

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2019) 43: 2818 – 2820 © TÜBİTAK doi:10.3906/mat-1908-11

Research Article

The relation between b-weakly compact operator and KB-operator

Bahri TURAN^{*}^(D), Birol ALTIN^(D)

Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey

Received: 05.08.2019	•	Accepted/Published Online: 01.10.2019	•	Final Version: 22.11.2019

Abstract: Our aim is to solve the problem asked by Bahramnezhad and Azar in "KB-operators on Banach lattices and their relationships with Dunford-Pettis and order weakly compact operators". We show that a continuous operator R from a Banach lattice N into a Banach space M is a b-weakly compact operator if and only if R is a KB-operator.

Key words: b-weakly compact operator, KB-operator

1. Introduction

In [6], Bahramnezhad and Azar defined a new classes of operators, named KB-operator and they have examined some of their properties and asked the following problem;

Problem 1.1 ([6], Problem 2.27) Give an operator R from a Banach lattice N into a Banach space M which is a KB-operator but is not b-weakly compact.

We answer the question in the negative. A lot of properties and results on *b*-weakly compact operators were given in [2 - 5, 7]. Now, we recall the definitions of *b*-weakly compact operator and *KB*-operator.

Definition 1.2 Let R be a continuous operator from a Banach lattice N into a Banach space M.

(i) R is called KB-operator if $R(x_n)$ has a norm convergent subsequence in M for every positive increasing sequence (x_n) of the closed unit ball B_N of N.

(ii) R is called b-weakly compact if $R(x_n)$ is norm convergent for every positive increasing sequence (x_n) of the closed unit ball B_N of N.

For the basic theory on vector lattices and for unexplained terminology we refer to [1, 8].

2. Section

We will prove that the classes of KB-operators and the *b*-weakly compact operators are the same.

Theorem 2.1 Let R be an operator from a Banach lattice N into a Banach space M. R is a b-weakly compact operator if and only if R is a KB-operator.

^{*}Correspondence: bturan@gazi.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 46B42, 47B60

Proof It is clear that if R is a b-weakly compact then R is a KB-operator. Let (x_n) be a sequence in N such that $0 \le x_n \uparrow$ and $||x_n|| \le 1$. For an arbitrary subsequence (x_k) of (x_n) , let us define

$$\Psi: N'_+ \to \mathbb{R}_+, \ f \to \Psi(f) = \sup f(x_k).$$

For each k and $f \in N'_+$ we have

$$f(x_k) = |f(x_k)| \le ||f|| \, ||x_k|| \le ||f||$$

Then, $\sup f(x_k) \in \mathbb{R}_+$. We claim that Ψ is additive. To see this, let $f, g \in N'_+$.

$$\Psi(f+g) = \sup \left[(f+g)(x_k) \right] = \sup \left[f(x_k) + g(x_k) \right] \le \sup f(x_k) + \sup g(x_k) = \Psi(f) + \Psi(g).$$

On the other hand, if $x_m, x_t \in (x_k)$, then pick $x_l \in (x_k)$ with $x_m \leq x_l$ and $x_t \leq x_l$, and note that

$$f(x_m) + g(x_l) \le f(x_l) + g(x_l) \le \sup [(f+g)(x_l)] = \Psi(f+g)$$

Using a well-known technique (e.g., [1, p.14]), we have $\Psi(f) + \Psi(q) \leq \Psi(f+q)$. Therefore, Ψ is additive and by Theorem 1.7 in [1] Ψ extends uniquely to a positive operator from N' into \mathbb{R} (we call Ψ again). Hence, $\Psi \in N''$. It is easy to see that Ψ is an upper bound of $(x_k)''$ in N'' (where $(x_k)''$ is the image of (x_k) under the well known canonical emdedding of N into to the bidual N''). There exists G in N'' with $(x_k)'' \uparrow G$ as N'' is Dedekind complete. Since $(x_k)''(f) \to G(f)$ for each $f \in N'_+$, we have $(x_k)'' \to G$ with respect to $\sigma(N'', N')$. Thus, all subsequences of (x_n) are convergent to the same limit G with respect to $\sigma(N'', N')$. By the hypothesis, there exists a subsequence (x_{n_k}) of (x_n) and $y \in M$ such that $R(x_{n_k}) \to y$ with respect to norm-topology. This leads to $[R(x_{n_k})]'' \to y''$ in M'' with respect to norm-topology which implies $[R(x_{n_k})]'' \to y''$ in M'' with respect to $\sigma(M'', M')$. The continuity of $R'': (N'', \sigma(N'', N')) \to (M'', \sigma(M'', M'))$ yields $R''[(x_k)''] \to R''(G)$ and $[R(x_{n_k})]'' \to y''$ with respect to $\sigma(M'', M')$. Since $R''[(x_{n_k})''] = [R(x_{n_k})]''$, we have R''(G) = y''. So, this means that every norm convergent a subsequence of $R(x_n)$ has the same norm limit. Now, we will show that $R(x_n) \to y$ in M with respect to norm-topology. We assume that $R(x_n)$ does not convergence to y. Thus, there exist $\varepsilon > 0$ and a subsequence (x_m) of (x_n) such that $||R(x_m) - y|| > \varepsilon$ for all m. By the hypothesis and the above conclusion there exists a subsequence (x_{m_k}) of (x_m) such that $R(x_{m_k}) \to y$ with respect to norm-topology, which is a contradiction.

References

- [1] Aliprantis CD, Burkinshaw O. Positive Operators. Berlin, Germany: Springer, 2006.
- [2] Alpay Ş, Altın B, Tonyalı C. On property (b) of vector lattices. Positivity 2003; 7: 135-139. doi: 10.1023/A:1025840528211
- [3] Altın B. On b-weakly compact operators on Banach lattices. Taiwanese Journal of Mathematics 2007; 11: 143-150. doi: 10.11650/twjm/1500404641
- [4] Altın B. Some properties of b-weakly compact operators. Gazi Üniversitesi Fen Bilimleri Dergisi 2005; 391-395.
- [5] Aqzzouz B, Moussa M, Hmichane J. Some Characterizations of b-weakly compact operators on Banach lattices. Mathematical Reports 2010; 62: 315-324.
- [6] Bahramnezhad A, Azar KH. KB-operators on Banach lattices and their relationships with Dunford-Pettis and order weakly compact operators. University Politehnica of Bucharest Scientific Bulletin 2018; 80: 91-98.

TURAN and ALTIN/Turk J Math

- [7] Cheng N, Chen ZL. Some properties of b-weakly compact operators on Banach lattice. World Academy of Science, Engineering and Technology International Journal of Mathematical Computational Physical Electrical and Computer Engineering 2010; 4: No 3.
- [8] Meyer-Nieberg P. Banach Lattices. Berlin, Germany: Springer, 1991.