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1. Introduction
The classical additive functional equation

f(x+ y) = f(x) + f(y) (A)

was first studied by Cauchy in 1821 for continuous function f : R → R ; the solution takes the form f(x) = ax

for some a ∈ R (see e.g. [3, Chapter 1]). This result of Cauchy has been extended in various directions. In
particular, for f : C → C , we have the following result taken from the book [3, Theorem 1.21]: the general
solution f : C → C of (A) is given by f(z) = A1(x)+ iA2(x)+A3(y)+ iA4(y) , where z = x+ iy (x, y ∈ R) , and
Aj : R → R (j = 1, 2, 3, 4) are real additive functions, i.e. satisfying (A). In 1903, Pexider solved the functional
equation

f(x+ y) = g(x) + h(y), (PA)

referred to as the pexiderized additive functional equation, for unknown functions f, g, h : C → C , and found
that the solutions of (PA) are given by f(x) = a+A(x)+b, g(x) = a+A(x), h(x) = A(x)+b , where A : C → C
is a complex additive function, and a, b are complex constants (see [3, Chapter 1]).

The classical concepts of odd and even functions have been extended to that of type-j functions by
Schwaiger in [6]. These are components fj of a function f defined by

fj(x) =
1

n

n−1∑
k=0

ω−kjf(ωkx) (j = 0, 1, . . . , n− 1)

and satisfy fj(ωx) = ωjfj(x), f =
∑n−1

j=0 fj , where ω := exp(2πi/n) is a primitive nth root of unity. Schwaiger
adopted this concept and solved the following system of functional equations satisfied by components of the
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exponential function

fj(x+ ωmy) =

j∑
ℓ=0

ω(j−ℓ)mfℓ(x)fj−ℓ(y) +

n−1∑
ℓ=j+1

ω(n+j−ℓ)mfℓ(x)fn+j−ℓ(y) (j = 0, 1, . . . , n− 1) (1.1)

where m ∈ {0, 1, . . . , n−1} is fixed. The stability of the system (1.1) was established one year later by Förg-Rob
and Schwaiger in [2]. The results in [6] and [2] were simplified and systematized by Muldoon [4] through the
use of circulant matrices. In [5], Laohakosol and Ponpetch used Muldoon’s approach [4] to solve a circulant
functional equation for the quadratic function, i.e., a system of functional equations satisfied by components of
the quadratic function derived via their corresponding circulant matrices, and established its stability.

In this work, through the concept of type-j function, we derive a circulant matrix functional equation
for the additive function. Given such a circulant matrix functional equation, their component solutions are
determined, and the stability of such system is established.

2. Preliminaries

This section consists of two parts. The first part lays out the notation and terminology that will be kept fixed
throughout, while the second part lists (without proofs) basic results needed later.

2.1. Notation

For a fixed integer n ≥ 2 , let ω = exp(2πi/n) be a primitive nth root of unity. The n×n (symmetric) Fourier
matrix and its conjugate matrix are defined, respectively, by

F :=
1√
n


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
... . . . ...

1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2

 , F ∗ :=
1√
n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
... . . . ...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

 .

Note that F is unitary, i.e., FF ∗ = I = F ∗F , where I denotes the n× n identity matrix.

The diagonal matrix Ω is defined by Ω = diag(1, ω, ω2, . . . , ωn−1) :=


1 0 · · · 0
0 ω · · · 0
...

... . . . ...
0 0 · · · ωn−1

 .

Given a sequence {a0, . . . , an−1} ⊂ C , its circulant matrix is defined by

circ(a0, a1, . . . , an−1) :=


a0 a1 · · · an−1

an−1 a0 · · · an−2

...
... . . . ...

a1 a2 · · · a0

 ;
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its diagonal matrix is defined by diag(a0, a1, . . . , an−1) :=


a0 0 · · · 0
0 a1 · · · 0
...

... . . . ...
0 0 · · · an−1

 .

The circulant matrix corresponding to the sequence {0, 1, 0, . . . , 0} is

π := circ(0, 1, 0, . . . , 0) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
1 0 0 · · · 0

 .

The circulant matrix corresponding to a function f , with j -component fj , is defined by

F(x) := circ(f0(x), f1(x), . . . , fn−1(x)) =


f0(x) f1(x) · · · fn−1(x)

fn−1(x) f0(x) · · · fn−2(x)
...

... . . . ...
f1(x) f2(x) · · · f0(x)

 .

2.2. Basic results
The following results are taken from [4, 5].

1) If A = circ(a0, a1, . . . , an−1) , then FAF ∗ =
√
n diag (F ∗ ā)

T
, ā := [a0, . . . , an−1]

T
, T denoting

transpose.

2) For a nonnegative integer m , if A is a circulant matrix, then F (Ω−mAΩm)F ∗ = πm (FAF ∗)π−m .

3) Any f : C → C can be written uniquely as f(x) = f0(x)+f1(x)+ · · ·+fn−1(x) , where each j -component
fj (j = 0, 1, . . . , n− 1) is a type-j function that can be obtained from

f0(x)
f1(x)

...
fn−1(x)

 =
1√
n

F


f(x)
f(ωx)

...
f(ωn−1x)

 =
1√
n

F ∗


f(x)

f(ω−1x)
...

f(ω−(n−1)x)

 .

4) The circulant matrix F(x) corresponding to f : C → C satisfies

FF(x)F ∗ = diag
(
f(x), f(ωx), . . . , f(ωn−1x)

)
(2.1)

F(ωmx) = Ω−mF(x)Ωm (m ∈ N). (2.2)

5) For a nonnegative integer m , if B = diag(b0, b1, . . . , bn−1) , then πmBπ−m = diag(bm, bm+1, . . . , bm+n−1) ,
where suffixes are taken modulo n .

6) If B = diag(b0, b1, . . . , bn−1) is a diagonal matrix, then F ∗BF is a circulant matrix, i.e. F ∗BF =

circ(d0, d1, . . . , dn−1) , where dj = (1/n)
∑n−1

k=0 ω
n−kjbk (j = 0, 1, . . . , n− 1) .

7) For m ∈ {0, 1, . . . , n − 1}, d = gcd(n,m) , we have s + tm ̸≡ u + vm (mod n) , for every s, u ∈
{0, 1, . . . , d− 1} and t, v ∈ {0, 1, . . . , n/d− 1} , except when s = u, t = v .
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3. A circulant functional equation
We begin by deriving a circulant equation for the additive function.

Theorem 3.1 If f, g, h : C → C satisfy (PA), then their circulant matrices F,G,H satisfy

F(x+ y) = G(x) +H(y) (x, y ∈ C).

More generally, we have

F(x+ ωmy) = G(x) + Ω−mH(y)Ωm (x, y ∈ C; m ∈ {0, . . . , n− 1}). (3.1)

Proof From the basic result (2.1) of property 4) in the last section, we have

G(x) +H(y) = F ∗diag
(
g(x), g(ωx), . . . , g(ωn−1x)

)
F + F ∗diag

(
h(y), h(ωy), . . . , h(ωn−1y)

)
F

= F ∗diag
(
g(x) + h(y), g(ωx) + h(ωy), . . . , g(ωn−1x) + h(ωn−1y)

)
F

= F ∗diag
(
f(x+ y), f(ω(x+ y)), . . . , f(ωn−1(x+ y))

)
F = F(x+ y).

Using this last relation together with the basic result (2.2) of property 4), the last assertion is immediate. 2

Our next step is to solve the circulant equation (3.1)

Theorem 3.2 Let F,G,H be circulant matrices whose first rows are, respectively,

(f0(x), f1(x), . . . , fn−1(x)), (g0(x), g1(x), . . . , gn−1(x)), (h0(x), h1(x), . . . , hn−1(x)),

where fi, gi, hi : C → C are arbitrary functions which need not be components of any functions. Let m ∈
{0, 1, . . . , n− 1}, d := gcd(n,m) . If F,G,H satisfy

F(x+ ωmy) = G(x) + Ω−mH(y)Ωm, (3.2)

then

• when d = n , we have 
f0(x)
f1(x)

...
fn−1(x)

 =
1√
n

F


A0(x) + w0(0) + v0(0)
A1(x) + w1(0) + v1(0)

...
An−1(x) + wn−1(0) + vn−1(0)

 (3.3)


g0(x)
g1(x)

...
gn−1(x)

 =
1√
n

F


A0(x) + v0(0)
A1(x) + v1(0)

...
An−1(x) + vn−1(0)

 (3.4)


h0(x)
h1(x)

...
hn−1(x)

 =
1√
n

F


A0(x) + w0(0)
A1(x) + w1(0)

...
An−1(x) + wn−1(0)

 , (3.5)
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where Ai : C → C (i = 0, 1, . . . , n− 1) are additive functions and

vi(x) :=

n−1∑
ℓ=0

ωiℓgℓ(x), wi(x) :=

n−1∑
ℓ=0

ωiℓhℓ(x) (i = 0, . . . , n− 1); (3.6)

• when 1 ≤ d < n , we have
f0(x)
f1(x)

...
fn−1(x)

 =
1√
n

F


α0(x) + Cm(0) +B0(0)

αm(x) + C2m(0) +Bm(0)
...

α(n/d−1)m(x) + C(n/d)m(0) +B(n/d−1)m(0)

 (3.7)


g0(x)
g1(x)

...
gn−1(x)

 =
1√
n

F


α0(x) +B0(0)
αm(x) +Bm(0)

...
α(n/d−1)m(x) +B(n/d−1)m(0)

 (3.8)


h0(x)
h1(x)

...
hn−1(x)

 =
1√
n

F


α0(ω

mx) + Cm(0)
αm(ωmx) + C2m(0)

...
α(n/d−1)m(ωmx) + C(n/d)m(0)

 (3.9)

where, for j = 0, 1, . . . , n/d− 1 ,

αjm(x) =


A0+jm(x)
A1+jm(x)

...
Ad−1+jm(x)

 , Bjm(0) =


v0+jm(0)
v1+jm(0)

...
vd−1+jm(0)

 , C(j+1)m(0) =


w0+(j+1)m(0)
w1+(j+1)m(0)

...
wd−1+(j+1)m(0)


and Ak+jm : C → C (k = 0, 1, . . . , d− 1) are additive functions.

Proof From (3.2), we have

FF(x+ ωmy)F ∗ = FG(x)F ∗ + FΩ−mH(y)ΩmF ∗.

Using the basic results 1) and 2), this relation takes the form

U(x+ ωmy) = V(x) +Wm(y), (3.10)

where

diag(u0(x), u1(x), . . . , un−1(x)) = U(x) = FF(x)F ∗ =
√
n diag(F ∗f̄(x))T (3.11)

diag(v0(x), v1(x), . . . , vn−1(x)) = V(x) = FG(x)F ∗ =
√
n diag(F ∗ḡ(x))T (3.12)

diag(w0(x), w1(x), . . . , wn−1(x)) = W(x) = FH(x)F ∗ =
√
n diag(F ∗h̄(x))T (3.13)

Wm(x) = πmW(x)π−m. (3.14)
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Equation (3.10) and the basic result 5) yield the following system of n equations

u0(x+ ωmy) = v0(x) + wm(y)

...

un−1(x+ ωmy) = vn−1(x) + wm+n−1(y).

Using the basic result 7), we subdivide these n equations into d different classes, each with n/d equations,
briefly written as

uk+jm(x+ ωmy) = vk+jm(x) + wk+(j+1)m(y) (j = 0, 1, . . . , n/d− 1; k = 0, 1, . . . , d− 1). (3.15)

For each j ∈ {0, 1, . . . , n/d− 1} and k ∈ {0, 1, . . . , d− 1} , replacing y = 0 in (3.15), we have

uk+jm(x) = vk+jm(x) + wk+(j+1)m(0), (3.16)

while replacing x = 0 in (3.15), we have

uk+jm(ωmy) = vk+jm(0) + wk+(j+1)m(y). (3.17)

Substituting (3.16) and (3.17) into (3.15), we get

uk+jm(x+ ωmy) = uk+jm(x)− wk+(j+1)m(0) + uk+jm(ωmy)− vk+jm(0).

Replacing y by ω−my in the last equation and adding −wk+(j+1)m(0)− vk+jm(0) to both sides, we obtain

uk+jm(x+ y)− wk+(j+1)m(0)− vk+jm(0)

= uk+jm(x)− wk+(j+1)m(0)− vk+jm(0) + uk+jm(y)− wk+(j+1)m(0)− vk+jm(0). (3.18)

Defining

Ak+jm(x) := uk+jm(x)− wk+(j+1)m(0)− vk+jm(0) (j ∈ {0, 1, . . . , n/d− 1}, k ∈ {0, 1, . . . , d− 1}) ,

the relation (3.18) shows that it is an additive function. Substituting back into (3.16) and (3.17), we have, for
j = 0, 1, . . . , n/d− 1, k = 0, 1, . . . , d− 1 ,

uk+jm(x) = Ak+jm(x) + wk+(j+1)m(0) + vk+jm(0), (3.19)

vk+jm(x) = Ak+jm(x) + vk+jm(0), (3.20)

wk+(j+1)m(x) = Ak+jm(ωmx) + wk+(j+1)m(0), (3.21)

where Ak+jm are additive functions. If d = n , then m = 0 and from (3.19), (3.20), and (3.21), we get, for
k = 0, 1, . . . , n− 1 ,

uk(x) = Ak(x) + wk(0) + vk(0), vk(x) = Ak(x) + vk(0), wk(x) = Ak(x) + wk(0). (3.22)

From (3.11), (3.12), (3.13), and (3.22), we get the three solution matrices (3.3), (3.4), (3.5).
If 1 ≤ d < n , then using (3.11)–(3.13), (3.19)–(3.21), we similarly get the three solution matrices (3.7)–

(3.9). 2
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Remark. If the functions fi, gi, hi (i = 0, 1, . . . , n− 1) in Theorem 3.2 are identical, then (3.2) becomes

F(x+ ωmy) = F(x) + Ω−mF(y)Ωm.

The solutions thus take the form:

• when d = n , 
f0(x)
f1(x)

...
fn−1(x)

 =
1√
n

F


A0(x)
A1(x)

...
An−1(x)

 (3.23)

where Ai : C → C (i = 0, 1, . . . , n− 1) are additive functions;

• when 1 ≤ d < n , 
f0(x)
f1(x)

...
fn−1(x)

 =
1√
n

F


α(x)

α(ωmx)
...

α(ω(n/d−1)mx)

 (3.24)

where α(x) = [A0(x), A1(x), . . . , Ad−1(x)]
T and Ak : C → C (k = 0, 1, . . . , d− 1) are additive functions.

4. Stability

In this section, we establish the stability of the circulant equation (3.1). As in [4], we use the usual 1 -norm for
a square matrix A = (ai,j)0≤i,j≤n−1 defined by

∥A∥ = max
0≤i≤n−1

n−1∑
j=0

|ai,j |.

Throughout this section, let ϕ : C × C → [0,∞) be a mapping satisfying the condition that the sum∑∞
ℓ=0 t

−(ℓ+1)
(
ϕ(tℓx, tℓy) + ϕ(tℓx, 0) + ϕ(0, tℓy)

)
converges for all x, y ∈ C and for all integers t ≥ 2 .

Theorem 4.1 Let F,G,H be circulant matrices whose first rows are, respectively,

(f0(x), f1(x), . . . , fn−1(x)), (g0(x), g1(x), . . . , gn−1(x)), (h0(x), h1(x), . . . , hn−1(x)),

where fi, gi, hi : C → C are arbitrary functions which need not be components of any functions, let m ∈
{0, 1, . . . , n− 1} . If F,G,H satisfy

∥F(x+ ωmy)−G(x)− Ω−mH(y)Ωm∥ ≤ ϕ(x, y), (4.1)

then there exists a circulant matrix A(x) := circ(a0(x), a1(x), . . . , an−1(x)), aj : C → C (j = 0, 1, . . . , n − 1)

satisfying the matrix additive equation

A(x+ y) = A(x) +A(y) (4.2)
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and

∥F(x)−A(x)∥ ≤ n

t−1∑
ℓ=1

Φt(x, ℓx) (4.3)

∥G(x)−A(x)∥ ≤ n2ϕ(x, 0) + n

t−1∑
ℓ=1

Φt(x, ℓx) + ∥H(0)∥ (4.4)

∥H(x)− Ā(x)∥ ≤ n2ϕ(0, x) + n

t−1∑
ℓ=1

Φt(ω
mx, ℓωmx) + ∥G(0)∥, (4.5)

where

Φt(x, y) :=

∞∑
ℓ=0

t−(ℓ+1)
{
n
(
ϕ(tℓx, tℓω−my) + ϕ(tℓx, 0) + ϕ(0, tℓω−my)

)
+ ∥V(0)∥+ ∥Wm(0)∥

}
with V(0) = diag(v0(0), v1(0), . . . , vn−1(0)), Wm(0) = diag(wm(0), wm+1(0), . . . , wm+n−1(0)), vi, wi are as
defined in (3.6) with suffixes taken modulo n , and Ā(x) := ΩmA(ωmx)Ω−m is a circulant matrix satisfying
(4.2), and whose first row is (ā0(x), ā1(x), . . . , ān−1(x)) , āj(x) = ω(n−j)maj(ω

mx) (j = 0, 1, . . . , n− 1) .

Proof Multiplying the expressions in (4.1) by ∥F∥ on the left side and by ∥F ∗∥ on the right side, we obtain

∥FF(x+ ωmy)F ∗ − FG(x)F ∗ − FΩ−mH(y)ΩmF ∗∥ ≤ ∥F∥ϕ(x, y)∥F ∗∥.

By the basic results 1) and 2), this last inequality is of the form

∥U(x+ ωmy)−V(x)−Wm(y)∥ ≤ nϕ(x, y), (4.6)

where U, V,W,Wm are as defined in (3.11)–(3.14). Substituting y = 0 into (4.6) we have

∥V(x) +Wm(0)−U(x)∥ ≤ nϕ(x, 0), (4.7)

and similarly substituting x = 0 into (4.6), we have

∥V(0) +Wm(y)−U(ωmy)∥ ≤ nϕ(0, y). (4.8)

Using (4.6)–(4.8), we get

∥U(x+ ωmy)−U(x)−U(ωmy)∥ − ∥V(0) +Wm(0)∥ ≤ ∥U(x+ ωmy)−U(x)−U(ωmy) +V(0) +Wm(0)∥

≤ n (ϕ(x, y) + ϕ(x, 0) + ϕ(0, y)) .

Replacing y by ω−my , we get

∥U(x+ y)−U(x)−U(y)∥ ≤ n
(
ϕ(x, ω−my) + ϕ(x, 0) + ϕ(0, ω−my)

)
+ ∥V(0)∥+ ∥Wm(0)∥.

Since U(x) = diag(u0(x), u1(x), . . . , un−1(x)) = (ui,j(x))0≤i,j≤n−1 , where ui,j(x) =

{
ui(x) if i = j

0 if i ̸= j
, by the

definition of norm, we get

max
0≤i≤n−1

n−1∑
j=0

|ui,j(x+ y)− ui,j(x)− ui,j(y)| ≤ n
(
ϕ(x, ω−my) + ϕ(x, 0) + ϕ(0, ω−my)

)
+ ∥V(0)∥+ ∥Wm(0)∥.
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For each i = 0, 1, . . . , n− 1 , we have

|ui(x+ y)− ui(x)− ui(y)| ≤ n
(
ϕ(x, ω−my) + ϕ(x, 0) + ϕ(0, ω−my)

)
+ ∥V(0)∥+ ∥Wm(0)∥.

By [1, Theorem 13.3, p. 131], there exist unique additive functions si : C → C satisfying (A) such that

|ui(x)− si(x)| ≤
t−1∑
ℓ=1

Φt(x, ℓx) (i = 0, 1, . . . , n− 1).

Let S(x) := diag(s0(x), s1(x), . . . , sn−1(x)) = (si,j(x))0≤i,j≤n−1 , where si,j(x) =

{
si(x) if i = j

0 if i ̸= j
. Using the

definition of norm, we have

∥U(x)− S(x)∥ = max
0≤i≤n−1

n−1∑
j=0

|ui,j(x)− si,j(x)| ≤
t−1∑
ℓ=1

Φt(x, ℓx). (4.9)

Multiplying the expressions in (4.9) by ∥F ∗∥ on the left side and by ∥F∥ on the right side, and using (3.11),
we get (4.3), where A(x) = F ∗S(x)F . Since S(x) is a diagonal matrix, the basic result 6) shows that A(x)

is a circulant matrix whose first row is (a0(x), a1(x), . . . , an−1(x)) , where

aj(x) =
1

n

n−1∑
k=0

ωn−kjsk(x) (j = 0, 1, . . . , n− 1).

Since each sk satisfies (A), the function elements aj satisfy (A), i.e. A(x) satisfies (4.2).
Multiplying the expressions in (4.7) by ∥F ∗∥ on the left side and by ∥F∥ on the right side, and using

(3.11)–(3.13), and the basic result 2), we get

∥G(x)−A(x)∥ − ∥F(x)−A(x)∥ − ∥Ω−mH(0)Ωm∥ ≤ ∥G(x) + Ω−mH(0)Ωm − F(x) +A(x)−A(x)∥

≤ n2ϕ(x, 0).

and using (4.3) the assertion (4.4) follows.
Multiplying the expressions in (4.8) by ∥F ∗∥ on the left side and by ∥F∥ on the right side, and using

(3.11)–(3.13), and the basic result 2), we get

∥Ω−mH(y)Ωm −A(ωmy)∥ − ∥F(ωmy)−A(ωmy)∥ − ∥G(0)∥

≤ ∥G(0) + Ω−mH(y)Ωm − F(ωmy) +A(ωmy)−A(ωmy)∥ ≤ n2ϕ(0, y).

Using (4.3), we get

∥Ω−mH(y)Ωm −A(ωmy)∥ ≤ n2ϕ(0, y) + n

t−1∑
m=1

Φt(ω
my, ℓωmy) + ∥G(0)∥. (4.10)

Multiplying the expressions in (4.10) by ∥Ωm∥ on the left side and by ∥Ω−m∥ on the right side, we obtain (4.5).
2

Taking ϕ(x, y) = ε in Theorem 4.1, we get the following
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Corollary 4.2 Let ε > 0 be fixed. If F,G,H satisfy

∥F(x+ ωmy)−G(x)− Ω−mH(y)Ωm∥ ≤ ε, (4.11)

then there exists a circulant matrix A satisfying (4.2) and

∥F(x)−A(x)∥ ≤ 3n2ε+ n∥V(0)∥+ n∥Wm(0)∥ (4.12)

∥G(x)−A(x)∥ ≤ 4n2ε+ n∥V(0)∥+ n∥Wm(0)∥+ ∥H(0)∥ (4.13)

∥H(x)− Ā(x)∥ ≤ 4n2ε+ n∥V(0)∥+ n∥Wm(0)∥+ ∥G(0)∥. (4.14)

5. Examples
We end the paper by working out two examples, first for Theorem 3.2, and second for Theorem 4.1.
Example 1. For n = 3 , the matrix equation (3.2) yields the following three systems of functional equations,
corresponding to the three possible values of m ∈ {0, 1, 2} ,

• m = 0; f0(x+ y) = g0(x) + h0(y), f1(x+ y) = g1(x) + h1(y), f2(x+ y) = g2(x) + h2(y)

• m = 1; f0(x+ ωy) = g0(x) + h0(y), f1(x+ ωy) = g1(x) + ωh1(y), f2(x+ ωy) = g2(x) + ω2h2(y)

• m = 2; f0(x+ ω2y) = g0(x) + h0(y), f1(x+ ω2y) = g1(x) + ω2h1(y), f2(x+ ω2y) = g2(x) + ωh2(y).

(Observe that these systems are equivalent in the sense that each one of them can be transformed to (PA) by
variable changing.)
In any case, d = gcd(3,m) = 1 and the solution functions take the form f0(x)

f1(x)
f2(x)

 =
1√
3
F

 α0(x) + Cm(0) +B0(0)
αm(x) + C2m(0) +Bm(0)
α2m(x) + C3m(0) +B2m(0)


 g0(x)

g1(x)
g2(x)

 =
1√
3
F

 α0(x) +B0(0)
αm(x) +Bm(0)
α2m(x) +B2m(0)


 h0(x)

h1(x)
h2(x)

 =
1√
3
F

 α0(ω
mx) + Cm(0)

αm(ωmx) + C2m(0)
α2m(ωmx) + C3m(0)


where αjm(x) = Ajm(x), Bjm(0) = vjm(0), C(j+1)m(0) = w(j+1)m(0) (j = 0, 1, 2) , and Ajm : C → C are
additive functions.

Our second example also treats the case n = 3 with constant bound in Theorem 4.1.
Example 2. Let

ϕ(x, y) = K, fi(x) = Ai(x) + ai, gi(x) = Ai(x) + bi, hi(x) = ω−imAi(ω
mx) + ci (i = 1, 2, 3),

where Ai are additive functions and K, ai, bi, ci are constants, and let

F(x) = circ(f0(x), f1(x), f2(x)), G(x) = circ(g0(x), g1(x), g2(x)),

H(x) = circ(h0(x), h1(x), h2(x)), A(x) = circ(A0(x), A1(x), A2(x)).
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Clearly, A satisfies (4.2). The hypothesis (4.1) here takes the form

∥F(x+ ωmy)−G(x)− Ω−mH(y)Ωm∥ ≤ K,

which is equivalent to

∥circ(f0(x+ ωmy)− g0(x)− h0(y), f1(x+ ωmy)− g1(x)− ωmh1(y), f2(x+ ωmy)− g2(x)− ω2mh2(y))∥ ≤ K.

Using the definitions of norm and fi, gi, hi , this last inequality yields
2∑

i=0

|ai − bi − ci| = ∥circ(a0 − b0 − c0, a1 − b1 − c1, a2 − b2 − c2)∥ ≤ K. (5.1)

From (3.12) and (3.14), we see that V(0) and Wm(0) are diagonal matrices, while from their definitions, we
see that H(0) and G(0) are circulant matrices. By direct computation, we get

Φt(x, y) :=

∞∑
ℓ=0

t−(ℓ+1) (9K + ∥V(0)∥+ ∥Wm(0)∥) = 1

t− 1
(9K + ∥V(0)∥+ ∥Wm(0)∥) ,

∥V(0)∥ = max
0≤i≤2

|vi(0)|, where vi(0) =

2∑
ℓ=0

ωiℓbi,

∥Wm(0)∥ = max
0≤i≤2

|wi(0)|, where wi(0) =

2∑
ℓ=0

ωiℓci,

∥H(0)∥ =

2∑
ℓ=0

|ci|, and ∥G(0)∥ =

2∑
ℓ=0

|bi|.

Regarding the assertions in (4.3)–(4.5), we get
2∑

i=0

|ai| = ∥circ(f0(x)−A0(x), f1(x)−A1(x), f2(x)−A2(x))∥ = ∥F(x)−A(x)∥

≤ 27K + 3 max
0≤i≤2

∣∣∣∣∣
2∑

ℓ=0

ωiℓbi

∣∣∣∣∣+ 3 max
0≤i≤2

∣∣∣∣∣
2∑

ℓ=0

ωiℓci

∣∣∣∣∣ , (5.2)

2∑
i=0

|bi| = ∥circ(g0(x)−A0(x), g1(x)−A1(x), g2(x)−A2(x))∥ = ∥G(x)−A(x)∥

≤ 36K + 3 max
0≤i≤2

∣∣∣∣∣
2∑

ℓ=0

ωiℓbi

∣∣∣∣∣+ 3 max
0≤i≤2

∣∣∣∣∣
2∑

ℓ=0

ωiℓci

∣∣∣∣∣+
2∑

ℓ=0

|ci|, (5.3)

2∑
i=0

|ci| = ∥circ(h0(x)−A0(ω
mx), h1(x)− ω2mA1(ω

mx), h2(x)− ωmA2(ω
mx))∥ = ∥H(x)− Ā(x)∥

≤ 36K + 3 max
0≤i≤2

∣∣∣∣∣
2∑

ℓ=0

ωiℓbi

∣∣∣∣∣+ 3 max
0≤i≤2

∣∣∣∣∣
2∑

ℓ=0

ωiℓci

∣∣∣∣∣+
2∑

ℓ=0

|bi|. (5.4)

The hypothesis (5.1) and the assertions (5.2)–(5.4) are satisfied by choosing for example ai = 0, bi = ci (i =

0, 1, 2) .
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