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1. Introduction
Let N be a Riemannian manifold and X a vector field tangent to N . An immersed hypersurface M of N
is said to have a canonical principal direction (CPD) relative to X if the projection of X onto the tangent
space of M gives one of the principal directions of M [11]. A common example of such hypersurfaces can be
constructed as follows. Consider a rotational hypersurface M in a Euclidean space En with the rotation axis
l . Then M has CPD relative to the fixed direction parallel to l .

When the ambient space is Euclidean, the notion of constant angle hypersurfaces is related to hyper-
surfaces with CPD. A hypersurface in the Euclidean space is said to be a constant angle hypersurface if there
exists a constant direction k that makes a constant angle with the tangent space of the hypersurface at every
point. The applications of constant angle surfaces in the theory of liquid crystals and layered fluids were first
considered in [2]. Furthermore, Munteanu and Nistor gave another approach concerning surfaces in Euclidean
spaces for which the unit normal makes a constant angle with a fixed direction in [18]. Moreover, many classifi-
cation results for constant angle hypersurfaces in 3-dimensional pseudo-Euclidean spaces have been obtained so
far [12, 13, 15, 16]. Constant angle hypersurfaces in high-dimensional spaces have also attracted the attention
of some mathematicians. For example, a classification of such surfaces in E4 was given in [1]. Furthermore, a
local construction of constant angle hypersurfaces was given in [8]. We want to note that some geometers call
constant angle hypersurfaces helix hypersurfaces [1, 8, 9].

It is well known that a surface M in Euclidean 3-space has CPD relative to k if it is a constant angle
surface. For this reason, hypersurfaces in Euclidean spaces with CPD relative to a fixed direction k have
attracted the interest of some geometers in recent years. For example, surfaces with CPD in the Euclidean
3-space E3 were studied in [19]. This study was moved into the Minkowski 3-space E3

1 in [14, 20].
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CPD surfaces and constant angle surfaces in product spaces also attract the attention of some geometers.
For example, the study of constant angle surfaces was extended to product spaces in [5–7, 10]. On the other
hand, some classification results on surfaces with CPD relative to ∂t in S2 × R and H2 × R were obtained in
[4, 5, 7]. See also [10], where ∂t denotes the parallel unit vector field tangent to the second factor. Also, Tojeiro
studied CPD hypersurfaces of Sn × R and Hn × R in [21]. Later, Mendonça and Tojeiro gave a generalization
of the notion of CPD hypersurfaces into higher codimensional submanifolds. For this purpose, they gave the
definition class A in [17]. An immersion f : Mn → Qn

c × R is said to belong to class A if the tangential part
of ∂t is one of the principal directions of all shape operators of f . In a similar way, we would like to give the
following definition of CPD submanifolds in Euclidean spaces:

Definition 1.1 Let Mn be a submanifold in Em and k be a fixed direction in Em . M is said to be a submanifold
endowed with a canonical principal direction (shortly, a CPD submanifold) if the tangential component kT of
k is one of the principal directions of all shape operators of M .

The aim of this paper is to obtain a complete classification of CPD surfaces in the Euclidean 4-space E4 .
In Section 2, we introduce the notations that we will use and give a brief summary of basic definitions in the
theory of submanifolds in Euclidean spaces. In Section 3, we obtain the complete classification of CPD surfaces
in Euclidean 4-space.

2. Preliminaries
Let Em denote the Euclidean m -space with the canonical Euclidean metric tensor given by

g̃ = ⟨ , ⟩ =
m∑
i=1

dx2i ,

where (x1, x2, . . . , xm) is a rectangular coordinate system in Em .
Consider an n -dimensional Riemannian submanifold of the space Em . We denote Levi-Civita connections

of Em and M by ∇̃ and ∇ , respectively. The Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + h(X,Y ), (1)

∇̃Xξ = −Sξ(X) +DXξ, (2)

whenever X,Y are tangent and ξ is a normal vector field on M , where h , D , and S are the second fundamental
form, the normal connection, and the shape operator of M , respectively. It is well known that the shape operator
and the second fundamental form are related by

⟨h(X,Y ), ξ⟩ = ⟨SξX,Y ⟩ .

The Gauss and Codazzi equations are respectively given by

⟨R(X,Y )Z,W ⟩ = ⟨h(Y, Z), h(X,W )⟩ − ⟨h(X,Z), h(Y,W )⟩, (3)

⟨RD(X,Y )ξ, η⟩ = ⟨[Sξ, Sη]X,Y ⟩, (4)

(∇Xh)(Y, Z) = (∇Y h)(X,Z), (5)
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whenever X,Y, Z,W are tangent to M , where R, RD are the curvature tensors associated with connections
∇ and D , respectively. We note that ∇̄h is defined by

(∇Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

A submanifold M is said to have a flat normal bundle if RD = 0 identically. On the other hand, a normal
vector field ξ is said to be parallel on the normal bundle of M , or shortly parallel, if Dξ = 0 . It is well known
that having a flat normal bundle is equivalent to the existence of a parallel base field of the normal bundle
(see, for example, [3]). Also, because of the Ricci equation (4), a submanifold of a Euclidean space satisfies
RD = 0 if and only if all shape operators can be diagonalized simultaneously. Therefore, the following corollary
immediately follows from Definition 1.1:

Corollary 2.1 A CPD surface M in a Euclidean space Em has a flat normal bundle. Consequently, there
exists a parallel orthonormal base field {e3, e4, . . . , em} of the normal bundle of M .

Now consider a local orthonormal frame field {e1, e2, . . . , en; en+1, . . . , em} on M . The mean curvature
vector field H of M is defined by

H =
1

n

m∑
β=n+1

trSβeβ , (6)

where we put Sβ = Seβ . M is said to be minimal if H = 0 .
Let M be a surface, i.e. n = 2 . Then the Gaussian curvature K of M is defined by

K = R(e1, e2, e2, e1).

M is said to be flat if its Gaussian curvature vanishes identically.

3. CPD surfaces in E4

In this section, we obtain the classification of CPD surfaces in E4 .
Let M be a surface in E4 with CPD relative to k . Up to isometries of E4 , we may assume that

k = (1, 0, 0, 0) . Then one can define a tangent vector field e1 and a normal vector field e3 with the equation

k = cos θe1 + sin θe3 (7)

for a smooth function θ . Let e2 and e4 be a unit tangent vector field and a unit normal vector field, satisfying
⟨e1, e2⟩ = 0 and ⟨e3, e4⟩ = 0 , respectively. By a simple computation considering (7) we obtain the following
lemma, where we use the notation hβij = ⟨h(ei, ej), eβ⟩ = ⟨Sβei, ej⟩ and Sβ = Seβ with i, j = {1, 2} , β = {3, 4} :

Lemma 3.1 The Levi-Civita connection ∇ and normal connection D of M are given by

∇e1e1 = ∇e1e2 = 0, (8a)

∇e2e1 = tan θh322e2, ∇e2e2 = − tan θh322e1, (8b)

De1e3 = − cot θh411e4, De2e3 = 0, (8c)
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and the matrix representations of shape operator S of M with respect to {e1, e2} are

S3 =

(
−e1(θ) 0

0 h322

)
, S4 =

(
h411 0
0 h422

)
(9)

for some smooth functions h411 , θ , h322 , and h422 satisfying

e1(h
3
22) = − cot θ h411h422 − tan θ h322

(
e1(θ) + h322

)
, (10a)

e1(h
4
22) = cot θ h322h411 + tan θ h322(h411 − h422), (10b)

e2(θ) = 0, (10c)

e2(h
4
11) = 0. (10d)

Proof By the assumption of being the CPD of M, e1, e2 are principal directions of all shape operators.
Therefore, hβ12 = 0, β = 3, 4 . Thus, we have the second equation of (9). On the other hand, by differentiating
(7) along ei we get

0 =− ei(θ) sin θe1 + cos θ∇eie1 + δ1i cos θ(h311e3 + h411e4)

+ ei(θ) cos θe3 − sin θh3iiei + sin θDeie3
(11)

for i = 1, 2 . Then we observe that (11) for i = 1 gives ∇e1e1 = 0 , h311 = −e1(θ) and the first equation of (8c).
Therefore, we have the first equation of (9) and (8a).

On the other hand, (11) for i = 2 gives (10c), the second equation of (8c), and ∇e2e1 = tan θh322e2 ,
which implies (8b).

By considering the Codazzi equation (5), we obtain (10a) and (10b), and (10d) follows from the Ricci
equation. 2

Now let p ∈M . We construct a local coordinate system by the following lemma:

Lemma 3.2 There exists a local coordinate system (s, t) defined in a neighborhood Np of p such that the
induced metric of M is

g = ds2 +m2dt2 (12)

for a smooth function m satisfying
e1(m)− tan θ h322m = 0. (13)

Furthermore, the vector fields e1, e2 defined above become e1 = ∂s , e2 =
1

m
∂t in Np .

Proof We have [e1, e2] = − tan θh322e2 because of (8). Thus, if m is a nonvanishing smooth function on M

satisfying (13), then we have [e1,me2] = 0 . Therefore, there exists a local coordinate system (s, t) such that

e1 = ∂s and e2 =
1

m
∂t . Thus, the induced metric of M is as given in (12). 2

Now we are ready to obtain the classification theorem.

Theorem 3.3 Let M be a surface in E4 with a CPD relative to a fixed direction k ∈ R4 . Assume that the
unit normal vector field along k is parallel on the normal bundle. Then M is locally congruent to one of the
following surfaces:
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(i) A CPD surface lying on an hyperplane E3 of E4 .

(ii) A surface given by

x(s, t) =α1(s)(1, 0, 0, 0) + α2(s)ϕ(t) +

∫ t

t0

ψ(τ)ϕ′(τ)dτ, (14)

where (α1, α2) is an arc-length parametrized curve in E2 , ϕ(t) = (0, ϕ2(t), ϕ3(t), ϕ4(t)) is an arc-length
parametrized curve lying on S2(1) , and ψ is a smooth function.

(iii) A flat translation surface given by

x(s, t) = ν(s) + ω(t), (15a)

ν(s) = (ν1(s), c1ν2(s), c2ν2(s), c3ν2(s)), (15b)

where c1, c2, c3 are some constants such that c12 + c2
2 + c3

2 = 1 and ω is an arc-length parametrized
curve satisfying

⟨k, ω⟩ = ⟨ν′, ω′⟩ = 0. (15c)

(iv) A flat ruled surface given by
x(s, t) = sΦ1(t) + Φ2(t) (16a)

with the director curve

Φ1(t) = (cos θ0, sin θ0Φ12(t), sin θ0Φ13(t), sin θ0Φ14(t)) (16b)

and directrix

Φ2(t) =

(
0,

∫ t

t0

Ψ(τ)Φ12
′(τ)dτ,

∫ t

t0

Ψ(τ)Φ13
′(τ)dτ,

∫ t

t0

Ψ(τ)Φ14
′(τ)dτ

)
,

(16c)

where θ0 is a nonzero constant, Φ(t) = (0,Φ12(t), Φ13(t),Φ14(t)) is an arc-length parametrized curve
lying on S2(1) , and Ψ is a smooth function.

Conversely, the surfaces described above are CPD relative to k = (1, 0, 0, 0).

Remark 3.4 Because of Corollary 2.1, we know the existence of parallel normal vector fields on a CPD surface
in E4 .

Remark 3.5 For the case (i) of Theorem 3.3, see [19], where the classification of CPD surfaces in E3 was
obtained.

Proof First, assume that M is a surface endowed with a CPD relative to k = (1, 0, 0, 0) and consider the
case De3 = 0 . Then (8c) implies h411 = 0 . Note that if M lies on a hyperplane of E4 , then we have case (i)
of the theorem. Therefore, we assume that M is not contained by a hyperplane of E4 . Note that if Se3 = 0 ,
then we have

∇̃Xe3 = −Se3X +DXe3 = 0,
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whenever X is tangent to M . Therefore, e3 is a constant normal vector field. However, this case contradicts
our assumption. Thus, we consider the case where Se3 ̸= 0 . Similarly, we assume h422 ̸= 0 .

By these assumptions, we see that (9), (10a), and (10b) turn into

S3 =

(
−e1(θ) 0

0 h322

)
, S4 =

(
0 0
0 h422

)
(17)

and

e1(h
3
22) = − tan θ h322(e1(θ) + h322), (18)

e1(h
4
22) = − tan θ h322h422. (19)

Let x :M → E4 be the position vector of M . Consider the local orthonormal frame field {e1, e2; e3, e4}
described at the beginning of this section and let(s, t) be a local coordinate system given in Lemma 3.2. Note
that (18), (19), and (13) become, respectively,

(h322)s = − tan θ h322(θ′ + h322), (20a)

(h422)s = − tan θ h322h422, (20b)

ms − tan θ h322m = 0. (20c)

Moreover, we have
e1 = xs. (21)

Because of (17), e1(θ) = 0 is equivalent to h311 = 0 . We are going to consider this particular case
separately.

Case A. Assume that e1(θ) ̸= 0 at p . If necessary, shrink Np so that e1(θ)|Np
does not vanish.

By combining (20c) and (20b) with (17) we obtain the shape operators of M as

S3 =

(
−θ′ 0
0 cot θms

m

)
, S4 =

(
0 0
0 1

m

)
, (22)

where ′ denotes ordinary differentiation with respect to the appropriated variable.
By combining (20c) and (20a) we obtain

mss − θ′ cot θms = 0,

whose general solution is

m(s, t) = ψ1(t)

∫ s

s0

sin θ(τ)dτ + ψ2(t)

for some smooth functions ψ1, ψ2 . Therefore, by redefining t properly, we may assume either

m(s, t) =

∫ s

s0

sin θ(τ)dτ + ψ(t) (23a)

for a smooth function ψ or
m(s, t) = m(t). (23b)
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Case A1. Let m satisfy (23a). In this case, by considering equation (8) with (21), we get that the
Levi-Civita connection of M satisfies

∇∂s
∂s = 0, ∇∂s

∂t = ∇∂t
∂s =

ms

m
∂t, ∇∂t

∂t = −mms∂s +
mt

m
∂t. (24)

By combining the first equation of (24) with (22) and using Gauss formula (1), we have

xss = −θ′e3. (25)

On the other hand, we have ⟨xs, k⟩ = cos θ and ⟨xt, k⟩ = 0 from the decomposition (7). By considering these
equations, we see that x has the form of

x(s, t) =

(∫ s

s0

cos θ(τ)dτ, x2(s, t), x3(s, t), x4(s, t)
)
+ γ(t) (26)

for an E4 -valued smooth function γ = (0, γ2, γ3, γ4) . On the other hand, by considering (21) and (25) in (7),
we obtain

(1, 0, 0, 0) = cos θxs −
sin θ
θ′

xss. (27)

Next, we combine (27) and (26) to get

θ′ cos θ∂xj(s, t)
∂s

− sin θ∂
2xj(s, t)

∂s2
= 0, j = 2, 3, 4.

By solving this equation and using (26), we obtain

x(s, t) =α1(s)(1, 0, 0, 0) + α2(s)ϕ(t) + γ(t) (28)

for a smooth curve ϕ(t) =
(
0, ϕ2(t), ϕ3(t), ϕ4(t)

)
, where we put α1(s) =

∫ s

s0
cos θ(τ)dτ and α2(s) =

∫ s

s0
sin θ(τ)dτ .

Therefore, the curve (α1, α2) is an arc-length parametrized curve in E2 with the curvature θ′ . Also, (23a) be-
comes

m(s, t) = α2(s) + ψ(t). (29)

Note that (28) also implies ⟨ϕ, ϕ⟩ = 1 , i.e. ϕ lies on S3(1) , because ⟨xs, xs⟩ = 1 .
On the other hand, since h(∂s, ∂t) = 0 , the second equation of (24) implies

xst =
ms

m
xt.

By combining this equation with (28) and (23a), we obtain γ′ = ψϕ′ . Therefore, (28) turns into (14).
Furthermore, (29) and ⟨xt, xt⟩ = m2 imply that ⟨ϕ′, ϕ′⟩ = 1 . Hence, we have case (ii) of the theorem.

Case A2. Let m satisfy (23b). Here, we can take m(t) = 1 by redefining t properly. In this case, the
induced metric given in (12) of M becomes g = ds2 + dt2 and the Levi-Civita connection of M satisfies

∇∂s
∂s = 0, ∇∂s

∂t = 0, ∇∂t
∂t = 0. (30)
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On the other hand, because m = 1 , (20b) and (20c) give (h422)s = 0 and h322 = 0 . Thus, (17) becomes

S3 =

(
−θ′ 0
0 0

)
, S4 =

(
0 0
0 a(t)

)
(31)

for a function a . Therefore, x and the normal vectors e3, e4 satisfy

xss = −θ′e3, xst = 0, xtt = a(t)e4. (32a)

(e3)s = −θ′xs, (e3)t = 0,

(e4)s = 0, (e4)t = −a(t)xt.

(32a) implies (15a) for some smooth curves ν, ω . By a straightforward computation, we obtain (15b) for some
constants c1, c2, c3 , where we put ν1(s) =

∫ s

s0
cos θ(τ)dτ and ν2(s) =

∫ s

s0
sin θ(τ)dτ . Thus, (ν1, ν2) is an arc-

length parametrized curve in E2 . Furthermore, by considering ⟨k, xt⟩ = 0 and g = ds2 + dt2 , we obtain (15c).
Hence, we have case (iii) of the theorem.

Case B. e1(θ) = 0 on Np . Then we have θ = θ0 for a nonzero constant θ0 . In this case, by combining
(20c) with (17) and considering h311 = 0 , we obtain the shape operators of M as

S3 =

(
0 0
0 cot θ0ms

m

)
, S4 =

(
0 0
0 1

m

)
. (33)

Thus, the Gauss equation yields that M is flat.
By combining (20c) and (20a) we get

m(s, t) = ψ1(t)
(

tan θ0s+ ψ2(t)
)

for some smooth functions ψ1, ψ2 . Therefore, by redefining t properly, we may assume either

m(s, t) = s sin θ0 +Ψ(t) (34a)

for a smooth function Ψ or
m(s, t) = m(t). (34b)

Because of (33), we see that the case (34b) gives S3 = 0 , which gives case (i) of the theorem. Therefore,
we assume that m satisfies (34a). Then, by considering equation (8) with (21), we get that the Levi-Civita
connection of M satisfies (24). By combining the first equations in (24) with (33) and using Gauss formula (1),
we obtain

xss = 0,

which yields that M is a ruled surface given by (16a) for some Φ1,Φ2 .
On the other hand, from the decomposition (7), we have ⟨xs, k⟩ = cos θ0 . By considering this equa-

tion and (16a), we obtain (16b) for some functions Φ12(t),Φ13(t),Φ14(t) . Since ⟨xs, xs⟩ = 1 , the curve
(Φ12(t),Φ13(t),Φ14(t)) lies on S2 .

Next, we consider the equation

xst =
ms

m
xt, (35)
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which follows from the second equation in (24) and h(∂s, ∂t)=0. By combining this equation and (16a), we
obtain Φ′

2 = ΨΦ′
1 , which implies (16c) because ⟨xt, k⟩ = 0 . Finally, by using ⟨xt, xt⟩ = m2 , we observe that

the curve (Φ12(t),Φ13(t),Φ14(t)) is parametrized by its arc-length. Thus, we have case (iv) of the theorem.
Hence, the proof for the necessary condition is obtained.

The proof of the converse follows from a direct computation. 2

We would like to state the following immediate results of Theorem 3.3.

Corollary 3.6 Let M be a surface in E4 with a CPD relative to a fixed direction k ∈ R4 . Assume that the
unit normal vector field along k is parallel on the normal bundle. If M is flat, then it is congruent to one of
the surfaces given in case (i), case (iii), or case (iv) of Theorem 3.3.

Proof By considering the proof of Theorem 3.3, one can see that the surface given by case (ii) of Theorem
3.3 is not flat. 2

Corollary 3.7 Let M be a surface in E4 with a CPD relative to a fixed direction k ∈ R4 . Assume that the
unit normal vector field along k is parallel on the normal bundle. If M is minimal, then it lies on a hyperplane
of E4 .

Proof Let M be a minimal surface endowed with a CPD relative to a fixed direction k and assume that the
vector field e3 defined by (7) is parallel. Then (6) and (17) imply that

H =
−e1(θ) + h322

2
e3 +

h422
2
e4 = 0,

which gives S4 = 0 . Since the codimension of M is 2, we also have De4 = 0 . Therefore, we have

∇̃e4 = 0,

which implies that e4 is a constant, normal vector. Put e4 = C0 ∈ S3(1) . Hence, M lies on a hyperplane of
E4 whose normal is C0 . 2

3.1. Explicit examples
In this subsection we would like to present some explicit examples for the nontrivial cases of Theorem 3.3.

Example 3.8 Consider the constant curvature curve

ϕ(t) =

(
0,

cos
(√

2t
)

√
2

,
sin
(√

2t
)

√
2

,
1√
2

)

of S2(1) and let ψ(t) = t . Then the surface given by (14) turns into

x(s, t) =

(
α1(s),

cos
(√

2t
)
(α2(s) + t)
√
2

− 1

2
sin
(√

2t
)
,

1

2

(√
2 sin

(√
2t
)
(α2(s) + t) + cos

(√
2t
)
− 1
)
,
α2(s)√

2

) (36)
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for some smooth functions α1, α2 such that α′
1
2 + α′

2
2 = 1 . The induced metric of this surface is

g = ds2 + (α2(s) + t)2dt2

and we have ⟨k, xs⟩ = 0 , which yields that e1 = ∂s is the unit vector along kT , where k = (1, 0, 0, 0) . A direct
computation yields that h(∂s, ∂t) = 0, which yields that ∂s is a principal direction of all shape operators of M
in E4 . Therefore, the surface given by (36) is endowed with a CPD relative to k .

Next, we get the following examples of flat surfaces in E4 endowed with a CPD relative to k = (1, 0, 0, 0) .

Example 3.9 If we put ω(t) =
(
0, t√

2
,− t√

2
, 0
)

and ν(s) =
(
f(s), s√

3
, s√

3
, s√

3

)
in (15a), then we get the

surface

x(s, t) =

(
f(s),

s√
3
+

t√
2
,
s√
3
− t√

2
,
s√
3

)
. (37)

A direct computation yields that the surface given by (37) is flat and g(∂s, ∂t) = g̃(k, ∂t) = 0 and h(∂s, ∂t) = 0 .
Therefore, this surface is endowed with a CPD relative to k .

Example 3.10 We consider the constant curvature curve

Φ(t) =

(
0,

cos
(√

2t
)

√
2

,
sin
(√

2t
)

√
2

,
1√
2

)

of S2(1) and put θ0 = π
4 , Ψ(t) = t . In this case, the surface given by (16a) turns into

x(s, t) =

(
s√
2
,
1

2

((
s+

√
2t
)

cos
(√

2t
)
− sin

(√
2t
))

,

1

2

((
s+

√
2t
)

sin
(√

2t
)
+ cos

(√
2t
)
− 1
)
,
s

2

)
.

(38)

Similar to Example 3.9, we see that this surface is flat and endowed with a CPD relative to k .
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