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Abstract: Let R be a ring and n be a positive integer. In this paper, further results on the n -strong Drazin inverse
are obtained in a ring. We prove that a ∈ R is n -strongly Drazin invertible if and only if a−an+1 is nilpotent. In terms
of this characterization, the extensions of Cline’s formula and Jacobson’s lemma for this inverse are proved. Moreover,
the n -strong Drazin invertibility for the sums of two elements is considered. We prove that a, b ∈ R are n -strongly
Drazin invertible if and only if a + b is n -strongly Drazin invertible, under the condition ab = 0 . As applications for
the additive results, we obtain some equivalent conditions of the n -strong Drazin invertibility of matrices over a ring.
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1. Introduction
Let RD denote the set of all Drazin invertible elements in a ring R . It is well known that if a, b ∈ R , then

ab ∈ RD ⇐⇒ ba ∈ RD.

In this case, (ba)D = b((ab)D)2a [4]. This formula is called Cline’s formula for the Drazin inverse. Many
researchers considered Cline’s formula for various types of generalized inverses, such as (b, c) -inverse [10], Mary
inverse [27], Hirano inverse [2], pseudo-Drazin inverse [20], generalized Drazin inverse [13, 14, 16, 23, 24]. In
[23], Zeng et al. extended Cline’s formula for the (pseudo, generalized) Drazin inverse to more general case.
Namely, if a, b, c, d ∈ R satisfy acd = dbd and dba = aca , then

ac ∈ RD ⇐⇒ bd ∈ RD.

In this case, (bd)D = b((ac)D)2d and (ac)D = d((bd)D)3bac . Corresponding to Cline’s formula, many researchers
paid attention to Jacobson’s lemma, that is

1− ab ∈ R−1 ⇐⇒ 1− ba ∈ R−1.

In this case, (1−ba)−1 = 1+b(1−ab)−1a . They investigated Jacobson’s lemma for different generalized inverses
in different settings [1, 2, 5, 6, 17, 18, 25].

The topic for generalized inverses of the sums was studied by many authors. In 1958, Drazin [9] proved
that a+ b ∈ RD with (a+ b)D = aD + bD under the condition a, b ∈ RD and ab = ba = 0 . For a, b ∈ Cn×n ,
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Hartwig et al. [12] obtained a formula for (a+ b)D under the one-sided condition ab = 0 , which was extended
to the additive category by Chen et al. [3]. In addition, the problem of generalized inverses of a + b was also
studied under the condition ab = ba . For example, Wei and Deng [21] gave the relations of Drazin inverses
of a + b and 1 + aDb , where a, b ∈ Cn×n . Later, Zhuang et al. [26] extended the result of [21] to the ring
case. The generalized Drazin invertibility and strong Drazin invertibility of the sums under the commutative
condition were also investigated [7, 8, 19].

All results mentioned above were the motivation for further consideration of the n -strong Drazin inverse
in a ring. This article consists of five sections. In Section 2, we recall the definitions of some generalized inverses
and give related notations. In Section 3, characterizations of n -strongly Drazin invertible elements are given in
terms of the nilpotency. Then, we investigate Cline’s formula and Jacobson’s lemma for the n -strong Drazin
inverse in a ring. In Section 4, we obtain some equivalent conditions for the n -strong Drazin invertibility of the
sum a+ b under the hypothesis ab = 0 (or a2b = aba, ab2 = bab). In Section 5, as applications of the previous
additive results, we mainly consider the n -strong Drazin invertibility of matrices over a ring. We remark that
some results presented in this paper are different from those of Drazin inverses.

2. Preliminaries
Throughout this paper, R denotes a ring with unity 1. Rnil and N stand for the sets of all nilpotent elements
in R and positive integers, respectively. Denote by

(
n
k

)
the binomial coefficient n!

k!(n−k)! (0 ≤ k ≤ n).

For the readers’ convenience, we first recall the definitions of some generalized inverses. The Drazin
inverse [9] of a ∈ R is the element x ∈ R which satisfies

xax = x, ax = xa, and a− a2x ∈ Rnil.

The element x above is unique if it exists and is denoted by aD . The power of nilpotency of a− a2aD is called
the index of a , and will be denoted by ind(a) . Drazin [9] proved that a ∈ R is Drazin invertible if and only
if a is both right π -regular (i.e. am ∈ am+1R , for some m ∈ N) and left π -regular (am ∈ Ram+1 , for some
m ∈ N), namely a is strongly π -regular.

In 2017, Wang [19] gave the notion of the strong Drazin inverse in a ring. An element a ∈ R is said to
be strongly Drazin invertible [19] if there exists x ∈ R such that

xax = x, ax = xa, and a− ax ∈ Rnil.

In this case, x is unique if it exists and is called the strong Drazin inverse of a . We will denote the strong
Drazin inverse of a by asD . The strongly Drazin invertible elements are exactly the ones which are strongly
nil-clean (see [19, Lemma 2.2]). Let a ∈ R , then aD exists if and only if there exists x ∈ R such that

x ∈ aR ∩Ra, ax = xa, and a− ax ∈ Rnil.

Suppose that aD exists. Then, let x = aaD . Obviously, x satisfies x ∈ aR ∩Ra , ax = xa , and a− ax ∈ Rnil .

On the contrary, we have (a− ax)m = 0 for some m ∈ N . Hence, am(1− x)m = am(1 +
m∑
i=1

(−1)i
(
m
i

)
xi) = 0 ,

which implies that am = amxu = uxam , for some u ∈ R . Observe that x = as = ta , where s, t ∈ R . Hence,
we deduce that am = am+1su = utam+1 ∈ am+1R ∩Ram+1 . Hence, aD exists.
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The definition of the Hirano inverse [2] was introduced by Chen and Sheibani in 2017. The Hirano inverse
of a ∈ R is the unique element x (written x = aH ) satisfying

xax = x, ax = xa, and a2 − ax ∈ Rnil.

It is interesting that the Hirano inverse is related to tripotent elements (see [2, Theorem 3.3]). In addition, they
obtained the relations of the above three kinds of generalized inverses, that is RsD ⫋ RH ⫋ RD , where RsD

and RH mean the sets of all strongly Drazin invertible and Hirano invertible elements in R , respectively.
Recently, motivated by the concepts of the strong Drazin inverse and Hirano inverse, Mosić [15] introduced

the notion of the n -strong Drazin inverse in a ring. Let n ∈ N . An element x ∈ R is called the n -strong Drazin
inverse of a ∈ R if it satisfies

xax = x, ax = xa, and an − ax ∈ Rnil.

The previous x is unique if such element exists, and we denote it by ansD . Clearly, the n -strong Drazin
inverse covers the strong Drazin inverse and Hirano inverse, that is, a1sD = asD and a2sD = aH . The power
of nilpotency of an − aansD is called the n -strong Drazin index of a , denoted by n -ind(a) . The symbol RnsD

denote the set of all n -strongly Drazin invertible elements in R . We note that Rnil ⊆ RnsD . Indeed, a ∈ Rnil

if and only if a ∈ RnsD with ansD = 0 . In addition, R−1 ⊈ RnsD . For exampe, let R = C . Then, 3 ∈ R−1 ,
but 3 /∈ RnsD .

Next, we introduce two known lemmas, which are related to the nilpotency.

Lemma 2.1 Let a, b ∈ R with ab = ba . Then,
(1) If a ∈ Rnil (or b ∈ Rnil ) , then ab ∈ Rnil .
(2) If a, b ∈ Rnil , then a+ b ∈ Rnil .

Lemma 2.2 [22, Lemma 3.5] Let a ∈ R . If a2 − a ∈ Rnil , then there exists a monic polynomial θ(t) ∈ Z[t]
such that θ(a) = θ(a)2 and a− θ(a) is nilpotent.

3. Cline’s formula and Jacobson’s lemma
In this section, we give an existence criterion for the n -strong Drazin inverse in a ring. Then, by this
characterization we prove Cline’s formula and Jacobson’s lemma for the n -strong Drazin inverse. The results
presented extend the corresponding ones of the strong Drazin inverse [19] and Hirano inverse [2].

Firstly, we give the relationship between the n -strong Drazin inverse and Drazin inverse. The proof of
the following proposition is similar to that of [15, Lemma 2.1].

Proposition 3.1 Let n ∈ N . If a ∈ RnsD with n-ind(a) = m , then a ∈ RD and aD = ansD . Moreover,
ind(a) ≤ nm .

Proof Assume that a ∈ RnsD with n -ind(a) = m . Let x = ansD . Then we have xax = x , ax = xa , and
(an − ax)m = 0 , which yield

(a− a2x)nm = (an − an+1x)m = (an − ax)m(1− ax)m = 0.
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Hence, a− a2x ∈ Rnil . Hence, a ∈ RD and aD = x . Moreover, ind(a) ≤ nm .

Inspired by [2, Theorem 3.1], we obtain a characterization for the n -strong Drazin invertibility in a ring,
which plays an important role in the sequel.

Theorem 3.2 Let n ∈ N . Then a ∈ RnsD if and only if a− an+1 ∈ Rnil .

Proof Suppose that a ∈ RnsD and x = ansD , i.e. xax = x , ax = xa , and an − ax ∈ Rnil . Then we deduce
that

an − a2n = (an − ax)(1− ax− an) ∈ Rnil,

which yields that

(a− an+1)n = (a− an+1)an−1(1− an)n−1 = (an − a2n)(1− an)n−1 ∈ Rnil.

Hence, a− an+1 ∈ Rnil .
On the contrary, since a − an+1 ∈ Rnil , we conclude that (an)2 − an = an−1(an+1 − a) ∈ Rnil . By

Lemma 2.2, there exists a monic polynomial θ(t) ∈ Z[t] such that θ(an) = θ(an)2 and an − θ(an) ∈ Rnil .
Take e = θ(an) . Then we have e = e2 , ea = ae and an − e ∈ Rnil . Hence, we obtain 1 + an − e ∈ R−1 .
Let x = (1 + an − e)−1an−1e . Next, we show that ansD = x by the definition of the n -strong Drazin inverse.
Obviously, ax = xa . Note that ane = (1 + an − e)e = e(1 + an − e) . Then, we obtain

xax = (1 + an − e)−1ane(1 + an − e)−1an−1e
= (1 + an − e)−1(1 + an − e)e(1 + an − e)−1an−1e
= (1 + an − e)−1an−1e
= x

and
an − ax = an − (1 + an − e)−1ane = an − e ∈ Rnil.

Therefore, a ∈ RnsD with ansD = x .

Remark 3.3 (1) Let A ∈ Cm×m (rank A = r > 0) have the Jordan form

A = P

[
D 0
0 N

]
P−1,

where D is invertible and N is nilpotent. Then, by Theorem 3.2 we have

A ∈ (Cm×m)nsD ⇐⇒ I −Dn ∈ (Cr×r)nil

⇐⇒ σ(A) ⊆ {0, 1, ε, ε2, · · · , εn−1},

where σ(A) denotes the spectrum of A and ε = cos 2π
n + isin 2π

n .
(2) We have the following special case,

a ∈ RnsD and n-ind(a) = 1 ⇐⇒ an = a2n.
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The necessity is obvious. In fact, from (an − aansD)1 = 0 it follows that an = aansD and consequently
a2n = aansDaansD = aansD = an . On the contrary, suppose that an = a2n . Let x = a2n−1 . Then, we have
xax = a2na2n−1 = ana2n−1 = a2nan−1 = a2n−1 = x . In addition, it is clear that ax = xa and an − ax = 0 .
Hence, we get a ∈ RnsD and ansD = x . Moreover, n-ind(a) = 1 .

Applying Theorem 3.2, we get some properties of the n -strong Drazin inverse in a ring.

Corollary 3.4 Let n, k ∈ N . If a ∈ RnsD , then ak ∈ RnsD and (ak)nsD = (ansD)k .

Proof Since a ∈ RnsD , by Theorem 3.2 we have a− an+1 ∈ Rnil , which yields

ak − (ak)n+1 = ak − (an+1)k = (a− an+1)

k−1∑
i=0

ani+k−1 ∈ Rnil.

Hence, we obtain ak ∈ RnsD . In view of Proposition 3.1 and [9, Theorem 2], one can see that (ak)nsD =

(ak)D = (aD)k = (ansD)k .

Corollary 3.5 Let n ∈ N . If a ∈ RnsD , then ansD ∈ RnsD and (ansD)nsD = a2ansD .

Proof Let x = ansD . Then we get xax = x , ax = xa , and an − ax ∈ Rnil . Hence,

x− xn+1 = xn+1(an − ax) ∈ Rnil.

Hence, by Theorem 3.2 we obtain x ∈ RnsD . From [9, Theorem 3], it follows that

xnsD = xD = (aD)D = a2aD = a2ansD.

Corollary 3.6 Let n ∈ N . Then,
(1) If a ∈ RsD , then a ∈ RnsD and ansD = asD = aD .
(2) If a ∈ RH , then a ∈ R2nsD and a2nsD = aH = aD .
(3) If a ∈ RnsD , then a ∈ R2nsD and a2nsD = ansD = aD .

Proof (1) Since a ∈ RsD , by Theorem 3.2 we have a− a2 ∈ Rnil , which gives

a− an+1 = a(1− an) = a(1− a)

n−1∑
i=0

ai = (a− a2)

n−1∑
i=0

ai ∈ Rnil.

Hence, a− an+1 ∈ Rnil , i.e. a ∈ RnsD . In addition, ansD = aD = asD .
(2) can be proved in the same way as the item (1).
(3) follows directly by the equality a− a2n+1 = (a− an+1)(1 + an) .

In terms of Theorem 3.2, we are now in the position to prove the extension of Cline’s formula for the
n -strong Drazin inverse when acd = dbd and dba = aca .
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Theorem 3.7 Let a, b, c, d ∈ R and n ∈ N . If acd = dbd and dba = aca , then

ac ∈ RnsD ⇐⇒ bd ∈ RnsD.

In this case, (bd)nsD = b((ac)nsD)2d and (ac)nsD = d((bd)nsD)3bac .

Proof It will suffice to prove the sufficiency, since the necessity can be proved similarly. From dba = aca , it
follows that (ac)i = (db)i−1ac for any i ∈ N . Now, we show that

(ac− (ac)n+1)m+1 = d(bd− (bd)n+1)m−1(b− (bd)nb)(ac− (ac)n+1)

by induction on positive integer m .
For m = 1 , we have

(ac− (ac)n+1)2 = (ac− (ac)n+1)(ac− (ac)n+1)
= ((ac)2 − (ac)n+2)(1− (ac)n)
= (dbac− (db)n+1ac)(1− (ac)n)
= (db− (db)n+1)(ac− (ac)n+1)
= d(b− (bd)nb)(ac− (ac)n+1).

Assume that the conclusion holds for positive integer m = l . Now, we check it for m = l + 1 as follows:

(ac− (ac)n+1)l+2 = (ac− (ac)n+1)l+1(ac− (ac)n+1)
= d(bd− (bd)n+1)l−1(b− (bd)nb)(ac− (ac)n+1)2

= d(bd− (bd)n+1)l−1(b− b(db)n)d(b− (bd)nb)(ac− (ac)n+1)
= d(bd− (bd)n+1)l(b− (bd)nb)(ac− (ac)n+1).

Note that bd ∈ RnsD , i.e. bd − (bd)n+1 ∈ Rnil . Hence, ac − (ac)n+1 ∈ Rnil , i.e. ac ∈ RnsD . By Proposition
3.1 and the formula of [23, Theorem 2.1], we obtain (ac)nsD = d((bd)nsD)3bac .

In Theorem 3.7, let d = a and c = b , then it is reduced as the following.

Corollary 3.8 Let a, b ∈ R and n ∈ N . Then,

ab ∈ RnsD ⇐⇒ ba ∈ RnsD.

In this case, (ba)nsD = b((ab)nsD)2a .

Corollary 3.9 Let a, b ∈ R and n, k ∈ N . If (ab)k ∈ RnsD , then (ba)k ∈ RnsD .

Proof Since a((ba)k−1b) = (ab)k ∈ RnsD , by Corollary 3.8 we deduce that (ba)k ∈ RnsD .

Under the same hypotheses acd = dbd and dba = aca , Jacobson’s lemma for the n -strong Drazin inverse
is investigated as follows.

Theorem 3.10 Let a, b, c, d ∈ R and n ∈ N . If acd = dbd and dba = aca , then

1− ac ∈ RnsD ⇐⇒ 1− bd ∈ RnsD.
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Proof Suppose that 1− ac ∈ RnsD . Then (1− ac)− (1− ac)n+1 ∈ Rnil . Now, by mathematical induction we
prove that

((1− bd)− (1− bd)n+1)m+1 = −b((1− ac)− (1− ac)n+1)md(1 +

n+1∑
i=1

(−1)i
(
n+ 1

i

)
(bd)i−1),

for any m ∈ N .

Assume that m = 1 . Since acd = dbd , we deduce that (db)id = (ac)id for any i ∈ N . Then we have

((1− bd)− (1− bd)n+1)2 = (bd+
n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i)(bd+

n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i)

= (bdbd+
n+1∑
i=1

(−1)i
(
n+1
i

)
b(db)id)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i−1)

= b(ac+
n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i)d(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i−1)

= −b((1− ac)− (1− ac)n+1)d(1 +
n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i−1).

Assume that the conclusion holds for positive integer m = l . Now, we verify it for m = l + 1 . One can
see that

((1− bd)− (1− bd)n+1)l+2

= ((1− bd)− (1− bd)n+1)l+1((1− bd)− (1− bd)n+1)

= b((1− ac)− (1− ac)n+1)ld(1 +
n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i−1)(bd+

n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i)

= b((1− ac)− (1− ac)n+1)l(dbd+
n+1∑
i=1

(−1)i
(
n+1
i

)
(db)id)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i−1)

= b((1− ac)− (1− ac)n+1)l(acd+
n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)id)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i−1)

= −b((1− ac)− (1− ac)n+1)l+1d(1 +
n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i−1).

Note that (1− ac)− (1− ac)n+1 ∈ Rnil . Then (1− bd)− (1− bd)n+1 ∈ Rnil , i.e. 1− bd ∈ RnsD .

Conversely, assume that 1 − bd ∈ RnsD . In order to prove 1 − ac ∈ RnsD , we will prove the following
equality

((1− ac)− (1− ac)n+1)m+2 = d((1− bd)− (1− bd)n+1)mbac(1 +

n+1∑
i=1

(−1)i
(
n+ 1

i

)
(ac)i−1)2,

for any m ∈ N .

For the case m = 1 . Note that dba = aca . Then we obtain a(ca)i = (db)ia , for any i ∈ N . Hence, we
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deduce that

((1− ac)− (1− ac)n+1)3 = −(ac+
n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i)(ac+

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i)2

= −((ac)3 +
n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i+2)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= −(a(ca)2c+
n+1∑
i=1

(−1)i
(
n+1
i

)
a(ca)i+1c)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= −((db)2ac+
n+1∑
i=1

(−1)i
(
n+1
i

)
(db)i+1ac)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= −(d(bd)bac+
n+1∑
i=1

(−1)i
(
n+1
i

)
d(bd)ibac)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= −d(bd+
n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i)bac(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= d((1− bd)− (1− bd)n+1)bac(1 +
n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2.

Assume that the conclusion holds for positive integer m = l . Then, for the case m = l + 1 , we get

((1− ac)− (1− ac)n+1)l+3

= −d((1− bd)− (1− bd)n+1)lbac(1 +
n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2(ac+

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i)

= −d((1− bd)− (1− bd)n+1)lb(ac)2(1 +
n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= −d((1− bd)− (1− bd)n+1)l(bacac+
n+1∑
i=1

(−1)i
(
n+1
i

)
ba(ca)ic)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= −d((1− bd)− (1− bd)n+1)l(bdbac+
n+1∑
i=1

(−1)i
(
n+1
i

)
b(db)iac)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= −d((1− bd)− (1− bd)n+1)l(bdbac+
n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)ibac)(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= −d((1− bd)− (1− bd)n+1)l(bd+
n+1∑
i=1

(−1)i
(
n+1
i

)
(bd)i)bac(1 +

n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2

= d((1− bd)− (1− bd)n+1)l+1bac(1 +
n+1∑
i=1

(−1)i
(
n+1
i

)
(ac)i−1)2.

Observe that (1− bd)− (1− bd)n+1 ∈ Rnil . Hence, (1− ac)− (1− ac)n+1 ∈ Rnil , as required.

Corollary 3.11 Let a, b ∈ R and n ∈ N . Then,

1− ab ∈ RnsD ⇐⇒ 1− ba ∈ RnsD.

4. The n-strong Drazin invertibility of the sum

Let p ∈ R be an idempotent (p2 = p). Then we can represent element a ∈ R as

a = pap+ pa(1− p) + (1− p)ap+ (1− p)a(1− p)

or in the matrix form

a =

[
a1 a3
a4 a2

]
p

,
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where a1 = pap, a2 = (1− p)a(1− p), a3 = pa(1− p) and a4 = (1− p)ap . For

x =

[
x1 x3

x4 x2

]
p

and y =

[
y1 y3
y4 y2

]
p

,

one can use usual matrix rules to obtain matrix forms of the sum x+ y and the product xy .
Remark that if a ∈ RnsD , then we have the following matrix representations relative to p = aansD :

a =

[
a1 0
0 a2

]
p

and ansD =

[
a−1
1 0
0 0

]
p

=

[
ansD1 0
0 0

]
p

,

where a1 ∈ (pRp)−1 ∩ (pRp)nsD and a2 ∈ ((1− p)R(1− p))nil .

In this section, our purpose is to investigate the n -strong Drazin invertibility of the sum of two elements
in a ring. We start will a crucial auxiliary lemma.

Lemma 4.1 Let a, b ∈ R be such that ab = 0 . Then,

a, b ∈ Rnil ⇐⇒ a+ b ∈ Rnil.

Proof Since ab = 0 , we have

(a+ b)m = am + bam−1 + b2am−2 + · · ·+ bm

for any m ∈ N .
Suppose that a, b ∈ Rnil . Choose k1 ∈ N satisfying ak1 = bk1 = 0 . Then, we have (a+ b)2k1 = 0 , which

gives a+ b ∈ Rnil .
On the contrary, assume that (a+ b)k2 = 0 , for some k2 ∈ N . Then,

ak2 + bak2−1 + b2ak2−2 + · · ·+ bk2 = 0.

Multiplying the preceding equality by a from the left side (resp. by b from the right side), we obtain ak2+1 = 0

(resp. bk2+1 = 0). Hence, we have a, b ∈ Rnil .

Now, we state the relationship between the n -strong Drazin invertibility of the elements a, b and that of
the sum a+ b , under the condition ab = 0 .

Theorem 4.2 Let n ∈ N and a, b ∈ R be such that ab = 0 . Then,

a, b ∈ RnsD ⇐⇒ a+ b ∈ RnsD.

Proof By the hypothesis ab = 0 , we have

x := (a+ b)− (a+ b)n+1

= (a− an+1) + (b− bn+1)− (ban + b2an−1 + · · ·+ bna)
:= x1 + x2 − x3.

Note that x1(x2 − x3) = 0 , x3x2 = 0 and x2
3 = 0 . In view of Lemma 4.1, we get
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x ∈ Rnil ⇐⇒ x1 ∈ Rnil and x2 − x3 ∈ Rnil

⇐⇒ x1 ∈ Rnil and x2 ∈ Rnil.

Then, by Theorem 3.2 we obtain a, b ∈ RnsD if and only if a+ b ∈ RnsD .

Remark 4.3 (1) For the Drazin invertibility, we have

a, b ∈ RD ⇐⇒ a+ b ∈ RD,

under the condition ab = ba = 0 . In fact, the necessity can be seen from [9, Corollary 1]. Now, suppose
that a + b ∈ RD . Then (a + b)m = (a + b)m+1R ∩ R(a + b)m+1 , for some m ∈ N . Hence, we have
am + bm = (am+1 + bm+1)u = v(am+1 + bm+1) , for some u, v ∈ R . Multiplying the previous equality by a from
the left side and right side respectively, we have am+1 = am+2u = vam+2 . Hence, a ∈ RD . Similarly, we can
obtain b ∈ RD .

(2) By [3, Theorem 2.1], one can see that

a, b ∈ RD =⇒ a+ b ∈ RD,

under the condition ab = 0 . Now, we consider its converse. Assume that a + b ∈ RD . Then, we can obtain
that a is right π -regular and b is left π -regular. Is a left π -regular? Is b right π -regular?

Next, we will consider the n -strong Drazin invertibility of the sum a + b under another new condition
a2b = aba and ab2 = bab , which is weaker than ab = ba . Indeed, it is obvious that ab = ba imply a2b = aba

and ab2 = bab . However, the converse does not hold in general, which can be seen from the following example:

Example 4.4 Let R = M2(Z2) , where Z2 denote the residue class ring modulo 2 . Take a = [ 1 1
0 0 ] and

b = [ 1 0
1 0 ] . Clearly, a2b = aba and ab2 = bab . However, ab ̸= ba .

In order to prove our main result, we need the following lemmas.

Lemma 4.5 Let a, b ∈ Rnil . If a2b = aba and ab2 = bab , then a+ b ∈ Rnil .

Proof By the hypothesis a, b ∈ Rnil , there exists m ∈ N such that am = 0 and bm = 0 . Since a2b = aba and
ab2 = bab , we can see that each of the monomials in the expansion of (a+ b)3m is either ak1bk2ak3 or bl1al2bl3 ,
where k1 + k2 + k3 = l1 + l2 + l3 = 3m . Hence, (a+ b)3m = 0 , which means a+ b ∈ Rnil .

Lemma 4.6 Let x ∈ R and p2 = p ∈ R . If x has the representation x =

[
a c
0 b

]
p

, then

a ∈ (pRp)nil and b ∈ ((1− p)R(1− p))nil ⇐⇒ x ∈ Rnil.

Proof Assume that a ∈ (pRp)nil and b ∈ ((1 − p)R(1 − p))nil . By a simple computation, we obtain

xk =

[
ak fk
0 bk

]
p

, for any k ∈ N , where fk =
k−1∑
i=0

aicbk−i−1 . Let at1 = 0 and bt2 = 0 , where t1, t2 ∈ N .

Then, we have xt1+t2 = 0 , i.e. x ∈ Rnil . Conversely, it is clear.
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Lemma 4.7 Let n ∈ N and p2 = p, x, y ∈ R . If x and y have the representations

x =

[
a c
0 b

]
p

and y =

[
b 0
c a

]
1−p

,

then
a ∈ (pRp)nsD and b ∈ ((1− p)R(1− p))nsD ⇐⇒ x ∈ RnsD (resp. y ∈ RnsD).

Proof Observe that

x− xn+1 =

[
a c
0 b

]
p

−
[

a c
0 b

]n+1

p

=

[
a− an+1 ∗

0 b− bn+1

]
p

.

By Lemma 4.6, it follows that

a− an+1 ∈ (pRp)nil and b− bn+1 ∈ ((1− p)R(1− p))nil ⇐⇒ x− xn+1 ∈ Rnil.

Using Theorem 3.2, we complete the proof.

Lemma 4.8 Let n ∈ N and a, b ∈ RnsD be such that a2b = aba . Then ab ∈ RnsD .

Proof Since a2b = aba , by induction we can obtain (ab)m = ambm for any m ∈ N . Applying Theorem 3.2,
we only need to prove

ab− (ab)n+1 = (a− an+1)b+ an+1(b− bn+1) := x+ y ∈ Rnil.

Note that
yx = an+1(b− bn+1)(a− an+1)b

= (an(ab)− (ab)n+1)(a− an+1)b
= (a− an+1)(an(ab)− (ab)n+1)b
= an+1(a− an+1)b(b− bn+1)
= (a− an+1)ban+1(b− bn+1)
= xy.

In addition, we can check that xm = (a− an+1)mbm and ym = (an+1)m(b− bn+1)m for any m ∈ N . Note that
a − an+1 ∈ Rnil and b − bn+1 ∈ Rnil , which imply x ∈ Rnil and y ∈ Rnil . Hence, x + y ∈ Rnil by Lemma
2.1(2).

Remark 4.9 In view of Lemma 4.8 and [26, Lemma 2], one can see that if n ∈ N and a, b ∈ RnsD be such
that ab = ba , then ab ∈ RnsD and (ab)nsD = bnsDansD .

Now, we state our main result in this section as follows.

Theorem 4.10 Let n ∈ N and a, b ∈ RnsD be such that a2b = aba and ab2 = bab . Then,

1 + ansDb ∈ RnsD ⇐⇒ a+ b ∈ RnsD.
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Proof We consider the matrix representations of a and b relative to the idempotent p = aansD :

a =

[
a1 0
0 a2

]
p

and b =

[
b1 b3
b4 b2

]
p

,

where a1 ∈ (pRp)−1 ∩ (pRp)nsD and a2 ∈ ((1− p)R(1− p))nil .
The condition a2b = aba expressed in matrix form yields[

a21b1 a21b3
a22b4 a22b2

]
p

= a2b = aba =

[
a1b1a1 a1b3a2
a2b4a1 a2b2a2

]
p

.

Thus, we have a21b3 = a1b3a2 , i.e. b3 = a−1
1 b3a2 , which implies b3 = a−m

1 b3a
m
2 for any m ∈ N . Since

a2 ∈ ((1− p)R(1− p))nil , we have b3 = 0 . Moreover, we can get a1b1 = b1a1 and a22b2 = a2b2a2 . Similarly, by
ab2 = bab we obtain a2b

2
2 = b2a2b2 . Therefore, we have

b =

[
b1 0
b4 b2

]
p

and a+ b =

[
a1 + b1 0

b4 a2 + b2

]
p

.

Now, we prove that a2 + b2 ∈ ((1 − p)R(1 − p))nsD . Since b ∈ RnsD , by Lemma 4.7 we have
b2 ∈ ((1 − p)R(1 − p))nsD . Let p′ = b2b

nsD
2 . We consider the matrix representations of b2 and a2 relative to

the idempotent p′ :

b2 =

[
b′1 0
0 b′2

]
p′

and a2 =

[
a′1 a′3
a′4 a′2

]
p′
,

where b′1 ∈ (p′Rp′)−1∩ (p′Rp′)nsD and b′2 ∈ ((1−p′)R(1−p′))nil . Note that a22b2 = a2b2a2 and a2b
2
2 = b2a2b2 .

Then, we can obtain that a′4 = 0 , a′1b
′
1 = b′1a

′
1 , a′2(b

′
2)

2 = b′2a
′
2b

′
2 and (a′2)

2b′2 = a′2b
′
2a

′
2 . Hence,

a2 =

[
a′1 a′3
0 a′2

]
p′

and a2 + b2 =

[
a′1 + b′1 a′3

0 a′2 + b′2

]
p′
.

In order to show that a′1 + b′1 = (p′ + a′1(b
′
1)

−1)b′1 ∈ (p′Rp′)nsD , by Lemma 4.8 we only need to prove
p′ + a′1(b

′
1)

−1 ∈ (p′Rp′)nsD . Since a2 ∈ ((1 − p)R(1 − p))nil , by Lemma 4.6 we obtain a′1 ∈ (p′Rp′)nil , which
yields

(p′ + a′1(b
′
1)

−1)− (p′ + a′1(b
′
1)

−1)n+1

= a′1(b
′
1)

−1(p′ −
n+1∑
i=1

(
n+1
i

)
(a′1)

i−1(b′1)
1−i) ∈ (p′Rp′)nil.

Hence, p′ + a′1(b
′
1)

−1 ∈ (p′Rp′)nsD . Applying Lemma 4.5 to the nilpotent elements a′2 and b′2 , we conclude
that a′2 + b′2 ∈ ((1− p′)R(1− p′))nil , which implies a′2 + b′2 ∈ ((1− p′)R(1− p′))nsD . In view of Lemma 4.7, we
obtain a2 + b2 ∈ ((1− p)R(1− p))nsD . Then, by Lemma 4.7 again, it follows that a+ b ∈ RnsD is equivalent
to a1 + b1 ∈ (pRp)nsD .

Note that

1 + ansDb =

[
p+ a−1

1 b1 0
0 1− p

]
p

.
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Since 1− p ∈ ((1− p)R(1− p))nsD , then 1 + ansDb ∈ RnsD is equivalent to p+ a−1
1 b1 ∈ (pRp)nsD . Note that

a1 ∈ (pRp)nsD . Applying Corollary 3.5 we obtain a−1
1 = ansD1 ∈ (pRp)nsD . Hence, a1 + b1 = a1(p+ a−1

1 b1) ∈
(pRp)nsD is identical to p + a−1

1 b1 ∈ (pRp)nsD by Lemma 4.8. Hence, we conclude that a + b ∈ RnsD if and
only if 1 + ansDb ∈ RnsD .

Remark 4.11 In the proof of the necessity of Theorem 4.10, the condition ab2 = bab was not used. However,
if we drop it, then the sufficiency is not true in general, which will be shown in the next example:

Example 4.12 Let n = 1 ∈ N and R = M3(C) . Choose

a =

 0 0 0
1 0 0
0 0 0

 and b =

 0 0 1
0 0 0
0 1 0

 .

Then, we can check that a2b = aba , a2 = 0 and b3 = 0 . Hence, a, b, 1 + asDb = 1 ∈ RsD . Note that the
eigenvalues of (a + b) − (a + b)2 are 0 ,

√
3i and −

√
3i . Hence, (a + b) − (a + b)2 /∈ Rnil , which yields that

a + b /∈ RsD . In addition, this example also illustrates that the condition ab2 = bab of Lemma 4.5 cannot be
dropped.

The following corollary can be directly derived from Theorem 4.10.

Corollary 4.13 Let a, b ∈ RnsD be such that ab = ba . Then,

a+ b ∈ RnsD ⇐⇒ 1 + ansDb ∈ RnsD.

5. The n-strong Drazin invertibility of the matrix
In this section, as applications for our additive results of Section 4, we obtain some equivalent conditions for the

n -strong Drazin invertibility of the matrix M =

[
a b
c d

]
over a ring. For the convenience of expressions,

we assume that
k∑

i=j

s(i) = 0 if k < j , where s(i) is a function on i , and a0 = 1 for a ∈ R . For any nonnegative

integer k , by ⌊k/2⌋ we denote the integer part of k/2 .

Firstly, we investigate the n -strong Drazin invertibility of some special antitriangular matrices over a
ring.

Proposition 5.1 Let n ∈ N and M =

[
a b
c 0

]
∈ M2(R) be such that ab = b , a = a2 . Then,

(1) bc ∈ Rnil if and only if M ∈ M2(R)sD .
(2) If bc ∈ Rnil , then M ∈ M2(R)nsD .

Proof (1) Since ab = b and a = a2 , we have

M −M2 =

[
−bc 0
c− ca −cb

]
.
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Hence, M −M2 ∈ M2(R)nil is identical to bc ∈ Rnil . From Theorem 3.2, it follows that bc ∈ Rnil if and only
if M ∈ M2(R)sD .

(2) This follows from item (1) and Corollary 3.6(1) directly.

Remark 5.2 (1) In Proposition 5.1(1), if we change the condition “bc ∈ Rnil” to “bc ∈ RsD” , then the

conclusion does not hold in general. For example, take M =

[
1 1
1 0

]
∈ M2(C) . Obviously, 1 ∈ CsD .

However, M /∈ M2(C)sD , since M −M2 /∈ M2(C)nil .
(2) The converse of Proposition 5.1(2) is not true for n ≥ 2 in general, which will be illustrated by the

following example:

Example 5.3 Let R = M2(Z3) . Choose a = b = 1 ∈ R and c =

[
2 2
0 0

]
∈ R . Then, it is easy to see

bc /∈ Rnil . However, M =

[
a b
c 0

]
∈ M2(R)2sD , since we can check that (M −M3)2 = 0 .

Theorem 5.4 Let n ∈ N and a, b ∈ R be such that aba = 0 . Then,

M =

[
a a
b 0

]
∈ M2(R)nsD ⇐⇒ a ∈ RnsD ⇐⇒ M ′ =

[
a b
a 0

]
∈ M2(R)nsD.

Proof We will only prove that a ∈ RnsD is equivalent to M ∈ M2(R)nsD , since the case for M ′ is similar.
Suppose that n = 1 . Then, by the condition aba = 0 we have

X := M −M2 =

[
a− a2 − ab a− a2

b− ba −ba

]
and

Xm+1 =

[
(a− a2)m(a− a2 − ab+ b) (a− a2)m+1

(b− ba)(a− a2)m−1(a− a2 − ab+ b) (b− ba)(a− a2)m

]
for any m ≥ 2 . Hence, X ∈ M2(R)nil if and only if a − a2 ∈ Rnil . Applying Theorem 3.2, we claim that
a ∈ RsD is equivalent to M ∈ M2(R)sD .

The result for n ≥ 2 follows analogously.

Next, we present an existence criterion for the n -strong Drazin inverse of the anti-triangular
[

a 1
b 0

]
,

which will be used later.

Theorem 5.5 Let n ∈ N and M =

[
a 1
b 0

]
∈ M2(R) be such that ab = 0 . Then,

a ∈ RnsD and N =

[
n11 n12

n21 n22

]
∈ M2(R)nil ⇐⇒ M ∈ M2(R)nsD,

where
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n11 = n22 = 1−(−1)n

2 (b⌊
n+1
2 ⌋)2 + (1− 1+(−1)n

2 b⌊
n
2 ⌋)(b− 1+(−1)n

2 b⌊
n+2
2 ⌋) ,

n12 = ((−1)n − 1)b⌊
n+1
2 ⌋ ,

n21 = ((−1)n − 1)b⌊
n+1
2 ⌋+1 .

Proof Since ab = 0 , then by induction we have

X := M −Mn+1

=

[
(a− an+1)− (t1 +

1−(−1)n

2 b⌊
n+1
2 ⌋) (1− a2⌊

n
2 ⌋+ 1−(−1)n

2 )− (t3 +
1+(−1)n

2 b⌊
n
2 ⌋)

b− (t2 +
1+(−1)n

2 b⌊
n+2
2 ⌋) −(t1 +

1−(−1)n

2 b⌊
n+1
2 ⌋)

]
,

where

t1 =
⌊n

2 ⌋∑
i=1

bia2(⌊
n+1
2 ⌋−i)+

1−(−1)n+1

2 ,

t2 =
⌊n+1

2 ⌋∑
i=1

bia2(⌊
n+1
2 ⌋−i)+

3−(−1)n+1

2 ,

t3 =
⌊n−1

2 ⌋∑
i=1

bia2(⌊
n
2 ⌋−i)+

1−(−1)n

2 .

By a computation, we obtain X2 =

[
u11 u12

u21 u22

]
, where

u11 = (a− an+1)2 − (t1 +
1−(−1)n

2 b⌊
n+1
2 ⌋)(a− an+1) + 1−(−1)n

2 b⌊
n+1
2 ⌋(t1 +

1−(−1)n

2 b⌊
n+1
2 ⌋)

+(1− 1+(−1)n

2 b⌊
n
2 ⌋)(b− (t2 +

1+(−1)n

2 b⌊
n+2
2 ⌋)),

u12 = (a− an+1)(1− a2⌊
n
2 ⌋+ 1−(−1)n

2 )− (t1 +
1−(−1)n

2 b⌊
n+1
2 ⌋)(1− a2⌊

n
2 ⌋+ 1−(−1)n

2 )

−(t1 +
1−(−1)n

2 b⌊
n+1
2 ⌋) + 1+(−1)n

2 b⌊
n
2 ⌋(t1 +

1−(−1)n

2 b⌊
n+1
2 ⌋) + 1−(−1)n

2 b⌊
n+1
2 ⌋(t3 +

1+(−1)n

2 b⌊
n
2 ⌋),

u21 = b(a− an+1)− b(t1 +
1−(−1)n

2 b⌊
n+1
2 ⌋)− (t2 +

1+(−1)n

2 b⌊
n+2
2 ⌋)(a− an+1)

+ 1+(−1)n

2 b⌊
n+2
2 ⌋(t1 +

1−(−1)n

2 b⌊
n+1
2 ⌋)− 1−(−1)n

2 b⌊
n+1
2 ⌋(b− (t2 +

1+(−1)n

2 b⌊
n+2
2 ⌋)),

u22 = b(1− a2⌊
n
2 ⌋+ 1−(−1)n

2 )− b(t3 +
1+(−1)n

2 b⌊
n
2 ⌋)− (t2 +

1+(−1)n

2 b⌊
n+2
2 ⌋)(1− a2⌊

n
2 ⌋+ 1−(−1)n

2 )

+ 1+(−1)n

2 b⌊
n+2
2 ⌋(t3 +

1+(−1)n

2 b⌊
n
2 ⌋) + 1−(−1)n

2 b⌊
n+1
2 ⌋(t1 +

1−(−1)n

2 b⌊
n+1
2 ⌋).

Consider the following splitting:

X2 =

[
(a− an+1)2 p12

0 0

]
+

[
q11 q12
q21 q22

]
+

[
n11 n12

n21 n22

]
:= P +Q+N,

where

p12 = (a− an+1)(1− a2⌊
n
2 ⌋+ 1−(−1)n

2 ) ,

q11 = −(t1 +
1−(−1)n

2 b⌊
n+1
2 ⌋)(a− an+1) + 1−(−1)n

2 b⌊
n+1
2 ⌋t1 − (1− 1+(−1)n

2 b⌊
n
2 ⌋)t2 ,

q12 = −2t1 + (t1 +
1−(−1)n

2 b⌊
n+1
2 ⌋)a2⌊

n
2 ⌋+ 1−(−1)n

2 + 1+(−1)n

2 b⌊
n
2 ⌋t1 +

1−(−1)n

2 b⌊
n+1
2 ⌋t3 ,

q21 = b(a− an+1)− bt1 − (t2 +
1+(−1)n

2 b⌊
n+2
2 ⌋)(a− an+1) + 1+(−1)n

2 b⌊
n+2
2 ⌋t1 +

1−(−1)n

2 b⌊
n+1
2 ⌋t2 ,
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q22 = −bt3 − t2 + (t2 +
1+(−1)n

2 b⌊
n+2
2 ⌋ − b)a2⌊

n
2 ⌋+ 1−(−1)n

2 + 1+(−1)n

2 b⌊
n+2
2 ⌋t3 +

1−(−1)n

2 b⌊
n+1
2 ⌋t1 .

Note that P (Q+N) = 0 , QN = 0 and Q2 = 0 . In view of Lemma 4.1, we have

X ∈ M2(R)nil ⇐⇒ X2 ∈ M2(R)nil

⇐⇒ P ∈ M2(R)nil and Q+N ∈ M2(R)nil

⇐⇒ P ∈ M2(R)nil and N ∈ M2(R)nil

⇐⇒ a− an+1 ∈ Rnil and N ∈ M2(R)nil.

In view of Theorem 3.2, we can conclude that a ∈ RnsD and N ∈ M2(R)nil if and only if M ∈ M2(R)nsD .

Now, we state a special case of Theorem 5.5.

Corollary 5.6 Let n = 2k (k ∈ N) and let a, b ∈ R be such that ab = 0 . Then,

a ∈ RnsD and b ∈ RksD ⇐⇒ M =

[
a 1
b 0

]
∈ M2(R)nsD.

Proof Let n = 2k in Theorem 5.5, we have N =

[
b(1− bk)2 0

0 b(1− bk)2

]
. Then, one can see that

N ∈ M2(R)nil ⇔ b(1− bk)2 ∈ Rnil ⇔ (b(1− bk))2 ∈ Rnil ⇔ b− bk+1 ∈ Rnil.

Hence, we have that M ∈ M2(R)nsD is equivalent to a ∈ RnsD and b ∈ RksD .

Remark 5.7 By Corollary 5.6 and Corollary 3.6(3), we can see that

M =

[
a 1
b 0

]
∈ M2(R)nsD =⇒ a ∈ RnsD and b ∈ RnsD,

under the condition ab = 0 and n is one even number. However, the converse does not hold in general, which
can be seen in the next example:

Example 5.8 Let R = M2(C) and n = 2 ∈ N . Setting M =

[
0 1
b 0

]
∈ M2(R) , where b =[

0 1
1 0

]
∈ R . Obviously, b − b3 = 0 , which yields b ∈ R2sD . However, we can check that M − M3 /∈

M2(R)nil , so we have M /∈ M2(R)2sD .

Following the same strategy as in the proof of Theorem 5.5, we derive the equivalent condition for the
n -strong Drazin invertibility of the transpose of the matrix M as follows:

Theorem 5.9 Let n ∈ N and M ′ =

[
a b
1 0

]
∈ M2(R) be such that ab = 0 . Then,

a ∈ RnsD and N ′ =

[
n11 n21

n12 n22

]
∈ M2(R)nil ⇐⇒ M ′ ∈ M2(R)nsD,

where n11 , n12 , n21 , and n22 are defined as in Theorem 5.5.
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Combining Theorem 5.5 and Theorem 5.9, together with the equality (N ′)m = (Nm)′ for any m ∈ N ,
we obtain the relationship between the n -strong Drazin invertibility of the matrix M and that of its transpose
M ′ .

Corollary 5.10 Let n ∈ N and let a, b ∈ R be such that ab = 0 . Then,

M =

[
a 1
b 0

]
∈ M2(R)nsD ⇐⇒ M ′ =

[
a b
1 0

]
∈ M2(R)nsD.

In the rest of this section, applying the previous results we obtain some characterizations for the n -strong

Drazin invertibility of the matrix
[

a b
c d

]
, under some conditions.

Theorem 5.11 Let n ∈ N and M =

[
a b
c d

]
∈ M2(R) be such that abc = 0 and bd = 0 . Then,

a, d ∈ RnsD and T =

[
t11 t12
t21 t22

]
∈ M2(R)nil ⇐⇒ M ∈ M2(R)nsD,

where
t11 = t22 = 1−(−1)n

2 ((bc)⌊
n+1
2 ⌋)2 + (1− 1+(−1)n

2 (bc)⌊
n
2 ⌋)(bc− 1+(−1)n

2 (bc)⌊
n+2
2 ⌋) ,

t12 = ((−1)n − 1)(bc)⌊
n+1
2 ⌋+1 ,

t21 = ((−1)n − 1)(bc)⌊
n+1
2 ⌋ .

Proof We write M = P +Q , where

P =

[
a b
c 0

]
and Q =

[
0 0
0 d

]
.

The condition bd = 0 ensures PQ = 0 . Note that Q ∈ M2(R)nsD if and only if d ∈ RnsD . In view of Theorem
4.2, we obtain M ∈ M2(R)nsD is equivalent to P ∈ M2(R)nsD and d ∈ RnsD .

Since

P =

[
a b
c 0

]
=

[
1 0
0 c

] [
a b
1 0

]
,

by Corollary 3.8 we have

P ∈ M2(R)nsD ⇐⇒ P ′ :=

[
a b
1 0

] [
1 0
0 c

]
=

[
a bc
1 0

]
∈ M2(R)nsD.

Since abc = 0 , by Theorem 5.9 we obtain

a ∈ RnsD and T =

[
t11 t12
t21 t22

]
∈ M2(R)nil ⇐⇒ P ′ ∈ M2(R)nsD,

as required.

Now, we can derive some special cases of Theorem 5.11.
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Corollary 5.12 Let n = 2k (k ∈ N) and M =

[
a b
c d

]
∈ M2(R) be such that abc = 0 and bd = 0 .

Then,
a, d ∈ RnsD and bc ∈ RksD ⇐⇒ M ∈ M2(R)nsD.

Let k = 1 in Corollary 5.12, we have

Corollary 5.13 Let M =

[
a b
c d

]
∈ M2(R) be such that abc = 0 and bd = 0 . Then,

a, d ∈ RH and bc ∈ RsD ⇐⇒ M ∈ M2(R)H .

Corollary 5.14 Let n ∈ N and M =

[
a b
c d

]
∈ M2(R) be such that abc = 0 , bd = 0 and bc = bca .

Then,
a, d ∈ RnsD ⇐⇒ M ∈ M2(R)nsD.

Proof Using the condition abc = 0 and bc = bca , we have T 2 = 0 , where T is defined as in Theorem 5.11.

Remark 5.15 Let n ∈ N and a, b, c, d ∈ R be such that abc = 0 and bd = 0 . Then

M =

[
a b
c d

]
∈ M2(R)nsD =⇒ M ′ =

[
a c
b d

]
∈ M2(R)nsD

does not hold in general, even if d = 0 . For example:

Example 5.16 Let R = M2(Z2) and n = 1 ∈ N . Choose M =

[
a b
c 0

]
∈ M2(R) , where

a =

[
1 1
0 0

]
, b =

[
1 0
1 0

]
and c =

[
0 1
1 1

]
.

Then, we can check that (M − M2)2 = 0 and M ′ − (M ′)2 /∈ M2(R)nil . Hence, M ∈ M2(R)sD . However,
M ′ /∈ M2(R)sD .

Similar to the proof of Lemma 4.7 and using the representations of [11, Theorem 1], we can obtain the
following lemma.

Lemma 5.17 Let n ∈ N and M =

[
a b
0 d

]
∈ M2(R) . Then

a ∈ RnsD and d ∈ RnsD ⇐⇒ M ∈ M2(R)nsD.

In this case,

MnsD =

[
ansD z
0 dnsD

]
,

where

z =

ind(d)−1∑
i=0

(ansD)i+2bdi(1− ddnsD) +

ind(a)−1∑
i=0

(1− aansD)aib(dnsD)i+2 − ansDbdnsD.
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Applying Lemma 5.17, we may now state the following result.

Theorem 5.18 Let n ∈ N and M =

[
a b
c d

]
∈ M2(R) be such that ca = 0 and cb = 0 . Then,

a, d ∈ RnsD ⇐⇒ M ∈ M2(R)nsD.

Proof The matrix M can be split as

M =

[
0 0
c 0

]
+

[
a b
0 d

]
:= P +Q.

The conditions ca = 0 and cb = 0 imply PQ = 0 . Note that P 2 = 0 . By Theorem 4.2 and Lemma 5.17, we
conclude that a, d ∈ RnsD if and only if M ∈ M2(R)nsD .

The next theorem presents new conditions under which we give a characterization for the n -strong Drazin
invertibility of the matrix M over a ring.

Theorem 5.19 Let n ∈ N and M =

[
a b
c d

]
∈ M2(R) be such that bc = cb = 0 and ca = dc . Then,

a, d ∈ RnsD ⇐⇒ M ∈ M2(R)nsD.

Proof Suppose that a, d ∈ RnsD . Now, we consider the following splitting

M =

[
a b
0 d

]
+

[
0 0
c 0

]
:= P +Q.

The conditions bc = cb = 0 and ca = dc imply PQ = QP . In view of Lemma 5.17, we deduce that
P ∈ M2(R)nsD and

1 + PnsDQ =

[
1 + zc 0
dnsDc 1

]
,

where z is defined as in Lemma 5.17. Since ca = dc , by [10, Theorem 2] we obtain

cansD = caD = dDc = dnsDc.

Hence, for any m ∈ N , we have
b(dnsD)mc = bc(ansD)m = 0,

and
bdm(1− ddnsD)c = bdmc− bdm+1dnsDc = bcam − bcam+1ansD = 0.

In addition, ansDbdnsDc = ansDbcansD = 0 . Hence, zc = 0 . Hence, 1 + PnsDQ ∈ M2(R)nsD . Applying
Corollary 4.13, we deduce that M ∈ M2(R)nsD .

Conversely, suppose that M ∈ M2(R)nsD , i.e. X := M − Mn+1 ∈ M2(R)nil . By induction, we can
obtain

X =

 a− an+1 b−
n∑

i=0

an−ibdi

c− (n+ 1)dnc d− dn+1

 .
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By a computation, we have

Xm =

[
(a− an+1)m ∗

∗ (d− dn+1)m

]
,

for any m ∈ N . Therefore, we conclude that a − an+1 ∈ Rnil and d − dn+1 ∈ Rnil , which yield a, d ∈ RnsD ,
as required.
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