1 +

α

p
< −2β − 2µ

π
<

α

p
.

Then the system of exponents Eβ;µ forms a basis for Mp,α, 0 < α < 1, 1 < p < +∞ .
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Further we will consider the most general case. Taking into account the periodicity of the exponent, the
coefficient G (·) of the problem (7.1) is defined by the following expression

G (t) = eiθ̃(t), t ∈ [−π, π] ,

where

θ̃ (t) =

{
−2βt+ 2µ+ 2m1π, t ∈ [−π, 0) ,
−2βt− 2µ+ 2m2π, t ∈ (0, π] ,

m1;m2 ∈ Z are some integers. The function θ̃ (·) has a discontinuity point t = 0 and its jump at this point is
equal to

h̃1 = θ̃ (+0)− θ̃ (−0) = −2µ+ 2m2π − (2µ+ 2m1π) = −4µ+ 2 (m2 −m1)π.

We also have
h̃0 = θ̃ (π)− θ̃ (−π) = −2βπ − 2µ− 2m1π+
(−2βπ − 2µ+ 2m2π) = −4βπ − 4µ− 2 (m1 −m2)π.

Following Corollary 6.4, we choose the integers m1;m2 from the following conditions

−1 +
α

p
<

h̃k

2π
<

α

p
, k = 0, 1 .

We have

−1 + α
p < − 2µ

π +m2 −m1 < α
p ,

1 + α
p < −2β − 2µ

π −m1 +m2 < α
p .

}
(7.4)

Applying the previous scheme to the system of exponents

Ẽβ;µ ≡
{
ei(nt+λ̃n(t))

}
n∈Z

,

where

λ̃n(t) = −1

2
θ̃(t)signn, n ∈ Z,

we obtain that if there exist integers m1;m2 such that inequalities (7.4) hold, then the system of exponents
Ẽβ;µ forms a basis for Mp,α, 0 < α < 1, 1 < p < +∞ . Considering that the systems Eβ;µ and Ẽβ;µ coincide
and putting m = m2 −m1 , we get the validity of the following

Theorem 7.3 Let there exist an integer m such that the inequalities

−1 + α
p < − 2µ

π +m < α
p ,

−1 + α
p < −2β − 2µ

π −m < α
p ,

}

hold. Then the system of exponents Ẽβ;µ forms a basis for a space Mp,α, 0 < α < 1, 1 < p < +∞ .
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