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Abstract: The aim of this paper is to prove the following result: Let G be an FC-hypercentral group and let A

have a finite FG -composition series. Then A contains two FG -submodules B,C such that A = B ⊕ C , where each
FG -composition factor of B has finite F -dimension and each FG -composition factor of C has infinite F -dimension.
This has consequences for FG -modules whose proper submodules all have finite F -dimension and for those FG -modules
whose proper quotients all have finite F -dimension.

Key words: FC-hypercentral, module, FG -composition series, simple FG -module, quasifinite module, just
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1. Introduction
Let R be a ring, let G be a group, and let A be a (left) module over the group ring RG , notation that we
shall use throughout with little further mention. We shall also let F denote a field. Suppose that A has a
finite RG -composition series. Some factors in this series may have similar properties (for example, some may
be RG -central); however, their relative positions in the composition series may be quite diverse. Therefore, it
is natural to consider questions regarding the positioning of RG -composition factors having similar properties.
The roots of this problem date to the famous Fitting lemma, a slight generalization of which can be stated as
follows:

Let G be a finite nilpotent group. If A has finite composition length, then A = Z ⊕ E , where
each RG -composition factor U/V of Z (respectively of E ) satisfies the condition G = CG(U/V )

(respectively G ̸= CG(U/V )).

This result served as a starting point for many generalizations that have found applications in various
fields of group theory (see [1, Chapters 1, 7, and 8], for example). In turn, these results were also generalized
to factors associated with various formations, a topic that will not be pursued further here, but as references
see the book [5, Chapter 10] and the survey [2]. In this paper, we consider a different side of this issue.

Suppose that A has a finite FG -composition series. The factors of this series are simple FG -modules,
some of which will have finite F -dimension and some infinite F -dimension. The question naturally arises
whether all the finite dimensional factors can be made consecutive and whether all infinite dimensional factors
can be made consecutive. Clearly, the answer will generally depend on the properties of the group G .
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If a simple FG -factor U/V has finite F -dimension k , we can consider G/CG(U/V ) as an irreducible
subgroup of the finite dimensional linear group GLk(F ) . There is a lot of information concerning such groups.
On the other hand, if the simple FG -factor U/V has infinite F -dimension, then information concerned with
the structure of G/CG(U/V ) is rather limited. Such information is available in the book [4, Chapters 2 and 3],
where the structure of irreducible hypercentral and FC-hypercentral groups was given.

It is appropriate here to recall the following notation and definitions.
For the group G , if x ∈ G , then let

xG = {xg = g−1xg|g ∈ G} and FC(G) = {x ∈ G|xG is finite},

this latter characteristic subgroup of G being the FC-center of G .
Beginning with the FC-center, we may construct the upper FC-central series of the group G , the series

of characteristic subgroups of G ,

1 = C0 ≤ C1 ≤ . . . Cα ≤ Cα+1 ≤ . . . Cγ ,

defined by

C1 = FC(G),

Cα+1/Cα = FC(G/Cα) for ordinals α,

Cλ =
∪
β<λ

Cβ for limit ordinals λ.

The last term Cγ of this series is called the upper FC-hypercenter of the group G , and if G = Cγ , then
G is called FC-hypercentral. In the case when γ is finite and G = Cγ the group G is called FC -nilpotent.

The main result of this paper is the following:

Theorem A Let G be an FC-hypercentral group and let A have a finite FG-composition series. Then A

contains two FG-submodules B,C satisfying the following conditions:

(i) each FG-composition factor of B has finite F -dimension;

(ii) each FG-composition factor of C has infinite F -dimension;

(iii) A = B ⊕ C .

We note some consequences of this theorem. Suppose that the module A has the property that A is not a
finitely generated RG -module but every proper RG -submodule of A is finitely generated as an RG -submodule.

In this case, one of the following situations arises:

(i) A is the ascending union of its proper RG -submodules.

(ii) A contains a proper RG -submodule B such that A/B is a simple RG -module.

An RG -module satisfying condition (i) is called a quasifinite RG -module. Quasifinite FG -modules have
been considered in the papers [7, 8] of the last two authors of this paper and these results were generalized by
Kurdachenko [3] to the case of RG -modules when R is a Dedekind domain.
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Corollary A Let G be an FC -hypercentral group and let A be an FG-module having infinite F -dimension.
If every proper FG-submodule of A has finite F -dimension, then either A is a quasifinite FG-module or A

is a simple FG-module.

We may also consider the dual situation. Suppose that A has infinite F -dimension but every proper
FG -quotient module of A has finite F -dimension. (The quotient module A/B is proper if the submodule B

is nonzero.)
In this case, one of the following situations arises:

(i) The intersection of all nonzero FG -submodules of A is zero, so A is a nonmonolithic FG -module.

(ii) A contains a proper nonzero simple FG -submodule B (the FG -monolith of A) such that the factor
module A/B has finite F -dimension.

The FG -module satisfying condition (i) is called a just-infinite dimensional FG -module. Just-infinite
dimensional FG -modules were discussed in the papers [9, 10] of the last two authors. It is also worth mentioning
that an RG -module A is called just-non-Artinian if A is not Artinian but each proper factor of A is. Such
modules were discussed in the papers [11, 12] again in the case where R is Dedekind.

Corollary B Let G be an FC -hypercentral group and let A be an FG-module having infinite F -dimension.
If every proper FG-quotient module of A has finite F -dimension, then either A is a just-infinite dimensional
FG-module or A is a simple FG-module.

2. Extensions of finite dimensional modules by infinite dimensional simple modules

We begin with the following result.

Lemma 2.1 Let A be an FG-module such that CG(A) = 1 . Suppose that A contains an FG-submodule B

such that B and A/B are simple FG-modules, B has finite F -dimension, and A/B has infinite dimension.
If CG(B) ∩ FC(G) ̸= 1 , then there is an FG-submodule L of A such that A = B ⊕ L .

Proof Let z be a nontrivial element of CG(B) ∩ FC(G) . Since the conjugacy class of z is finite the
normal subgroup V = CG(⟨z⟩G) has finite index in G . Let φ : A −→ A be the mapping defined by
φ(a) = (z − 1)a = [z, a] for all a ∈ A . If v ∈ V , then

v(z − 1)a = (z − 1)va = (z − 1)(va) ∈ [z,A],

which shows that [z,A] = Im(φ) is an FV -module. Likewise, ker(φ) = CA(z) is an FV -module. Clearly
B ≤ CA(z) and CA(z) ̸= A since CG(A) = 1 . Since A/B is a simple FG -module, it follows from [5, Theorem
5.5] that A/B is a direct sum of finitely many FV-submodules, each of which has infinite F -dimension. Since
A/B is a semisimple FV -module its FV -submodule CA(z)/B has an FV -complement E/B (see [5, Corollary
4.3]). Again by [5, Corollary 4.3] both E/B and CA(z)/B are semisimple FV -modules, each of which is a
direct sum of finitely many simple factors having infinite F -dimension. However,

E/B ∼=FV (A/B)/(CA(z)/B) ∼=FV A/CA(z) ∼=FV [z,A],
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so [z,A] is a semisimple FV -module, each of whose simple FV -factors has infinite F -dimension. Let Y be one
of these infinite-dimensional simple FV -submodules of [z,A] . Let {g1, . . . , gl} be a transversal to V in G and
let L = g1Y + · · ·+glY . Then L is a semisimple FV -module, by [5, Corollary 4.3] again, whose FV -factors are
infinite-dimensional. Thus, L is an FG -submodule of infinite F -dimenson. Since A/B is a simple FG -module
and B has finite F -dimension it follows that A = L + B . Moreover, if L ∩ B ̸= 0 , then B ≤ L since B

is simple, but then L = A is a semisimple FV -module whose FV -factors have infinite F -dimension. This
contradicts the fact that B is finite-dimensional. Hence, L ∩B = 0 and A = B ⊕ L . 2

Lemma 2.2 Let G be an FC-hypercentral group and let A be a simple FG-module such that CG(A) = 1 . If
A has finite F -dimension, then G is abelian-by-finite.

Proof It follows from [13, Theorem 2] that G is nilpotent-by-finite and then that G is abelian-by-finite follows
from [1, Theorem 1.4.11], for example. 2

We shall require the following technical result. As usual we let the annihilator of a subset Y of A be

AnnR(Y ) = {r ∈ R|ry = 0 for all y ∈ Y }.

Assume now that A is an FG -module and that CG(A) = 1 . For each 1 ̸= g ∈ ζ(G) we let X(g) = ⟨x(g)⟩
denote an infinite cyclic group and let D(g) = FX(g) denote the corresponding group algebra. We note that
D(g) is a principal ideal domain. We can define an action of x(g) on A by setting

x(g)a = ga for all a ∈ A.

This action can be extended in a natural way to an action of D(g) on A and hence we may consider A as a
left D(g)G -module.

Let R be an integral domain and let A be an R -module. Let

TorR(A) = {a ∈ A|AnnR(a) ̸= 0}.

It is easy to see that TorR(A) is an R -submodule of A called the R -periodic part of A . We say that A is
periodic as an R -module or, simply, that A is R -periodic, if TorR(A) = A so that AnnR(a) ̸= 0 , for each
element a ∈ A . We say that A is R -torsion-free if TorR(A) = 0 .

Analogous to the annihilator of a subset of A is the notion of the annihilator of a subset X of R . In
this case, we have

AnnA(X) = {a ∈ A|xa = 0 for all x ∈ X}.

We define the R -assassinator of A to be the set

AssR(A) = {P |P is a prime ideal of R such that AnnA(P ) ̸= 0}.

If U is an ideal of R , then we set

AU = {a ∈ A|Una = 0 for some natural number n}.

It is easy to see that AU is an R -submodule of A called the U -component of A . If A = AU , then A is called
a U -module. Furthermore, let

ΩU,k(A) = {a ∈ A|Uka = 0 for this fixed k}.
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It is easy to see that ΩU,k(A) is an R -submodule, that

ΩU,1(A) ≤ ΩU,2(A) ≤ · · · ≤ ΩU,k(A) ≤ . . . , and that

AU =
∪
k∈N

ΩU,k(A).

We refer the reader to [6], which has further details.

Lemma 2.3 Let G be an abelian group and A an FG-module. Suppose that A contains an FG-submodule
B such that B and A/B are simple. If B has finite F -dimension and A/B has infinite F -dimension, then
A contains an FG-submodule C such that A = B ⊕ C .

Proof Without loss of generality we may assume that CG(A) = 1 . Note that if A contains a nonzero FG -
submodule C such that C ∩ B = 0 , then (C + B)/B is a nonzero FG -submodule of A/B . Since A/B is
simple it follows that A = B + C = B ⊕ C .

We may therefore suppose that every nonzero FG -submodule of A contains B , so B is then the FG -
monolith of A . Using the notation introduced above, A is a left D(g) -module for each element g ∈ G .

Let b ∈ B so that D(g)b ≤ B . We note that D(g) has infinite F -dimension. Since D(g)b ∼=
D(g)/AnnD(g)(b) and dimF (B) is finite it follows that b has nonzero annihilator in the ring D(g) . Hence,
the D(g) -periodic part of A is nonzero also. Let TorD(g)(A) = T so that B ≤ T . Also, AnnD(g)(b) =

AnnD(g)(B) = P is a maximal ideal of D(g) . Since G is abelian, T is an FG -submodule and since A/B is
simple we have T = B or T = A .

Suppose first that T = B . Then there is a D(g) -submodule U of A such that A = B ⊕ U by [6,
Proposition 8.9]. Then U is D(g) -torsion-free so that PU ̸= 0 . Since PA = PU ≤ U we have

PA ∩B = PA ∩ T = 0.

However, G is abelian so PA is an FG -submodule and hence B ≤ PA , a contradiction, which shows that
T = A . Therefore, A is a periodic D(g) -module.

In this case A = ⊕Q∈πAQ where AQ is a non-zero Q -component of A and π = AssD(g)(A) (see [6,
Corollary 3.8], for example). Since G is abelian, AQ is an FG -submodule of A and since A is FG -monolithic
with B ≤ AP we have A = AP .

Suppose that ΩP,1(A) ̸= A . Then ΩP,1(A) = B since ΩP,1(A) is an FG -module. Since ΩP,2(A) is also
an FG -module it then follows that ΩP,2(A) = A . Since D(g) is a principal ideal domain there exists y ∈ P such
that P = yD(g) so y2a = 0 , since ΩP,2(A) = A , for each element a ∈ A . Therefore, yA ≤ B so yA has finite
dimension. Since G is abelian the map ρ : A −→ A defined by ρ(a) = ya for a ∈ A is an FG -endomorphism
of A and yA = Im(ρ) ≤ B . Clearly ker(ρ) = ΩP,1(A) = B so yA ∼= A/B , a contradiction since yA has finite
dimension whereas A/B has infinite F -dimension. Therefore, ΩP,1(A) = A . Hence, AnnD(g)(A) = P is a
maximal ideal of D(g) ; this is true for all g ∈ G .

Let d ∈ A \ B and let D = (FG)d , the FG -submodule generated by d . Clearly B ≤ D since A is
FG -monolithic so there exists u ∈ FG such that 0 ̸= ud ∈ B . Let

u = α1g1 + · · ·+ αmgm
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for certain αi ∈ F, gi ∈ G , 1 ≤ i ≤ m . From what we proved above, AnnD(g1)(A) is a maximal ideal of
D(g1) . Let F1 be the field D(g1)/AnnD(g1)(A) , so we can consider A as an F1G -module. This module is
again F1G -monolithic and B is its F1G -monolith. By the arguments used above A is annihilated by some
maximal ideal of the group ring F1⟨g2⟩ and it follows that AnnF ⟨g1,g2⟩(A) is a maximal ideal of the ring
F ⟨g1, g2⟩ . Using these arguments we see that after finitely many steps AnnF ⟨g1,...,gm⟩(A) is a maximal ideal of
the ring F ⟨g1, . . . , gm⟩ . Then F ⟨g1, . . . , gm⟩/AnnF ⟨g1,...,gm⟩(d) is simple, so F ⟨g1, . . . , gm⟩d is simple. As B is
an FG -module it is an F ⟨g1, . . . , gm⟩ -module and hence (F ⟨g1, . . . , gm⟩)d ∩B = 0 , since d /∈ B . On the other
hand,

0 ̸= ud ∈ (F ⟨g1, . . . , gm⟩)d ∩B,

and we obtain a contradiction, which proves the lemma. 2

We next extend this result to the abelian-by-finite case.

Lemma 2.4 Let G be an abelian-by-finite group and A an FG-module. Suppose that A contains a simple FG-
submodule B such that A/B is also simple. If B has finite F -dimension and A/B has infinite F -dimension,
then A contains an FG-submodule C such that A = B ⊕ C .

Proof As in the proof of Lemma 2.3 we may assume that CG(A) = 1 and that every nonzero FG -submodule
of A contains B . We shall obtain a contradiction in this case.

Let H be a normal abelian subgroup of G of finite index. Then both B and A/B contain simple FH -
submodules, denoted by C and D/B , respectively, such that B = ⊕1≤j≤nxjC and A/B = ⊕1≤m≤kymD/B

for certain xj , yj ∈ A (see [5, Theorem 5.5], for example). We note that C has finite F -dimension and that
D/B has infinite F -dimension. It follows that A has a finite series of FH -submodules:

0 = B0 ≤ C = B1 ≤ · · · ≤ Bn = B ≤ D = Bn+1 ≤ · · · ≤ Bn+k = A,

whose factors are simple FH -modules, where Bj/Bj−1 has finite dimension for 1 ≤ j ≤ n and Bm/Bm−1 has
infinite F -dimension for n+ 1 ≤ m ≤ n+ k . Let E = E0 = Bn−1 .

By Lemma 2.3 Bn+1/E contains an FH -submodule E1/E such that Bn+1/E = Bn/E ⊕ E1/E . In
particular, Bn+1/E1 is a simple FH -module of finite F -dimension. Suppose, inductively, that for some r ≥ 0

we have constructed a proper FH -submodule Er such that Bn+r/Er is a simple FH -module of finite F -
dimension. Then Bn+r+1/Er satisfies the hypotheses of Lemma 2.3 and we see that there is an FH -submodule
Er+1/Er such that Bn+r+1/Er = Bn+r/Er ⊕ Er+1/Er . Then Bn+r+1/Er+1 is a simple FH -module of finite
F -dimension. This argument implies the existence of a proper FH -submodule Ek such that A/Ek has finite
F -dimension.

Let {g1, . . . , gt} be a transversal to H in G . Since A/Ek
∼=F A/gjEk for each j with 1 ≤ j ≤ t , it follows

that A/gjEk has finite F -dimension. Hence, the FG -submodule L =
∩

1≤j≤t gjEk has finite codimension.
Since L ̸= 0 we have B ≤ L and L/B is a proper FG -submodule of A/B , a contradiction since A/B is simple.
This proves the result. 2

Proposition 2.5 Let G be an FC-hypercentral group and A an FG-module. Suppose that A contains an
FG-submodule B such that B and A/B are simple FG-modules. If B has finite F -dimension and A/B has
infinite F -dimension, then A contains an FG-submodule C such that A = B ⊕ C .
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Proof Without loss of generality we may suppose that CG(A) is trivial. If CG(B) ̸= 1 , then CG(B)∩FC(G) ̸=
1 also (see [5, Corollary 3.16], for example), in which case the result follows from Lemma 2.1. On the other
hand, if CG(B) = 1 , then we may think of G as a subgroup of GLn(F ) , where n is the F -dimension of B .
By Lemma 2.2 G is then abelian-by-finite and Lemma 2.4 gives the result. 2

Corollary 2.6 Let G be FC-hypercentral and let A be an FG-module. Suppose that A contains a finite
dimensional FG-submodule B such that A/B is an infinite dimensional simple FG-module. Then A contains
an FG-submodule C such that A = B ⊕ C .

Proof Since B has finite F -dimension it has a finite series

0 = B0 ≤ B1 ≤ · · · ≤ Bn = B

whose factors are simple FG -modules. We use induction on n , the case n = 1 being covered by Proposition 2.5.
Suppose that n > 1 and that the result is true for A/B1 . Then A/B1 contains an FG -submodule D/B1

such that A/B1 = B/B1 ⊕D/B1 . Then D/B1 is a simple infinite-dimensional FG -module and since B1 is a
simple finite-dimensional FG -module, Proposition 2.5 implies that D contains an FG -submodule C such that
D = B1 ⊕ C . Then we have

A = B +D = B +B1 + C = B + C

and B ∩ C = 0 since D ∩B = B1 . Hence, A = B ⊕ C , as required. 2

To conclude this section we note that Corollary 2.6 is no longer true when we step outside the realm of
FC-hypercentral groups even in the case when G is soluble. In his paper [14], Zaitsev gave an example of an
F2G -module A over the Charin {2, 3} -group G , which has a finite F2G -submodule B such that A/B is an
infinite simple F2G -module and B has no direct F2G -complement in A .

3. Extensions of infinite-dimensional simple modules by finite-dimensional modules

In this section we consider the dual situation to that occurring in Section 2; many of the results in this section
are analogous to those occurring in that last section.

Lemma 3.1 Let A be an FG-module such that CG(A) = 1 . Suppose that A contains an FG-submodule B

such that B and A/B are simple FG-modules, B has infinite F -dimension, and A/B has finite dimension.
If CG(A/B) ∩ FC(G) ̸= 1 , then there is an FG-submodule L of A such that A = B ⊕ L .

Proof Let 1 ̸= z ∈ CG(A/B)∩FC(G) . The conjugacy class of z is finite so V = CG(⟨z⟩G) has finite index in
G . Let φ : A −→ A be defined by φ(a) = (z−1)a = [z, a] for all a ∈ A , as in Lemma 2.1. Then [z,A] = Im(φ)

and ker(φ) = CA(z) are FV -submodules and [z,A] ≤ B . Since CG(A) = 1 , [z,A] ̸= 0 . It follows from [5,
Theorem 5.5] that the simple FG -module B has a simple FV -submodule C such that B = ⊕1≤j≤nxjC is
a direct sum of finitely many simple FV -submodules each having infinite F -dimension. Since [z,A] ≤ B , [5,
Corollary 4.4] implies that [z,A] is also a semisimple FV -submodule such that its simple FV -factors have
infinite F -dimension. However,

[z,A] = Im(φ) ∼= A/ker(φ) = A/CA(z)
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by the first isomorphism theorem so A has a proper FV -submodule Y such that A/Y is a simple FV -module of
infinite F -dimension. Let {g1, . . . , gk} be a transversal to V in G and let L = g1Y ∩· · ·∩gkY , an FG -module.
By Remak’s theorem we obtain an embedding:

A/L −→ ⊕1≤j≤kA/gjY.

Since A/gjY = gjA/gjY ∼= A/Y for each j it follows that A/gjY is a simple FV -module of infinite F -
dimension. Thus, A/L is a semisimple FV -module and each of its FV -factors has infinite F -dimension (see
[5, Corollary 4.4]). Furthermore, if L = 0 , then A is a semisimple FV -module each of whose FV -factors
have infinite F -dimension. This implies that A/B cannot be a semisimple FV -module of finite F -dimension.
Hence, L ̸= 0 .

Since B is a simple FG -submodule, either B ∩ L = 0 or B ≤ L . Suppose that B ≤ L . Since A/B is
a simple FG -module and L is a proper FG -submodule of A we deduce that L = B . However, B has finite
codimension and L has infinite codimension, a contradiction that proves that B ∩ L = 0 . Since A/B is a
simple FG -module we have A = B + L = B ⊕ L , as required. 2

Lemma 3.2 Let G be an abelian group and let A be an FG-module. Suppose that B is an FG-submodule of
A such that B and A/B are simple FG-modules, B has infinite F -dimension, and A/B has finite dimension.
Then there is an FG-submodule L of A such that A = B ⊕ L .

Proof As in the proof of Lemma 2.3 we may assume that CG(A) = 1 and that every nonzero FG -submodule
of A contains B . We shall obtain a contradiction in this case.

We may therefore suppose that every nonzero FG -submodule of A contains B so that B is the FG -
monolith of A . We again consider A as a D(g) -module for an arbitrary element g ∈ G .

Let a ∈ A\B and note that D(g) has infinite F -dimension. Then D(g)(a+B) ∼= D(g)/AnnD(g)(a+B)

and since dimF (A/B) is finite it follows that a+ B has nonzero annihilator in the ring D(g) . Thus, A/B is
D(g) -periodic and A/B has finite dimension, so it is a periodic finitely generated module over the principal
ideal domain D(g) . Hence, there is an element y ∈ D(g) such that yA ≤ B .

Suppose that A is D(g) -torsion-free. Since G is abelian, the map ρ : A −→ A defined by ρ(a) = ya

is an FG -endomorphism of A and Im(ρ) = yA is an FG -submodule of A . Since A is D(g) -torsion-free, we
have ker(ρ) = 0 , so yA = B since B is simple. However,

yA = Im(ρ) ∼= A/ker(ρ) ∼= A,

a contradiction since yA is simple.
This shows that A is not D(g) -torsion-free so that T = TorD(g)(A) ̸= 0 and since B is the FG -monolith

of A we have B ≤ T . Since G is abelian T is an FG -submodule and since A/B is simple either T = B or
T = A . However, if T = B , then we have yA ≤ T , so that A is a D(g) -periodic module in this case and hence
A = T . Hence, we may suppose that A is D(g) -periodic.

Then A = ⊕Q∈πAQ , where AQ is the nonzero Q -component of A and π = AssD(g)(A) (see [6, Corollary
3.8], for example). Each Q -component AQ is an FG -submodule of A so B = AP for some maximal ideal P

of D(g) , since A is FG -monolithic. Also, ΩP,1(A) is a nonzero FG -submodule and if ΩP,1(A) ̸= A , then
ΩP,1(A) = B . Since ΩP,2(A) is an FG -submodule, it then follows that ΩP,2(A) = A . We know that D(g)
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is a principal ideal domain so it contains an element z such that P = zD(g) and we deduce that z2a = 0 for
each element a ∈ A . Therefore, defining rho in a similar manner to that above we see that Im(ρ) = zA ≤ B ,
but in this case ker(ρ) = ΩP,1(A) so that

zA ∼= A/ΩP,1(A).

Thus, zA has finite F -dimension so zA ̸= B . On the other hand, A ̸= ΩP,1(A) so zA is nonzero, contradicting
the fact that B is simple. It therefore follows that ΩP,1(A) = A and hence AnnD(g)(A) = P is a maximal
ideal of D(g) , which is true for all g ∈ G .

The last part of the proof now follows almost verbatim the last part of the proof of Lemma 2.3, so we
omit it. 2

We now extend this to the abelian-by-finite case.

Lemma 3.3 Let G be an abelian-by-finite group. Suppose that B is an FG-submodule of A such that B

and A/B are simple. If B has infinite F -dimension and A/B has finite F -dimension, then A contains an
FG-submodule C such that A = B ⊕ C .

Proof Let H be a normal abelian subgroup of G of finite index. Then both B and A/B contain
minimal H -invariant subspaces, denoted by C and D/B , respectively, such that B = ⊕1≤j≤nxjC and
A/B = ⊕1≤m≤kymD/B (see [5, Theorem 5.5], for example) for certain xj , yj ∈ A . We note that C has
infinite F -dimension and that D/B has finite F -dimension. It follows that A has a finite series

0 = B0 ≤ C = B1 ≤ · · · ≤ Bn = B ≤ D = Bn+1 ≤ · · · ≤ Bn+k = A

of FH -submodules whose factors are simple, the factors Bj/Bj−1 have infinite dimension for 1 ≤ j ≤ n , and
the factors Bm/Bm−1 have finite dimension for n+ 1 ≤ m ≤ n+ k .

Let E = E0 = Bn−1 and consider D/E . Using Lemma 3.2 we see that D/E contains an FH -submodule
E1/E such that D/E = B/E ⊕E1/E . Thus, E1/E ∼=FH D/B is a simple FH -module of finite F -dimension.

Suppose, inductively, that we have constructed for some r ≥ 0 an FH -submodule Er such that Er/Bn−r

is a simple FH -module of finite F -dimension. Then, using Lemma 3.2, we see that Er/Bn−r−1 contains an
FH -submodule Er+1/Bn−r−1 such that Er/Bn−r−1 = Er+1/Bn−r−1 ⊕ Bn−r/Bn−r−1 so Er+1/Bn−r−1 is
simple of finite F -dimension. We obtain a nonzero FH -submodule Ek , which has finite F -dimension. Let
{g1, . . . , gt} be a transversal to H in G . Then Ek

∼=F gjEk for each j with 1 ≤ j ≤ t and hence gjEk

is finite-dimensional. Hence, L =
∑

1≤j≤t gjEk is a finite-dimensional FG -module. Since Ek ̸= 0 , we have
L ̸= 0 . However, B is simple and has infinite F -dimension, so L∩B = 0 . Since A/B is a simple FG -module,
A/B = (L+B)/B , so A = L+B = L⊕B as required. 2

Proposition 3.4 Let G be an FC-hypercentral group and let A be an FG-module. Suppose that B is an
FG-submodule of A such that B and A/B are simple FG-modules. If B has infinite F -dimension and A/B

has finite F -dimension, then A contains an FG-submodule C such that A = B ⊕ C .

Proof Without loss of generality we may assume that CG(A) is trivial. Suppose first that CG(A/B) ̸= 0 .
Then CG(A/B)∩FC(G) ̸= 0 also (see [5, Corollary 3.16], for example) and the result follows from Lemma 3.1.
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Suppose that CG(A/B) = 1 . In this case we may think of G as a subgroup of GLn(F ) , where n = dimF (A/B) .
Using Lemma 2.2 we deduce that G is abelian-by-finite and then the result follows from Lemma 3.3. 2

Corollary 3.5 Let G be an FC-hypercentral group and let A be an FG-module. Suppose that B is a simple
FG-submodule of A of infinite F -dimension such that A/B has finite F -dimension. Then A contains an
FG-submodule C such that A = B ⊕ C .

Proof Since B has finite codimension over F it follows that A has a finite series

0 = B0 ≤ B1 = B ≤ B2 ≤ · · · ≤ Bn+1 = A

whose factors are simple FG -modules and the factors Bj/Bj−1 have finite F -dimension for 2 ≤ j ≤ n + 1 .
We use induction on n . If n = 1 , the result follows from Proposition 3.4.

Suppose that n > 1 and that the result is true for Bn . Thus, Bn contains an FG -submodule D such
that Bn = B ⊕ D . Since D ∼= Bn/B it follows that D has finite F -dimension. The simple FG -module
Bn/D ∼= B has infinite dimension and A/Bn is a simple FG -module of finite F -dimension. By Proposition 3.4
we deduce that A/D contains an FG -submodule C/D of finite F -dimension such that A/D = Bn/D⊕C/D .
We have

A = Bn + C = (B +D) + C = B + C.

Since C has finite dimension and B is a simple FG -submodule, C ∩B = 0 , so A = B ⊕ C . 2

We note that just as with Corollary 2.6, Corollary 3.5 is no longer true for arbitrary groups G , even for
soluble groups; a counterexample appears in the paper [14] of Zaitsev.

Proof of Theorem A
Let

0 = A0 ≤ A1 ≤ · · · ≤ An−1 ≤ An = A

be an FG -composition series of A . We remark that the number n is an invariant of the module A .
We use induction on the length n of the FG -composition series of A . If n = 1 , then there is nothing

to prove. Suppose that n > 1 and that our statement has been proved for modules having a composition
series of length strictly less than n . We apply the induction hypothesis to A/A1 so A/A1 = D/A1 ⊕ E/A1

where D,E are FG -submodules of A , each FG -composition factor of D/A1 has finite F -dimension, and each
FG -composition factor of E/A1 has infinite F -dimension.

Suppose first that A1 has infinite F -dimension. If E = A1 , the result follows from Corollary 3.5.
Therefore, suppose that E/A1 ̸= 0 . Then the FG -composition length of D is less than the FG -composition
length of A . By induction hypothesis D contains an FG -submodule B such that D = B ⊕ A1 and every
FG -composition factor of B has finite dimension. We have

A = D + E = B +A1 + E = B + E.

The choice of B shows that

B ∩ E ≤ B ∩D = A1, so that B ∩ E ≤ B ∩A1 = 0,

which shows that A = B ⊕ E .
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Suppose now that A1 has finite F -dimension. If E = A1 , then each FG -composition factor of A has
finite F -dimension and the result follows. Therefore, suppose that E/A1 ̸= 0 . Then A/A1 contains a simple
FG -submodule S/A1 of infinite F -dimension. By Proposition 2.5 S contains an FG -submodule Y such that
S = A1⊕Y . In particular, A contains a simple FG -submodule of infinite F -dimension. The FG -composition
length of A/Y is less than the FG -composition length of A , a situation that was considered above. The result
follows. 2

Proof of Corollary A
Suppose that A contains a nonzero proper FG -submodule, but A is not FG -quasifinite. Then A

contains a nonzero proper FG -submodule B such that A/B is a simple FG -module. Being proper, B has
finite F -dimension, but then Corollary 2.6 shows that A contains an FG -submodule C such that A = B⊕C .
Since B ̸= 0 it follows that C is a proper FG -submodule and we obtain a contradiction, because C has infinite
F -dimension. This contradiction proves the result. 2

Proof of Corollary B
Suppose that A is a monolithic FG -module and let B be its FG -monolith. Then B is a nonzero simple

FG -submodule of finite codimension over F . Since A has infinite dimension, dimF (B) is infinite. Then
Corollary 3.5 shows that A contains an FG -submodule C such that A = B ⊕ C . In particular, C has finite
F -dimension and we obtain a contradiction since C is nonzero. This contradiction proves the result. 2
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