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Abstract: Our aim is to solve the problem asked by Bahramnezhad and Azar in ”KB-operators on Banach lattices and
their relationships with Dunford-Pettis and order weakly compact operators”. We show that a continuous operator R

from a Banach lattice N into a Banach space M is a b -weakly compact operator if and only if R is a KB -operator.
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1. Introduction
In [6] , Bahramnezhad and Azar defined a new classes of operators, named KB -operator and they have examined
some of their properties and asked the following problem;

Problem 1.1 ([6] , Problem 2.27) Give an operator R from a Banach lattice N into a Banach space M which
is a KB -operator but is not b-weakly compact.

We answer the question in the negative. A lot of properties and results on b -weakly compact operators
were given in [2−−5, 7] . Now, we recall the definitions of b -weakly compact operator and KB -operator.

Definition 1.2 Let R be a continuous operator from a Banach lattice N into a Banach space M.

(i) R is called KB -operator if R(xn) has a norm convergent subsequence in M for every positive
increasing sequence (xn) of the closed unit ball BN of N.

(ii) R is called b-weakly compact if R(xn) is norm convergent for every positive increasing sequence (xn)

of the closed unit ball BN of N.

For the basic theory on vector lattices and for unexplained terminology we refer to [1, 8] .

2. Section
We will prove that the classes of KB -operators and the b-weakly compact operators are the same.

Theorem 2.1 Let R be an operator from a Banach lattice N into a Banach space M. R is a b-weakly compact
operator if and only if R is a KB -operator.
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Proof It is clear that if R is a b-weakly compact then R is a KB -operator. Let (xn) be a sequence in N

such that 0 ≤ xn ↑ and ∥xn∥ ≤ 1. For an arbitrary subsequence (xk) of (xn), let us define

Ψ : N ′
+ → R+, f → Ψ(f) = sup f(xk).

For each k and f ∈ N ′
+ we have

f(xk) = |f(xk)| ≤ ∥f∥ ∥xk∥ ≤ ∥f∥ .

Then, sup f(xk) ∈ R+. We claim that Ψ is additive. To see this, let f, g ∈ N ′
+.

Ψ(f + g) = sup [(f + g)(xk)] = sup [f(xk) + g(xk)] ≤ sup f(xk) + sup g(xk) = Ψ(f) + Ψ(g).

On the other hand, if xm, xt ∈ (xk), then pick xl ∈ (xk) with xm ≤ xl and xt ≤ xl, and note that

f(xm) + g(xt) ≤ f(xl) + g(xl) ≤ sup [(f + g)(xl)] = Ψ(f + g).

Using a well-known technique (e.g., [1, p.14]) , we have Ψ(f) + Ψ(g) ≤ Ψ(f + g). Therefore, Ψ is additive and
by Theorem 1.7 in [1] Ψ extends uniquely to a positive operator from N ′ into R (we call Ψ again). Hence,
Ψ ∈ N ′′. It is easy to see that Ψ is an upper bound of (xk)

′′ in N ′′ (where (xk)
′′ is the image of (xk) under the

well known canonical emdedding of N into to the bidual N ′′ ) . There exists G in N ′′ with (xk)
′′ ↑ G as N ′′ is

Dedekind complete. Since (xk)
′′(f) → G(f) for each f ∈ N ′

+ , we have (xk)
′′ → G with respect to σ(N ′′, N ′) .

Thus, all subsequences of (xn) are convergent to the same limit G with respect to σ(N ′′, N ′) . By the hypothesis,
there exists a subsequence (xnk

) of (xn) and y ∈ M such that R(xnk
) → y with respect to norm-topology.

This leads to [R(xnk
)]
′′ → y′′ in M ′′ with respect to norm-topology which implies [R(xnk

)]
′′ → y′′ in M ′′ with

respect to σ(M ′′,M ′) . The continuity of R′′
: (N ′′, σ(N ′′, N ′)) → (M ′′, σ(M ′′,M ′)) yields R

′′
[(xk)

′′] → R
′′
(G)

and [R(xnk
)]
′′ → y′′ with respect to σ(M ′′,M ′) . Since R

′′
[(xnk

)′′] = [R(xnk
)]
′′ , we have R

′′
(G) = y′′ . So, this

means that every norm convergent a subsequence of R(xn) has the same norm limit. Now, we will show that
R(xn) → y in M with respect to norm-topology. We assume that R(xn) does not convergence to y. Thus,
there exist ε > 0 and a subsequence (xm) of (xn) such that ∥R(xm)− y∥ > ε for all m . By the hypothesis
and the above conclusion there exists a subsequence (xmk

) of (xm) such that R(xmk
) → y with respect to

norm-topology, which is a contradiction. 2
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