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Abstract: We study the minimal free resolution of the tangent cone of Gorenstein monomial curves in affine 4-space.
We give the explicit minimal free resolution of the tangent cone of noncomplete intersection Gorenstein monomial curve
whose tangent cone has five minimal generators and show that the possible Betti sequences are (1,5,6,2) and (1,5,5,1).

Moreover, we compute the Hilbert function of the tangent cone of these families as a result.
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1. Introduction

The minimal free resolution is a central topic in commutative algebra and is a very useful tool for extracting
information about modules. Many algebraic invariants of the module such as Hilbert function and Betti numbers
can be deduced from its minimal free resolution. When the module is associated to a geometric object, these
invariants give useful geometric information about it. Since it is possible to calculate the Hilbert function
in terms of the graded Betti numbers, free resolutions play an important role in the theory of Hilbert series.
Although the Hilbert function of a standard graded algebra over a field k is well known in the Cohen-Macaulay
case, in general, very little is known in local algebra. The problem which is due to M.E. Rossi [10] asks whether
the Hilbert function of a Gorenstein local ring of dimension one is nondecreasing. Recently, it has been shown
that there are many families of monomial curves giving negative answer to this problem [9]. However, it is still
open for Gorenstein local rings associated to monomial curves in affine d—space for 3 < d < 10 and our main

aim is to understand the Hilbert function when d = 4.

Let R be the polynomial ring k[x1,...,24] over an arbitrary field k. A monomial affine curve C has a
parametrization

1 =1t", xo =12, ..., ;g =1t" (1.1)

where ni,na,...,ng are positive integers with ged(nq,ne,...,ng) = 1 and ni,n9,...,n4 is a minimal set of

generators for the numerical semigroup
d o
S =< ny,ng,...,ng >={n|n=>73,_,an; a;’s are nonnegative integers}.

The semigroup ring k[t™,...,t"4] of S is isomorphic to the coordinate ring k[z1,...,z4]/I(C) and
the coordinate ring G = grp, (k[[t",...,t"]]) of the tangent cone of a monomial curve C at the origin is

isomorphic to the ring k[z1,...,24]/I(C).. Here, I(C), is generated by the polynomials f,, the homogeneous
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summand of f of the least degree, for f in I(C) where I(C) is the defining ideal of C'. A monomial
curve given by the parametrization in (1.1) is called a Gorenstein monomial curve, if the associated local ring
E[[t",t"2, ..., t"]] is Gorenstein. Kk[[t™,t"2,...,t"4]] is Gorenstein if and only if the corresponding numerical
semigroup S =< ny,ng,...,ng > is symmetric [8].

Let S =< nj,n9,n3,ng > be a 4-generated numerical semigroup. If S is symmetric and complete
intersection, then the Betti sequence of the corresponding semigroup ring is (1,3,3,1), see [11]. Barucci,
Froberg and Sahin [3] described the minimal free resolution of the semigroup ring of S, when S is symmetric
and not complete intersection and showed that the Betti sequence is (1,5,5,1). When S is 4-generated symmetric
and noncomplete intersection semigroup, the minimal free resolution and the list of possible Betti sequences of
G = grp (E[[t™,t"2,¢"3,¢™4]]) is still unknown [11]. For pseudosymmetric numerical semigroups, see [12, 13].
If S and its tangent cone have the same Betti sequence, then S is of homogeneous type. For a homogeneous
type semigroup, the Betti sequence of its Cohen-Macaulay tangent cone can be obtained from a minimal free
resolution of its semigroup ring. For details, see [7]. In this article, we study the minimal free resolution of
the tangent cone of Gorenstein noncomplete intersection monomial curve C' in affine 4-space when the minimal
number of generators of its tangent cone is five. Since homogeneous type semigroups have Cohen-Macaulay
tangent cones and the Cohen-Macaulayness of tangent cones of these families of curves was shown in [2], here
we consider only 5-generated tangent cones. Based on the Buchsbaum-Eisenbud Theorem [5] and knowing the
minimal generators of the defining ideal of the tangent cone in four cases [2], we give the minimal free resolution
of the tangent cone explicitly. Then, we compute the Hilbert function of the tangent cone for these families as

corollaries. All computations have been done using SINGULAR. *

2. Bresinsky’s theorem

In [4], Bresinsky gives the explicit description of the defining ideal of a noncomplete intersection Gorenstein

monomial curve with embedding dimension four by the following theorem.

Theorem 2.1 Let C be a monomial curve having the parametrization
x1 =1t", zo =172, x3 =", x4 =™,

where S is a numerical semigroup minimally generated by ni,ne,ng,ng. S is symmetric and C is a noncomplete

intersection monomial curve if and only if 1(C) is generated by the set
— — (65} «13 .14 — a2 Q21,024 — a3 «31 ,,032
G={fi =7 —x3ay™, fo = x3? — a7 xy, f3 = x5° — o7 252,

—_ (e %]} Q42,0043 —_ 43,0021 32 14
fo =yt — xR ag®, fs = w3 — 5%y }

where the polynomials f; ’s are unique up to isomorphism with 0 < ay; < aj with an; €< Ny, ..., Ny, ..., g >
such that «;’s are minimal for 1 <i <4, where n; denotes that n; §< Ny, ..., Nyy...,Ng >.
In Theorem 2.1, there is no restriction on the order of ni,...,ns and the set G is valid for only a

permutation of these numbers. If we assume that n; < ns < n3 < ng4, then we have to revise the set G
with respect to the correct permutation of the variables x1,x2,x3,24. Thus, there are six isomorphic possible

permutations which can be considered within three cases:

*SINGULAR 2.0. A Computer Algebra System for Polynomial Computations. Available at http://www.singular.uni-kl.de.
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(b) f2 = (2a (374))af3 = (37 (1’2))7f4 = (4a (173))af5 = ((273)v (174))

Here, the notations f; = (¢,(4,k)) and f5 = ((4,7),(k,l)) denote the generators f; = x" — x?”xg" and

fs = xf"“x?” — 2 "z Thus, if we have the extra condition n; < ns < n3z < n4, then the generator set of its
defining ideal is exactly given by one of these six permutations.
In [2], Arslan and Mete observed that the generator set of each of these curves turned out to be a standard

basis with respect to the negative degree reverse lexicographical ordering in the following cases:
o In Case 1(a) with the restriction as < agy + @4,
o In Case 1(b) with the restriction ag < a9y + o3, ag < ass + asg.
o In Case 2(b) with the restriction as < a9y + qag, ag < aze + asg.
o In Case 3(a) with the restriction s < agy + aa3, az < as) + asq.

And in all above cases, the minimal number of generators of the tangent cone of a Gorenstein noncomplete

intersection monomial curve is five. One can also see [1].

3. Minimal free resolutions
In this section, we give the minimal free resolution of the tangent cone of Gorenstein noncomplete intersection

monomial curve C' in embedding dimension four when the minimal number of generators of the tangent cone
of C is five.

Case 1(a) : Let

@13

— 01 Q21
fi =Ty — T3

14 — a2 @31 ,,032 Q42 (043
Ty, fo = 25® — xf

Qo4 _ .a3 Q4
ry®t, fy = a5® — a7 ey, fa = xyt — gy

and

— @43, 21 @32, 14
fs =3P ay™ — ay®ay

where a1 = agy + @31, ag = azs + a2, a3 = @13 + a3, a4 = a4 + agq. The condition n; < Ny < ng < ny
implies @1 > a13 + a1q, g < ago +ay3 and az < ag; + ass. Since the extra condition as < any + any and

using Lemma 5.5.1 in [6], the defining ideal I(C). of the tangent cone is generated by the following sets:
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o Casel(al) : I(C), = (x§Pxy™, 252, 233, xi*, x5y ')
o Casel(a2) : I(C), = (x5xy™, x5? — 2 g™, 25®, a3t x5> ay™)
Theorem 3.1 In Case 1(al) and Case 1(a2), the sequence of R-modules
0— R? 2% RS 2, R5 2L, R 5 R/I(C), — 0
1s a minimal free resolution for the tangent cone of C', where

3 Qg @32 .14

— (913 014 az a
L,Dl—(mg Ty T, z3 xy Ty 2wy )7

oz
Ia43 0 Ia24 IOA’SQ 0 0 Lo 0
3 4 2 —33a14 0
0 z33 0 0 0 zy 1 4
agg
_ g ag _ 0 Tg
2= | Ty T2 0 0 0 0 P83 = | oup asz  _ aza
0 0 —zg1 0 2582 0 Ty "T3 Zy
0 $0‘13
13 Q24 Qg2 3
0 0 0 —Ty —xTy —xy 208 0
3
or
_ (013 014 az o1 oog ag Qg ags a4
Y1 = (zS x, xq x g Ty xy, %2 xy ),
g az1, 043
x0¢24 xa32 ‘1,0443 0 0 0 Lo T T3
" 5 3 o2 _pQd2 poa3
0 0 0 xgtt 0 zg? 4 2 s
az a1 Q24
2 = 0 0 g1 0 0 —252 4 2921202 | o = 0 Tg T
- ) - a
0 x93
—zg1s 0 0 z] 532 0 a1s %
T
_ 013 _ .42 04 3
0 Tq 0 Ty Ty 0 0 _ 014
4
respectively.

Proof Case 1(al) : It is easy to show that ¢ips = paps = 0 proving that the sequence above is a complex.

To prove the exactness, we use Buchsbaum—Eisenbud criterion [5]. Therefore, first we need to check that
rank(p1) + rank(p2) =144 =5 and rank(psz) + rank(ps) =4+ 2 =6.

Clearly, rank(p;) = 1 and rank(ps) = 2. Since every 5 X 5 minors of o is zero, by McCoy’s Theorem

rank(p2) < 4. In matrix s, deleting the 1st and the 3rd columns, and the 2nd row, we have —x%aﬁo‘” and

similarly, deleting the 3rd row, and the 5th and the 6th columns, we obtain $§a3+a13 as 4 X 4—minors of .
Thus, rank(ps) = 4. These two determinants are relatively prime, so I(p2) contains a regular sequence of
length 2. Among the 2-minors of 3, we have 52732 243+ and z{* and this is a regular sequence, since
{2, 23,24} is a regular sequence. Thus, I(p3) contains a regular sequence of length 3.

Case 1(a2) : Similar to the first case, it is clear that p1p2 = o3 = 0. rank(p1) =1 and rank(ps) = 2

2a3+ais

are trivial. In matrix 9, deleting the 3rd row, and the 4th and the 5th columns, we have zj and

similarly, deleting the 2nd and the 6th columns, and the 4th row, we obtain xia“ and these determinants are

relatively prime. 2-minors of @3 are

Q32 (3 «21 .03 a32 014 Q24 Q24 (3 Q42 (3 (e} 13 astais
133 771’2 :174 77‘T4 f25 71’4 $3 7x2 1'3 7374 77‘T3 f27 71’3 )

Q43 Q32
—T3 f2, Ty f2, Ty 3™, —I1

13 ,, 14
—T3 Ty .
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Among these 2-minors of (3, we have {252 fo, —25°7*13 234}, Since x5 is a nonzero divisor modulo {x3, 74},

I(p3) contains a regular sequence of length 3. O

Case 1(b) : Let

— aq @13 ,,014 I Q2 Q21 Q23 —_ a3 «32 ,,034 —_ (e} Q41 42
fl—xl — X3 Ty af2_x2 — XT3 7f3—333 — Ty Ty af4—$4 — T Xy
and
_ Qg2 (13 Q21 Q34
f5 =z ag"® — i ay

Here, oy = o1 + g1, g = auizo + uq9, a3 = a1z + aiag, g = ay + as4. The condition ny < ne < n3 < ng
implies a1 > 13 + 14, and ay < ay1 + ago. The extra condition as < as; + ass and as < aze + agy again
using Lemma 5.5.1 in [6

imply that the defining ideal I(C), of the tangent cone is generated by the following
sets:

o Case1(bl) : I(C), = (x5 zy™, x5?, x3%, 3", 252 x3™®)

o Case1(b2) : I(C), = (x3Bzy™, x5? — a1 a3, 25®, 27t x5 x5"?)

o Case1(b3) : I(C), = (x5, x5, x3% — a9 xy™ xf*, w9+ x5"?)

o Casel(bd) : I(C),=(x§ Pxy", x5? — 27 x5, 255 —x52x)™ oyt a7 ) — 25" x5"?)

Theorem 3.2 In Case 1(bl), the minimal free resolution for the tangent cone of C is

0— R* 2%, RO 22, R5 2L, R 5 R/I(C), — 0

where
— @13 .14 a2 a3 aq Q42 013
o1 = (253 oy wg® gt af?agl?),
a2
i 0
_1.2134 0 _mgza 0 $8t42 0 20‘13 0
—x
0 —xgt 0 0 0 —g§13 3
4 o o 3 0 ma42
Y2 = 0 0 Ty e Ty 42 0 0 y  P3 = 0 2(114 5
@13 ag —Ty
T3 To 0 (l % OE) 2082084 003
0 0 0 —a§ 23 —z§ 14 5 32 2 $a44 30
4
in Case 1(b2), the minimal free resolution for the tangent cone of C is
P3 p2 Y1
0—R? 2 RO 2 RS RV R/IIC), =0
— @13 ,.%14 a2 @21 23 a3 Qg Q42 Q13
pr = (2510 2] Tpm T T3 vy wyt wyagt?),
a2 @21 ,, 23
—wZM 0 —x?% 0 0 xg“ To™ — I Ty 0
@13
. -z 0
0 —ay* 0 0 x5t 0 xa21ia34 242
p2 = 0 0 $214 zg‘42 m‘fZl —$$14 3 = 1 O 4 2(114 ,
—X
z313 xg? — (Mg 0 0 0 0 o 61
—T
_ Q23 32 4
0 0 0 z3 Za 0 2082 034 2528

in Case 1(b3),
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0 Ry RS2y RS PRI oG —0

where
— @13 ,,014 a2 a3 _ .32 (34 Qg Q42 Q13
p1 = (251025 T Xym T XTIy wyt wyagt?),
_x§23 0 3?234 xg42 O m342 xng
a34 @13 @13 ,,X14
0 Ty 0 0 Zg —T3 Ty
— Q14 @42 — a2
P2 = Ty To 0 0 0 ) P3 = To )
xgsz 0 _$§‘13 0 0 x§3 _ x;szmzm
a23 x14 «32 Qg
0 —T3 0 —x —xy Ty

and in Case 1(b4), then the minimal free resolution of the tangent cone of C is

0> Ry RS2y REEZL R G —0

where
— @13 ,.%14 @2 21,023 @3 032,034 (e Q42 13 021,034
Y1 = (’fs Ty To 17 T3 T3 Ty™ Ty Ty Ty T3 L7 Ty )v
_1234 z§L23 _1342 0 0 wg@ _ zlllmmgz?,
«34 _ 913 Qq2 @13 _ 21 .34
0 0 0 Ty Zg Ty Ty Tty
— 14 @42 @21 . a3 @32 .34
Y2 = 0 —x 0 Tq —x, s p3 = 3% — x5y xy
1313 _:17332 :E‘f21 0 0 m§13$$14
x14 _ e23 Q32 Qq
0 0 Ty T3 Ty Ty

Proof Case 1(bl): rank(p1) =1 and rank(ys) = 2. As in the Casel(a), in matrix @2, deleting the 2nd

and the 5th columns, and the 3rd row, we have xg‘”’ and similarly, deleting the 2nd row, and the 1st and the

3rd columns, we obtain fxgaz"'a“ as 4 X 4— minors of 5. These two determinants are relatively prime, so
I(2) contains a regular sequence of length 2. Among the 2-minors of @3, we have x5>7%42  —23% and x§+T

and these three determinants constitute a regular sequence. Thus, I(p3) contains a regular sequence of length 3.

Case 1(b2) : Tt is clear that rank(p1) =1 and rank(ps) = 2. In matrix @2, deleting the 3rd row, and
the 2nd and the 6th columns, we have —x§“3 and deleting the 4th and the 6th columns, and the 4th row, we

obtain —xg‘”xio“‘ and these determinants are relatively prime. Among the 2-minors of 3, we have —z3? |

—2{* T and x5% fo. Since zo is a nonzero divisor modulo {x3, 24}, I(p3) contains a regular sequence of
length 3.

Case 1(b3) : Clearly, rank(¢1) = rank(ps) = 1. In matrix ¢, deleting the 2nd row and the 3rd column,
we have x%” and deleting the 4th row and the 5th column, we get xi‘“ . Since these determinants are powers

of different variables, they constitute a regular sequence of length 2.

Case 1(b4) : As in the above case, rank(yp1) = rank(yps) = 1. In matrix ¢, deleting 2nd row and

1st column, we have fo? and deleting 4th row and 5th column, we obtain xio“l. These two determinans are
relatively prime, they constitute a regular sequence. I(y3) contains a regular sequence of length 2. O

Case 2(b) : Let

— Q1 @12 )13 — Q2 a21 ,, 24 — Q3 32 ),034 — %4 Q41 5,43
fi =it — 23", fo = 5% —x{P ay™, fs = a5® — xy®al®, fa = ayt — 27 2
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and
_ Q41,32 @13 ,.024
=My — gy

fs

Here, a7 = a1 + ay1, o = o + 32, az = a3 + ayus, ag = agyg + asg. The condition n; < ne < ng < ny

implies oy > 12 + a3 and ay < ayy + agz. Since the extra condition ag < @iy + aog, az < age + az4 and

Lemma 5.5.1 in [6], the defining ideal I(C). of the tangent cone is generated by the following sets:

o Case2(bl) : I(C), = (x5"2x3"®, 25, x3%, 3", x5 P xy?)

o Case2(b2) : I(C), = (x52x3™®, x5% — a7 g™, x5®, x3*, w5 x**)

o Case 2(b3) : I(C), = (x5"2x3™®, 257, x3° — x5 xy™ xy*, x5 xy?*)

o Case2(bd) : I(C), = (x5 x§™, x5? — x> g™, x5% — x5 xy™ it x5 xy?*)

Theorem 3.3 In Case 2(bl), the minimal free resolution for the tangent cone of C is

0— R* 2%, RS 22, R5 2L, R 5 R/I(C), — 0
where
01 = (x‘2112$513 xg? 233 xzﬁl x?13x224) ,
24 Q43 Q32 1?43
Ty zg Ty 0 0 0 _ a2
0 0 —zg1s 0 0 —zgt 61
P2 = 0 —zg1? 0 0 —y 0 , p3 = 0
0 0 0 —zg1s 0 z5? o1z
xX
7xgl2 0 0 ‘TZ‘M 19‘43 0 20

in Case 2(b2), the minimal free resolution for the tangent cone of C is

L3 P2 1
0— R? 2% RS RS RV R/II(C), — 0
«@ [e% « [e% «@ « « «@ «

Y1 = (332121'313 Jj22 _$1211.424 ‘1,33 1'44 3;3131,424)7

g

a4 @43 aso 0 0 0 Ty 43
Ty T3 Lo 024

0 0 —zg1? 0 0 —zyt 04

Y2 = 0 _$g¢12 0 0 —1‘4&24 0 , 3 0

@13 a2 @21 24
0 0 0 —Tg 0 Ty’ —xttxy L1z
7$0<12 0 7‘%!1121 x$34 zgmxs 0 20

in Case 2(b3), the minimal free resolution of the tangent cone of C is

0— R' 2 RS 2, RS 24 R 5 R/I(C), — 0
where
801 — (:1:3121.?13 132 $?3 _ :1:3321:2‘34 :l.4f¥4 x?13m4f¥24) ,
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_1224 0 0 _mg‘32 _1?43 xg‘S _ mg‘321234
0 O 0 x?lS IZ34 _$gl2x§;13
p2=| 0 —ap 0 0 x5 |, 3= z5? ;
0 —xy3?  —ggls 0 0 zy?
Z.ng x(33‘43 xZSAL 0 0 _I§13x224
lastly, in Case 2(b4), the minimal free resolution for the tangent cone of C is
3 P2 1
0—-R' 5 R 5 R R R/IIC). — 0
where
« [e% (o3 « «@ «@ «@ « «@ Oé
p1 = (‘,1.;2122:3 13 $22 _ ‘rl 21I424 mSS _ x232m434 IE44 13 24)
‘/L,ZZAL x;SZ $§43 0 0 :L,g?) _ ZS‘SZJ:ZBAL
@13 @34 a
0 —Tg —Ty 0 0 xyt
o2 = 0 0 71‘2112 0 7£EZC24 , 03 = 71.?’6131224
0 0 _xix21 _$§13 _.1,332 _1:2 + xa21$2‘24
_I312 _1.?21 0 50234 xg¢43 Ing xng

Proof Case2(bl): rank(e1) =1 and rank(ps) = 2. Since every 5 X 5 minors of g is zero, rank(ps) < 4.

In matrix o, deleting the 1st and the 6th columns, and the 3rd row, we have mgas and deleting the 2nd row,

and the 4th and the 5th columns, we get m§a2+a12 as 4 x4—minors of ¢s. These two determinants are relatively

aztaiz

prime, so I(p2) contains a regular sequence of length 2. Among the 2-minors of ¢3, we have —x3 o8

71'3

and 25*T*?* . Since these are powers of different variables, I(yp3) contains a regular sequence of length 3.

Case 2(b2) : rank(p1) =1 and rank(ps) = 2. In matrix s, deleting the 3rd row, and the 1st and the

2a3 20&4+0424
Ty

6th columns, we have 25%® and deleting the 2nd and the 3rd columns, and the 4th row, we obtain —

and these determinants are relatively prime. Among the 2-minors of 3, we have —z3'? fo, x5 and :EO‘4+0‘24

Since 2 is a nonzero divisor modulo {z3, x4}, I(¢3) contains a regular sequence of length 3.

Case 2(b3) : Clearly, rank(yp1) = rank(ps) = 1. In matrix @2, deleting the 3rd column and the 2nd

row, we have — 3“2 and deleting the 4th row and the 4th column, we obtain xi‘“ and these are relatively prime.

Case 2(b4) : As in the above case, rank(p1) = rank(ps) = 1. In the matrix ¢q, deleting the 1st row
and the 5th column, we have —mgamxga” and deleting the 4th row and the 2nd column, we obtain —xia“ and

they are relatively prime. O

Case 3(a) : In this case,

— 01 0(12 O¢14 a2 Q21,23 — Q3 @31 O¢34 Q42,43
fi=af" - s fo=a5% — 27 as®, fy = af® — 2y o fa =it — w3 ag
and
a3l a42 Q23 (014
f5 = a7 ay" —xg*ay

Here, a1 = o1 + 31, oo = a0 + Qqa, a3 = Qo3 + a3, ag = g + agq. The condition n; < ne < ng < ng
gives a1 > 12 + a4 and ay < ayo + ay3. The extra conditions as < oy + aogz, az < ag; + azq and Lemma

5.5.1 in [6] imply that the defining ideal I(C). of the tangent cone is generated by the following sets:
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o Case3(al) : I(C), = (xgxy™, 252, 233, xy*, 25?2 x*)
o Case3(a2) : I(C), = (x5"2x3™, x5% — 27 x5, 25®, 2", x5 xy™)

[ (03 [ [ [0 [} e (63 (o3
o Case3(a3) : I(C), = (xg2xy™, x5, x3® — a7 ay™ xf*, e3> xy')
[ (0% e (03 [ [ (03 [e3 [e3 [e3 [
o Case3(ad) : I(C), = (xg2xy™, x5? — 22 x5, 25® — a3 a® oy, x5z ')

Theorem 3.4 In Case 3(al), then the minimal free resolution for the tangent cone of C is

0— R 24 RO 22, RS 2L R 5 R/I(C). — 0

where
— @12 Q14 a2 a3 aq «23 Q14
p1 = (252§ Lo T3 Ty xg gt
a2
T 0
23 asz4 Q42 2
0 0 T3 Ty Ty 0 _xZM 0
a3 Q14
0 —T3 0 0 —Ty 0 Qa2 043 234
a1g az _ 2 3 4
p2 = Ty Ty 0 0 0 0 , Y3 = 0 023
12 23 3
0 0 0 ) 0 —Tg w§3 0
@43 @12 @34
—Tg 0 —Tq 0 0 T, PN
0 T,

in Case 3(a2), the minimal free resolution for the tangent cone of C is

0— R? 2% RS 2, R5 24, R 5 R/I(C), — 0

«@ « « « [e DX a3 (e [eDX «
901:(93212$414 x227x1211325 133 3344 x323:1:414),
@2 @21 ,,23
x — X X
Q23 a34 Q42 2 1 3
0 0 T3 Ty Ty 0 o
0 —zg? 0 0 —gglt 0 can s
o9 = IZM $22 _ xikz 23 0 0 0 0 03 = —Zoy T3
b
0
0 0 0 —zg1? 0 —28 as
xX
43 Q12 a1 Q34 3
—x3 0 —Zq 0 —x Ty 0
in Case 3(a3), the minimal free resolution of the tangent cone of C' is
L3 P2 P1
0— R? 5 RS RS R R/IIC). — 0
where
«@ « « «@ « « « «@ «
501 — ($212$414 1'22 x33—$131x434 .1.44 :L‘3231‘414),
ag
0 0 xgézz 3751134 1‘5‘42 0 To
14
—X
a3 @31 .34 Q14 4
0 —z3° Ty 0 0 —T 0 _ Q42 ;a3
«@ «@
w2 = Ty 4 x5? 0 0 0 0 ) P3 = xo?glxoig
@31 @12 @23 1 2
Ty 0 0 T2 0 —T3 203 031,034
—Ig43 0 _xgllQ 0 0 £E234 3 01 4

lastly, in Case 3(ad), then the minimal free resolution of the tangent cone is

2790
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0— R2 24 RO 22, RS 2L R 5 R/I(C), — 0

where
_ (012,004 oz 021 Q23 ag _ _a31 034 71 a3 014
p1 = (v3" 2] Zo T17 T3 T3 T17 Xy Ly a3yt
asq Qg2 043
23 Qg2 aszy 0 0 0 Ty Ty T3
T3 To Ty 0 g9 4 4931 034
0 _x0414 0 0 0 xoﬂi _ Iaslxa34 3 1 4
: « « «
_ 0 61 0 g4 0 7;042 +x10¢21;10t23 _ —:17323 - 311‘242
p2 = 4 2 1 3 »P3 = 0 282 po21 003
0 0 _1.&12 _$a31 _$a23 0 2 1 3
_pd12 oo g xa143 xag34 0 xgcu "‘Utll1
2 1 3 4 0 014
4

Proof Case 3(al) : Clearly, rank(p1) = 1 and rank(ps) = 2. In matrix @2, deleting the 4th and the 5th

2a3+aia3

columns, and the 3rd row, we have —z5 and similarly, deleting the 2nd and the 3rd columns, and the 4th

row, we obtain xia“ as 4 X 4—minors of s. These two determinants are relatively prime, so I(p2) contains a
regular sequence of length 2. Among the 2-minors of @3, we have x527*12 | 243+ and —2$*. Since they are

powers of different variables, I(¢3) contains a regular sequence of length 3.

Case 3(a2) : rank(p1) =1 and rank(ps) = 2. In matrix @2, deleting the 3rd row, and the 4th and the
5th columns, we have —z3*#7*?% and deleting the 2nd and the 3rd columns, and the 4th row, we obtain —z3**
and these determinants are relatively prime. Among the 2-minors of @3, we have 252 fy, z3°7** and —x3*.

Since o is a nonzero divisor modulo {z3, 24}, I(¢3) contains a regular sequence of length 3.

Case 3(a3) : rank(yp1) = 1 and rank(ps) = 2. In matrix ¢, deleting the 1st and the 6th columns, and

202 +ai12

the 2nd row, we have z5 and similarly, deleting the 2nd and the 3rd columns, and the 4th row, we obtain

—23** and these determinants are relatively prime. Among the 2-minors of @3, we have z521*12 252 f3 and

4

—x4* and x3 is a nonzero divisor modulo {z2,z4}. Thus, I(ys) contains a regular sequence of length 3.

Case 3(ad) : As in the above cases, rank(¢1) =1 and rank(ps) = 2. In the matrix ¢z, deleting the 1st
row, and the 5th and the 6th columns, we obtain —mgamxi(’“ and deleting the 3rd row, and the 2nd and the 3rd
columns, we have x52* f3? and they are relatively prime. Among the 2-minors of 3, we have —x57% fo, —x3% f3

and —z3* and x4 is a nonzero divisor modulo {x5?fs,252% f3}. Thus, I(p3) contains a regular sequence of
length 3. O

4. Hilbert function

In [2], Arslan and Mete showed that the Hilbert function is nondecreasing for local Gorenstein rings with
embedding dimension four associated to noncomplete intersection monomial curve C' in all above cases. In this
section, we compute the Hilbert function of the tangent cone of C', if C' is a Gorenstein noncomplete intersection
monomial curve in A* as in Case 1(a). For the other aforementioned cases, one can get similar results.

Theorem 3.1 implies that the tangent cone of C has the following graded minimal free resolution:
0—F 2R 2P 25 R— R/IC), — 0

2791



METE and ZENGIN/Turk J Math

5 6 2
where F; = @ R(-b;), Fo = @ R(—c;) and F5 = @ R(—d;). Here, the numbers b; are called the 1st Betti
i=1 i=1 =

degrees, ¢; are called 2nd Betti degrees and d; are called 3rd Betti degrees.

Corollary 4.1 Under the hypothesis of Theorem 3.1, Betti degrees of the minimal graded free resolution of the
tangent cone of C is given by

0—F 2R 2P 25 R— R/I(C), =0
where By = {b1,ba,bs3,b4,b5}, Ba = {c1,¢2,¢3,¢4,¢5,¢6}, Bs ={dy,da} and
b1 =13+ aia, by =az, by =asz, by = as, by = azs + a4,
1l =03 +ouq, Q=02+ Q3, C3 =04+ Q13, €4 = Q32+ 13+ Qia, G5 = Q32+ 04, C6 = Q4 + Q2
di =az+az+aig, d2 =ag+ 13+ asz.
The following corollary stems from the well-known fact that
He(i) = Hp(i) — Hp, (i) + Hp, (i) — Hp, (i)

Corollary 4.2 Under the hypothesis of Theorem 3.1., the Hilbert function of the tangent cone of C is given by

. L+ 3 . — by + 3 ; bs +3
= (3°) (73 7) (8 ) (757
B i—by+3 - i —bs+3 4 c1+3
3 3 3
i—co+3 i—c3+3 +3
(878 (7E)
1—c5+3 1—ce+3 1—dy+3
(7575757
i—do+ 3
3 )
for i>0.
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