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Abstract: We consider a bi-invariant Lie group (G, g) and we equip its tangent bundle TG with the left invariant
Riemannian metric introduced in the paper of Asgari and Salimi Moghaddam. We investigate Einstein-like, Ricci soliton,
and Yamabe soliton structures on TG . Then we study some geometrical tensors on TG such as Cotton, Schouten,
Weyl, and Bach tensors, and we also compute projective and concircular and m-projective curvatures on TG . Finally,
we compute the Szabo operator and Jacobi operator on the tangent Lie group TG .
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1. Introduction
The study of the differential geometry of tangent bundles was started in the early 1960s by Davies [10],
PDombrowski [12], Ledger and Yano [20], Tachibana and Okumura [25], and Sasaki [24]. Yano and Kobayashi
[27–29] developed the theory of vertical and complete lifts of tensor fields and connections to tangent bundles.

Some new interesting geometric structures on the tangent bundle of a Riemannian manifold (M, g) may
be obtained by lifting the metric g from the base manifold. The natural lifts on the total space of the tangent
bundle of a Riemannian manifold, introduced by Kowalski and Sekizawa [19], were intensively studied in the
last decades by Abbassi, Sarih, and others (cf., for instance, [1] and [22]).

In the last years there has been increasing interest in the study of Riemannian manifolds endowed with
metrics satisfying some structural equations, possibly involving curvature and some globally defined vector
fields. These objects naturally arise in several different frameworks. One of the most important and well-
studied examples is that of Ricci solitons [13, 18]. Other examples are, for instance, Ricci almost solitons [23]
and Yamabe solitons [9, 11].

An important class of Riemannian manifolds is the family of Lie groups equipped with left invariant
Riemannian metrics. A Lie group is a smooth manifold that also carries a group structure whose product and
inverse operations are smooth as maps of manifolds. In the middle of the 19th century, Sophus Lie made the
far-reaching discovery that techniques designed to solve particular unrelated types of ODEs, such as separable,
homogeneous, and exact equations, were in fact all special cases of a general form of integration procedure
based on the invariance of the differential equation under a continuous group of symmetries. One of the reasons
why Lie groups are nice is that they have a differential structure, which means that the notion of tangent
space makes sense at any point of the group. Furthermore, the tangent space at identity happens to have some
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algebraic structure, specifically that of a Lie algebra. Roughly speaking, the tangent space at identity provides
a linearization of the Lie group, and it turns out that many properties of a Lie group are reflected in its Lie
algebra. Lie groups are the natural concept for the mathematical description of symmetry in the physical world.
They were initially introduced as a tool to solve or simplify ordinary and partial differential equations.

Lie group theory establishes surprising relations between many different areas of mathematics, in par-
ticular between algebra, geometry, topology, and analysis. In string theory and loop quantum gravity, which
are currently the only two promising candidates for a successful unification of quantum theory and general
relativity, Lie groups also play an important role.

In this paper, we consider a bi-invariant Lie group (G, g) , and we equip its tangent bundle TG with
a special left invariant Riemannian metric g̃ . It is worth mentioning that the choice of bi-invariant metrics
on G is motivated by the fact that their Levi-Civita connection and consequently their curvatures of different
kinds are known. This paper is divided into three parts. In the first part, we characterize conformal (resp.
Killing) vertical and complete lifts vector fields and study some special Yamabe soliton structures on TG . We
obtain the condition, in the second part, that the Ricci almost soliton structure in a bi-invariant Lie group
is conformally invariant. Finally, in the third part we compute the Schouten and Cotton tensors of TG . In
this part we introduce the concept of the Weyl tensor and we compute the Weyl tensor of TG . Moreover, by
using the Weyl–Schouten theorem we conclude that the conformal flatness of TG implies the flatness of G . In
this part we also introduce the Szabo operator of a Riemannian manifold (M, g) and we calculate the Szabo
operator of TG . Then we show the Szabo flatness of G and the Szabo flatness of TG . Moreover, we introduce
the concept of the Jacobi operator of a Riemannian manifold (M, g) . Then we compute the Jacobi operator
of tangent Lie group TG , and we also show that TG is nilpotent Osserman at identity when G is nilpotent
Osserman at identity. This means that the nilpotency of the Jacobi operator of G implies the nilpotency of the
Jacobi operator of TG .

2. Preliminaries
Let (M, g) be a Riemannian manifold and TM be its tangent bundle. If (xi) is a local coordinate system
on M and (xi, yi) is the induced local coordinate system on TM , then the complete lift and vertical lift of a
vector field X = Xi∂i on M are defined as follows [26]:

Xc = Xi∂i + ya(∂aX
i)∂̇i, Xv = Xi∂̇i,

where ∂i :=
∂

∂xi and ∂̇i :=
∂

∂yi . Furthermore, the complete lift f c of smooth function f on M is defined by

f c = yi( ∂f
∂xi ) .

Consider the tangent bundle TG over a Lie group G . By using the Lie group structure of G we can
construct a Lie group structure on TG as follows:

(x, vx).(y, wy) := (xy, (dlx)(wy) + (dry)(vx)),

for all x, y ∈ G , vx ∈ TxG , and wy ∈ TyG , where lx and ry are the left and right translations of G by x and
y , respectively. We can easily check that this multiplication is smooth and TG equipped with this action has
a group structure, and so (TG, .) is a Lie group.
The Lie brackets of vertical and complete lifts satisfy the following equations [2]:

[Xv, Y v] = 0, [Xc, Y c] = [X,Y ]c, [Xv, Y c] = [X,Y ]v. (2.1)
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It is well known that the complete and vertical lifts of any left invariant vector fields of G are left invariant
vector fields on the Lie group TG (for more details, see Proposition 1.3 of [26]). Also, for every arbitrary left

invariant vector field X̃ on TG , there exist two left invariant vector fields X1, X2 on G such that X̃ = Xc
1+Xv

2 ,
where Xc

1 is the complete lift of X1 and Xv
2 is the vertical lift of X2 . Moreover, if {X1, · · · , Xm} is a basis

for the Lie algebra g of G then {Xv
1 , · · · , Xv

m, Xc
1 , · · · , Xc

m} is a basis for the Lie algebra g̃ of TG .
A metric g on a Lie group G is called left invariant (resp. right invariant) if

gb(u, v) = gab((dla)bu, (dla)bv),

(resp. gb(u, v) = gba((dra)bu, (dra)bv)),

for all a, b ∈ G and all u, v ∈ TbG . To simplify, (G, g) is called a left invariant (resp. right invariant) Lie group.
A Riemannian metric that is both left and right invariant is called a bi-invariant metric. In this case, (G, g) is
called a bi-invariant Lie group.

Let g be a left invariant Riemannian metric on a Lie group G . Then we consider a left invariant
Riemannian metric g̃ as follows [2]:

g̃(Xc, Y c) = g(X,Y ), g̃(Xv, Y v) = g(X,Y ), g̃(Xc, Y v) = 0, (2.2)

where X , Y are any two left invariant vector fields on G . Throughout this paper we consider the Riemannian
metric g̃ on TG defined as above. Then we study the geometry of (TG, g̃) and its relation with that of (G, g) .

Theorem 2.1 [2] Let ∇ and ∇̃ be the Levi-Civita connections of (G.g) and (TG, g̃) , respectively, and X and
Y be any two left invariant vector fields on G . Then we have:

∇̃XcY c = (∇XY )c, ∇̃XvY v = (∇XY − 1

2
[X,Y ])c,

∇̃XcY v = (∇XY +
1

2
ad⋆Y X)v, ∇̃XvY c = (∇XY +

1

2
ad⋆XY )v,

where ad⋆XY denotes the transpose of adX with respect to the inner product induced by g on g .

As concerns the Riemannian curvature of (TG, g̃) , we have the following.

Theorem 2.2 Let (G, g) be a left invariant Lie group and g̃ the left invariant Riemannian metric given by

(2.2). If R and R̃ denote the Riemannian curvature tensors of (G, g) and (TG, g̃) , respectively, then, for all
left invariant vector fields X,Y, Z on G , we have the following identities:

R̃(Xc, Y c)Zv = (R(X,Y )Z)v + {1
2
∇X(ad∗ZY ) +

1

2
ad∗∇Y Z+ 1

2ad
∗
ZY X − 1

2
∇Y (ad

∗
ZX)

− 1

2
ad∗∇XZ+ 1

2ad
∗
ZXY − 1

2
ad∗Z [X,Y ]}v,

R̃(Xc, Y c)Zc = (R(X,Y )Z)c,
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R̃(Xc, Y v)Zv = (R(X,Y )Z)c + {−1

2
∇X([Y, Z])− 1

2
∇Y (ad

∗
ZX) +

1

2
[Y,∇XZ] +

1

4
[Y, ad∗ZX]

− 1

2
[[X,Y ], Z]}c,

R̃(Xv, Y c)Zc = (R(X,Y )Z))v + {1
2
ad∗X(∇Y Z)− 1

2
∇Y (ad

∗
XZ)− 1

2
ad∗∇

XZ+1
2
ad∗

X
Z)
Y − 1

2
ad∗[X,Y ]Z}v,

R̃(Xv, Y v)Zc = {∇X(∇Y Z) +
1

2
∇X(ad∗Y Z)− 1

2
[X,∇Y Z]− 1

4
[X, ad∗Y Z]−∇Y (∇XZ)

− 1

2
∇Y (ad

∗
XZ) +

1

2
[Y,∇XZ] +

1

4
[Y, ad∗XZ]}c,

R̃(Xv, Y v)Zv = {∇X∇Y Z − 1

2
∇X([Y, Z]) +

1

2
ad∗X(∇Y Z − 1

2
[Y, Z])−∇Y (∇XZ) +

1

2
∇Y ([X,Z])

− 1

2
ad∗Y (∇XZ − 1

2
[X,Z])}v.

Proof Using Theorem 2.1, we conclude that

R̃(Xc, Y c)Zv = ∇̃Xc∇̃Y cZv − ∇̃Y c∇̃XcZv − ∇̃[Xc,Y c]Z
v

= ∇̃Xc(∇Y Z +
1

2
ad∗ZY )v − ∇̃Y c(∇XZ +

1

2
ad∗ZX)v − ∇̃[X,Y ]cZ

v

= {∇X(∇Y Z +
1

2
ad∗ZY ) +

1

2
ad∗∇Y Z+ 1

2ad
∗
ZY X}v

− {∇Y (∇XZ +
1

2
ad∗ZX) +

1

2
ad∗∇XZ+ 1

2ad
∗
ZXY }v

− {∇[X,Y ]Z +
1

2
ad∗Z [X,Y ]}v

= (R(X,Y )Z)v + {1
2
∇X(ad∗ZY ) +

1

2
ad∗∇Y Z+ 1

2ad
∗
ZY X

− 1

2
∇Y (ad

∗
ZX)− 1

2
ad∗∇XZ+ 1

2ad
∗
ZXY − 1

2
ad∗Z [X,Y ]}v.

In a similar way, we obtain the other relations. 2

When the metric g on G is bi-invariant, then its Levi-Civita connection ∇ satisfies the identity ∇XY = 1
2 [X,Y ]

for all left invariant vector fields X and Y on G , and we also have g(adXY, Z) + g(Y, adXZ) = 0 , for all left
invariant vector fields X , Y , and Z on G , i.e. ad∗X = adX , for all left invariant vector fields X on G . On the
other hand, the curvature R of (G, g) is given by R(X,Y )Z = − 1

4 [[X,Y ], Z] . Using the previous identities,
Theorems 2.1 and 2.2 give the following.
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Corollary 2.3 Let (G, g) be a bi-invariant Lie group and g̃ the left invariant Riemannian metric on TG given
by (2.2). Then, for all left invariant vector fields X , Y , Z on G , we have:

(i) ∇̃XcY c =
1

2
[X,Y ]c; ∇̃XcY v = [X,Y ]v; ∇̃XvY c = ∇̃XvY v = 0.

(ii) R̃(Xc, Y c)Zc = −1

4
[[X,Y ], Z]c,

R̃(Xc, Y c)Zv = R̃(Xc, Y v)Zv = R̃(Xv, Y c)Zc = R̃(Xv, Y v)Zc = R̃(Xv, Y v)Zv = 0.

(iii) R̃ic(Xc, Y c) = Ric(X,Y ); R̃ic(Xc, Y v) = R̃ic(Xv, Y v) = 0.

Hereafter, we suppose that the tangent bundle TG of any left invariant (resp. bi-invariant) Lie group (G, g) is
endowed with the left invariant Riemannian metric g̃ given by (2.2).

3. Conformality properties and the concepts related to it

Let (M, g) be a Riemannian manifold and X be a vector field on it. We say that X is a conformal vector
field if (LXg)(Y, Z) = 2ρg(Y, Z) for some smooth function ρ on M and every X,Y of χ(M) . Moreover, X is
called a Killing vector field when ρ vanishes. Furthermore, if ρ is constant we say that X is homothetic.

Let TM be the tangent bundle over M and g̃ be a Riemannian metric on TM . A conformal vector field
X̃ on TM is said to be inessential if the scalar function ρ̃ on TM in LX̃ g̃ = 2ρ̃g̃ is constant on each fiber.

Theorem 3.1 Let X be a left invariant vector field on a left invariant Lie group (G, g) and Xc be the complete
lift of X . Then X is a conformal vector field on (G, g) if and only if Xc is a conformal vector field on (TG, g̃) .

Proof At first it is remarkable that for left invariant vector fields X and Y on G , g(X,Y ) is constant, and
so Zg(X,Y ) = 0 , for any vector field Z on G . Thus, direct computations give us:

LXc g̃(Xc
j , X

c
k) = Xcg̃(Xc

j , X
c
k)− g̃([Xc, Xc

j ], X
c
k)− g̃(Xc

j , [X
c, Xc

k])

= −g̃([X,Xj ]
c, Xc

k)− g̃(Xc
j , [X,Xk]

c)

= −(g([X,Xj ], Xk) + g(Xj , [X,Xk]) = LXg(Xj , Xk), (3.1)

LXc g̃(Xv
j , X

v
k ) = Xcg̃(Xv

j , X
v
k )− g̃([Xc, Xv

j ], X
v
k )− g̃(Xv

j , [X
c, Xv

k ])

= g̃([Xv
j , X

c], Xv
k ) + g̃(Xv

j , [X
v
k , X

c])

= g̃([Xj , X]v, Xv
k ) + g̃(Xv

j , [Xk, X]v)

= g([Xj , X], Xk) + g(Xj , [Xk, X]) = LXg(Xj , Xk), (3.2)

LXc g̃(Xv
j , X

c
k) = Xcg̃(Xv

j , X
c
k)− g̃([Xc, Xv

j ], X
c
k)− g̃(Xv

j , [X
c, Xc

k])

= g̃([Xv
j , X

c], Xc
k)− g̃(Xv

j , [X,Xk]
c)

= g̃([Xj , X]v, Xc
k) = 0. (3.3)
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Hence, Xc is a conformal vector field on TG . Conversely we have:

(LXg)(Xj , Xk) = (LXc g̃)(Xc
j , X

c
k) = 2ρ̃g̃(Xc

j , X
c
k) = 2ρ̃g(Xj , Xk).

Since the left-hand side of the above equation is a function on G , we conclude that Xc is an inessential vector
field on TG and therefore ρ̃ is a function on G . Hence, X is conformal. 2

Here we study the conditions by which the vertical lift of a left invariant vector field on a Lie group G is Killing.
Easily we get the following:

LXv g̃(Xc
j , X

c
k) = Xv g̃(Xc

j , X
c
k)− g̃([Xv, Xc

j ], X
c
k)− g̃(Xc

j , [X
v, Xc

k])

= −g̃([X,Xj ]
v, Xc

k)− g̃(Xc
j , [X,Xk]

v) = 0, (3.4)

LXv g̃(Xv
j , X

v
k ) = Xv g̃(Xv

j , X
v
k )− g̃([Xv, Xv

j ], X
v
k )− g̃(Xv

j , [X
v, Xv

k ])

= −g̃(0, Xv
k )− g̃(Xv

j , 0) = 0, (3.5)

LXv g̃(Xv
j , X

c
k) = Xv g̃(Xv

j , X
c
k)− g̃([Xv, Xv

j ], X
c
k)− g̃(Xv

j , [X
v, Xc

k])

= −g̃(0, Xc
k)− g̃(Xv

j , [X,Xk]
v) = −g(Xj , [X,Xk]). (3.6)

The above equations imply that Xv is Killing if and only if g(Xj , [X,Xk]) = 0 , for all j, k = 1, · · ·n . Obviously,
if g(Xj , [X,Xk]) = 0 for all j, k = 1, · · ·n , then (LXg)(Xj , Xk) = 0 for all j, k = 1, · · ·n , i.e. X is a Killing
vector field on G . Also, the relation g(Xj , [X,Xk]) = 0 gives us [X,Xk] = 0 , ∀1 ≤ k ≤ n . These imply that
X belongs to the centralizer of g . Therefore, we have the following theorem:

Theorem 3.2 Let X be a left invariant vector field on a left invariant Lie group (G, g) . Then the vertical lift
Xv of X is a Killing vector field on (TG, g̃) if and only if X belongs to the centralizer of g = TeG . In this
case, X is a Killing vector field on G

Let (M, g) be a Riemannian manifold and X be a vector field on M . We say that (M, g,X) is a Yamabe
soliton if the following identity holds:

1

2
LXg(Y, Z) = (S + λ)g(Y, Z), (3.7)

for all vector fields Y , Z on M , where λ is a real number and S is the scalar curvature of M .

Theorem 3.3 Let (G, g) be a bi-invariant Lie group and X be a left invariant vector field on G . If (G, g,X)

is a Yamabe soliton, then (TG, g̃,Xc) is a Yamabe soliton.

Proof Let S and S̃ be the scalar curvatures of G and TG , respectively. It is known that S = S̃ (see [2]).

Let Ỹ and Z̃ be left invariant vector fields on TG . Then there exists left invariant vector fields Y1 , Y2 , Z1 ,
Z2 on G such that Ỹ = Y c

1 + Y v
2 and Z̃ = Zc

1 + Zv
2 . Now, by the definition of Yamabe solitons and by the

2847



SEIFIPOUR and PEYGHAN/Turk J Math

identity (3.1), we have the following:

1

2
(LXc g̃)(Ỹ , Z̃) =

1

2
((LXc g̃)(Y c

1 , Z
c
1) + (LXc g̃)(Y v

2 , Z
v
2 ))

=
1

2
((LXg)(Y1, Z1) + (LXg)(Y2, Z2))

= (S + λ)(g(Y1, Z1) + g(Y2, Z2))

= (S̃ + λ)g̃(Ỹ , Z̃),

for all left invariant vector fields Ỹ , Z̃ on TG . i.e. (TG, g̃,Xc) is a Yamabe soliton. 2

Theorem 3.4 Let (G, g) be a bi-invariant Lie group and X be a left invariant vector field on G . Then the
following statements hold:

(1) If (TG, g̃,Xv) is a Yamabe soliton, then X is Killing.

(2) If (TG, g̃,Xc) is a Yamabe soliton, then (G, g,X) is Yamabe soliton.

(3) If (TG, g̃,Xc +Xv) is a Yamabe soliton, then (G, g,X) is a Yamabe soliton.

Proof (1). Using the definition of the Yamabe soliton we have

1

2
(LXv g̃)(Ỹ , Z̃) = (S̃ + λ)g̃(Ỹ , Z̃). (3.8)

If we consider Ỹ = Y c and Z̃ = Zv , where Y , Z are left invariant vector fields on G , then we have

1

2
(LXv g̃)(Y c, Zv) = (S + λ)g̃(Y c, Zv).

Therefore, we conclude that − 1
2g([X,Y ], Z) = 0 for all left invariant vector fields Y, Z on G . Hence, X is a

Killing vector field.
(2). Setting Ỹ = Y c and Z̃ = Zc in (3.8), where Y , Z are left invariant vector fields on G , and using (2.2)
and (3.1), we get

1

2
(LXg)(Y, Z) = (S + λ)g(Y, Z).

Hence, (G,X, g) is a Yamabe soliton.
(3). By the definition of the Yamabe soliton we have

1

2
(LXc+Xv g̃)(Ỹ , Z̃) = (S̃ + λ)g̃(Ỹ , Z̃).

If we consider Ỹ = Y c and Z̃ = Zc , where Y , Z are left invariant vector fields on G , then we obtain

1

2
(LXc g̃)(Y c, Zc) +

1

2
(LXv g̃)(Y c, Zc) = (S + λ)g(Y, Z).

Using the identities (3.1) and (3.5), we deduce that 1
2 (LXg)(Y, Z) = (S + λ)g(Y, Z) for all left invariant vector

fields Y, Z on G . Hence, (G, g,X) is a Yamabe soliton. 2
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4. Einstein-like and soliton structures on bi-invariant Lie groups

Definition 4.1 [16] A Riemannian manifold (M, g) is said to be Einstein-like of A-type (resp. of B -type) if
its Ricci tensor is cyclic-parallel; that is:

(∇XRic)(Y, Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y ) = 0, ∀X,Y, Z ∈ χ(M), (4.1)

(resp. its Ricci tensor is a Codazzi tensor; that is:

(∇XRic)(Y, Z) = (∇Y Ric)(X,Z), ∀X,Y, Z ∈ χ(M).) (4.2)

Remark 4.2 If the Ricci tensor of a Riemannian manifold (M, g) satisfies (4.1) and (4.2), then we get
(∇XRic)(Y, Z) = 0 , for any X,Y, Z ∈ χ(M) . In this case, (M, g) is a Ricci-parallel manifold. Also, (4.1) is
equivalent to (∇XRic)(X,X) = 0 , for any X ∈ χ(M) .

Theorem 4.3 Every bi-invariant Lie group (G, g) is an Einstein-like Lie group of A-type.

Proof We have

(∇XRic)(X,X) = X(Ric(X,X))−Ric(∇XX,X)−Ric(Y,∇XX),

for any left invariant vector fields X on G . Since the Riemannian curvature is left invariant, the Ricci tensor
is constant. Also, we have ∇XX = 1

2 [X,X] = 0 . From the above equation we deduce (∇XRic)(X,X) = 0

for any left invariant vector fields X on G . Therefore, from Definition 4.1 and Remark 4.2, we conclude that
(G, g) is Einstein-like of A -type. 2

Theorem 4.4 Let (G, g) be an Einstein-like bi-invariant Lie group of B -type. Then (TG, g̃) is a Ricci-parallel
manifold.

Proof Let X̃ , Ỹ , Z̃ be left invariant vector fields on TG . Then there exist left invariant vector fields X1 ,
X2 , Y1 , Y2 , Z1 , and Z2 on G such that X̃ = Xc

1 +Xv
2 , Ỹ = Y c

1 +Y v
2 , Z̃ = Zc

1+Zv
2 . Therefore, by calculating

the covariant derivative of the Ricci tensor, we have the following:

(∇̃X̃R̃ic)(Ỹ , Z̃) = X̃(R̃ic(Ỹ , Z̃))− R̃ic(∇̃X̃ Ỹ , Z̃)− R̃ic(Ỹ , ∇̃X̃ Z̃). (4.3)

Obviously, the first term of the right side of the above equation is zero. Now we study the second term. With
attention to Corollary 2.3, we have:

R̃ic(∇̃X̃ Ỹ , Z̃) = R̃ic(∇̃X̃ Ỹ , Zc
1) + R̃ic(∇̃X̃ Ỹ , Zv

2 )

= R̃ic(∇̃Xc
1
Y c
1 , Z

c
1) + R̃ic(∇̃Xc

1
Y v
2 , Z

c
1) + R̃ic(∇̃Xv

2
Y v
2 , Z

c
1) + R̃ic(∇̃Xv

2
Y c
1 , Z

c
1)

+ R̃ic(∇̃Xc
1
Y c
1 , Z

v
2 ) + R̃ic(∇̃Xc

1
Y v
2 , Z

v
2 ) + R̃ic(∇̃Xv

2
Y v
2 , Z

v
2 ) + R̃ic(∇̃Xv

2
Y c
1 , Z

v
2 )

=
1

2
R̃ic([X1, Y1]

c, Zc
1) + R̃ic([X1, Y2]

v, Zc
1) +

1

2
R̃ic(([X1, Y1]

c, Zv
2 ) + R̃ic([X1, Y2]

v, Zv
2 )

=
1

2
Ric([X1, Y1], Z1) = Ric(∇X1

Y1, Z1).
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In a similar way we have:

R̃ic(Ỹ , ∇̃X̃ Z̃) = Ric(Y1,∇X1Z1). (4.4)

Setting these equations in (4.3) we get:

(∇̃X̃R̃ic)(Ỹ , Z̃) = (∇X1
Ric)(Y1, Z1). (4.5)

Since (G, g) has a Codazzi–Ricci tensor, we have

(∇X1
Ric)(Y1, Z1) = (∇Y1

Ric)(X1, Z1). (4.6)

Using (4.4), (4.5), and (4.6) we conclude that R̃ic is a Codazzi tensor. Using (4.4) and (4.6), Theorem 4.3

implies that R̃ic is cyclic-parallel. Therefore, (TG, g̃) is a Ricci-parallel manifold. 2

Definition 4.5 Let (M, g) be a Riemannian manifold. We say that (M, g) is a gradient Ricci soliton if there
is smooth function f on M such that

Ric(Y, Z) + (Hessf)(Y, Z) = λg(Y, Z), ∀Y, Z ∈ χ(M), (4.7)

where λ is a real number and Hessf is the Hessian of f given by

Hessf(X,Y ) = ∇df(X,Y ) = X(Y (f))− (∇XY )(f). (4.8)

Also, we say that (M, g,X) is a Ricci almost soliton if the following identity holds:

Ric(Y, Z) +
1

2
LXg(Y, Z) = λg(Y, Z), ∀Y, Z ∈ χ(M), (4.9)

where λ is a smooth function on M and X is a vector field on M . When λ is a constant function, then (M, g)

is called a Ricci soliton.

Theorem 4.6 Let (G, g) be a left invariant Lie group. Considering (G, ḡ = e2ug) for some smooth function
u , we have:

(i) If (G, g) is a gradient Ricci soliton and gradf is a left invariant vector field, then (G, ḡ) is gradient
Ricci soliton if and only if

(λ̄e2u − λ+∆u+ (n− 2)∥ ∇u ∥2)g(Y, Z) = −(Y (u)Z + Z(u)Y − g(Y, Z)gradu)(f)

+ (n− 2)[Y (u)Z(u)−∇2u(Y, Z)]. (4.10)

(ii) If (G, g,X) is a Ricci almost soliton, then (G, ḡ,X) is Ricci almost soliton if and only if

1

2
(e2u − 1)(LXg)(Y, Z) = {λe2u +∆u+ (n− 2)∥ ∇u ∥2 −X(u)e2u − λ}g(Y, Z)

+ (2− n)[Y (u)Z(u)−∇2u(Y, Z)]. (4.11)
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Proof (i) At first, considering ḡ = e2ug , we get

∇Y Z = ∇Y Z + Y (u)Z + Z(u)Y − g(Y, Z)gradu. (4.12)

If we denote the Ricci tensors of g and ḡ by Ric and Ric , respectively, then using the above equation and the
definition of Ricci tensor we get the following:

Ric(Y, Z) = Ric(Y, Z) + (n− 2)[Y (u)Z(u)−∇2u(Y, Z)]− [∆u+ (n− 2)∥ ∇u ∥2]g(Y, Z), (4.13)

where ∆ is the Laplacian of (G, g) . Also, we have

Hessf(Y, Z) = Y ḡ(gradf, Z)− ḡ(gradf,∇Y Z).

Since gradf and ḡ are left invariant, then we have that ḡ(gradf, Z) is constant and so Y ḡ(gradf, Z) = 0 .
Thus, the above equation reduces to the following:

Hessf(Y, Z) = −ḡ(gradf,∇Y Z) = −(∇Y Z)(f).

Setting (4.12) in the above equation we obtain

Hessf(Y, Z) = Hessf(Y, Z)− (Y (u)Z + Z(u)Y − g(Y, Z)gradu)(f). (4.14)

Since (G, g) is a gradiant Ricci soliton (with real number λ), using (4.7), (4.13), and (4.14) we deduce that
(G, ḡ) is a gradient Ricci soliton (with real number λ̄) if and only if (4.10) holds.

(ii) Considering ḡ = e2ug , we get

(LX ḡ)(Y, Z) = 2X(u)e2ug(Y, Z) + e2u(LXg)(Y, Z). (4.15)

(4.13) and (4.15) give us

Ric(Y, Z) + (LX ḡ)(Y, Z) = Ric(Y, Z) + (n− 2)[Y (u)Z(u)−∇2u(Y, Z)]− [∆u+ (n− 2)∥ ∇u ∥2]g(Y, Z)

+X(u)e2ug(Y, Z) +
1

2
e2u(LXg)(Y, Z). (4.16)

If (G, g,X) is a Ricci almost soliton (with a smooth function λ), then from (4.9) and (4.16) we deduce that
(G, ḡ,X) is a Ricci almost soliton (with a smooth function λ̄) if and only (4.11) holds. 2

Theorem 4.7 Let (G, g) be a Lie group with a bi-invariant metric such that its Ricci tensor is cyclic-parallel.
If we consider (G, ḡ = e2ug) for some smooth function u , then the Ricci tensor of (G, ḡ) is cyclic-parallel if
and only if

(n− 2)X(X(u)X(u)−∇2u(X,Y ))−X(∆u+ (n− 2) ∥ ∇u ∥2)g(X,X)− 4X(u){Ric(X,X)

+ (n− 2)(X(u)X(u)−∇2u(X,X))− (∆u+ (n− 2) ∥ ∇u ∥2)g(X,X)}+ 2g(X,X){Ric(gradu,X)

+ (n− 2)((gradu)(u)X(u)−∇2u(gradu,X))− (∆u+ (n− 2) ∥ ∇u ∥2)g(gradu,X)} = 0.
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Proof Using

∇XX = 2X(u)X − g(X,X)gradu,

we get

Ric(∇XX,X) = 2X(u)Ric(X,X)− g(X,X)Ric(gradu,X), (4.17)

where X is a left invariant vector field on G . Since Ric(X,X) is constant, then considering the above equation
and using the formula of (∇XRic)(X,X) we conclude the assertion. 2

Theorem 4.8 Let (G, g) be a bi-invariant Lie group, X be a left invariant vector field on G , and Xc be its
complete lift of X on TG . If (TG, g̃,Xc) is a Ricci almost soliton (Ricci soliton), then X is a conformal
vector field (homothetic vector field).

Proof Let Y , Z be left invariant vector fields on G . We consider Ỹ = Y v and Z̃ = Zv . By the definition
of a Ricci almost soliton there exists a smooth function λ such that:

2λg̃(Ỹ , Z̃) = 2R̃ic(Ỹ , Z̃) + LXc g̃(Ỹ , Z̃) = LXc g̃(Y v, Zv) = LXg(Y, Z),

which gives us LXg(Y, Z) = 2λg(Y, Z) . Thus, λ is constant on each fiber of TG , and X is then a conformal
vector field of G . When (TG, g̃,Xc) is a Ricci soliton Lie group, then λ is a real number and so X is a
homothetic vector field. 2

Definition 4.9 Let (M, g) be a Riemannian manifold and X be a vector field on M . We say that (M, g,X)

is a ρ-Einstein soliton if the following identity holds:

Ric(Y, Z) +
1

2
LXg(Y, Z) = (ρS + λ)g(Y, Z), (4.18)

for all vector fields Y , Z tangent to M , where ρ , λ are real numbers and ρ is a nonzero constant.

Theorem 4.10 Let (G, g) be a bi-invariant Lie group and X be a left invariant vector field on G . Then the
following assertions hold:

(1) If (TG, g̃,Xv) is a Ricci soliton (ρ-Einstein soliton), then G is an Einstein manifold.

(2) If (TG, g̃, ,Xc +Xv) is a Ricci soliton (ρ-Einstein soliton), then G is an Einstein manifold.

Proof (1). Let Ỹ , Z̃ be left invariant vector fields on TG . By the definition of a Ricci soliton we have

R̃ic(Ỹ , Z̃) +
1

2
LXv g̃(Ỹ , Z̃) = λg̃(Ỹ , Z̃).

Replacing Ỹ = Y c + Y v and Z̃ = Zc + Zv in the above equation, we obtain the following:

R̃ic(Y c + Y v, Zc + Zv) +
1

2
(LXv g̃)(Y c + Y v, Zc + Zv) = λg̃(Ỹ , Z̃),
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which gives

Ric(Y, Z) +
1

2
{−g([X,Y ], Z)− g(Y, [X,Z])} = 2λg(Y, Z),

and consequently

Ric(Y, Z) +
1

2
(LXg)(Y, Z) = 2λg(Y, Z).

Therefore, (G,X, g) is a Ricci soliton. Now, in the Ricci soliton equation of TG , if we consider Ỹ = Y c and

Z̃ = Zv , then we conclude that g([X,Y ], Z) = 0 , so X is Killing. Since (G,X, g) is a Ricci soliton and X is
Killing, we deduce that G is an Einstein manifold.
(2). In the Ricci soliton equation of TG , if we consider Ỹ = Y c and Z̃ = Zc , then we conclude that G is a

Ricci soliton. Moreover, in the Ricci soliton equation of TG , if we consider Ỹ = Y v and Z̃ = Zc , we deduce
that X is Killing. Since (G,X, g) is a Ricci soliton and X is Killing, G is an Einstein manifold. 2

Theorem 4.11 Let (G, g) be a bi-invariant Lie group and X be a left invariant vector field on G . If (TG,Xc, g̃)

is a Ricci almost soliton (Ricci soliton), then X is a conformal (homothetic) vector field.

Proof In the Ricci soliton equation of TG , if we consider Ỹ = Y v and Z̃ = Zv , then the proof will be
complete. 2

Theorem 4.12 Let G be a bi-invariant Lie group and X be a left invariant vector field on G . If (TG,Xc, g̃)

is a ρ-Einstein soliton, then G is a ρ-Einstein soliton and X is a homothetic vector field.

Proof In the ρ -Einstein soliton equation of TG , if we consider Ỹ = Y c and Z̃ = Zc , then G is a ρ -Einstein
soliton. Moreover, in the ρ -Einstein soliton equation of TG , if we consider Ỹ = Y v and Z̃ = Zv , then X is a
homothetic vector field. 2

5. Tensors related to Riemannian curvature on TG

In Riemannian geometry there are some important tensors such as Schouten, Cotton, Weyl, and Bach tensors
(see [3], [14], [4], and [7] for more details). In the general theory of relativity, the curvature tensor describing
the gravitational field consists of two parts: the matter part and the free gravitational part. Also, the projective
curvature tensor is the measure of the failure of a Riemannian manifold to be of constant curvature. Furthermore,
in differential geometry, the Weyl curvature tensor and the Cotton and Bach tensors are essential tools for the
study of the curvature, conformal flatness, and conformal relativity of a space time or a pseudo-Riemannian
manifold. The Cotton tensor on a pseudo-Riemannian manifold restricts the relation between the Ricci tensor
and the energy-momentum tensor of matter in the Einstein equations and plays an important role in the
Hamilton formalism of general relativity.

The aim of this section is the study of Schouten, Cotton, Weyl, and Bach tensors of the tangent Lie group
TG whenever G is a bi-invariant Lie group. Moreover, in this section we show that if (G, g) is a bi-invariant
Ricci flat Lie group and (TG, g̃) has a harmonic Weyl tensor, then (TG, g̃) and (G, g) are Bach flat Lie groups.
At the end of this section we compute the components of the Bach tensor of TG .
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5.1. Schouten and Cotton tensors of TG
Let (M, g) be an n -dimensional Riemannian manifold, (n > 2) and let the Ricci tensor and the scalar curvature
be denoted by Ric and S , respectively. We define the Schouten tensor P and Cotton tensor C as follows:

P =
1

n− 2
(Ric− 1

2(n− 1)
Sg), (5.1)

C(X,Y, Z) = ∇ZP (X,Y )−∇Y P (X,Z). (5.2)

Lemma 5.1 Let (G, g) be a bi-invariant Lie group. Then the Schouten tensor P̃ of the tangent Lie group
(TG, g̃) is as follows:

P̃ (Xc, Y c) =
1

2n− 2
(Ric(X,Y )− S

4n− 2
g(X,Y )),

P̃ (Xc, Y v) = P̃ (Xv, Y c) = 0,

P̃ (Xv, Y v) = − S

(2n− 2)(4n− 2))
g(X,Y ).

Proof Let S and S̃ be the scalar curvatures of G and TG , respectively. We know that in a bi-invariant Lie
group, S = S̃ . Therefore, we have:

P̃ (Xc, Y c) =
1

2n− 2
(R̃ic(Xc, Y c)− S

4n− 2
g̃(Xc, Y c))

=
1

2n− 2
(Ric(X,Y )− S

4n− 2
g(X,Y )).

Similarly, we can conclude the others relations. 2

Lemma 5.2 Let (G, g) be a bi-invariant n-dimensional Lie group (n > 2) , and let C(X,Y, Z) and C̃(X̃, Ỹ , Z̃)

be Cotton tensors of (G, g) and (TG, g̃) , respectively. Then

C̃(X̃, Ỹ , Z̃) =
1

4n− 4

S

4n− 2
{g(X2, [Z2, Y1]) + g([Z2, X1], Y2)− g(X2, [Y2, Z1])− g([Y2, X1], Z2)}

+
n− 2

2n− 2
C(X1, Y1, Z1),

where X̃ , Ỹ , Z̃ are left invariant vector fields on TG , and X̃ = Xc
1 +Xv

2 , Ỹ = Y c
1 + Y v

2 and Z̃ = Zc
1 + Zv

2

for left invariant vector fields Xi, Yi, Zi on G , i = 1, · · ·n .

Proof The definitions of Schouten and Cotton tensors imply

∇ZP (X,Y ) =
1

n− 2
((∇ZRic)(X,Y )− S

2n− 2
(∇Zg)(X,Y ))

=
1

n− 2
(∇ZRic)(X,Y ),
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C(X,Y, Z) = ∇ZP (X,Y )−∇Y P (X,Z)

=
1

n− 2
((∇ZRic)(X,Y )− (∇Y Ric)(X,Z)),

(∇ZRic)(X,Y )− (∇Y Ric)(X,Z) = (n− 2)C(X,Y, Z).

Let X̃ , Ỹ , Z̃ be left invariant vector fields on TG . Therefore, there exist the left invariant vector fields X1 ,
X2 , Y1 , Y2 , Z1 , Z2 on G such that X̃ = Xc

1 +Xv
2 , Ỹ = Y c

1 + Y v
2 , Z̃ = Zc

1 + Zv
2 . Using Corollary 2.3 and

Lemma 5.1, the components of the Cotton tensor satisfy the following:

∇̃Z̃ P̃ (Xc
1 , Y

c
1 ) = ∇̃Zc

1+Zv
2
P̃ (Xc

1 , Y
c
1 ) = ∇̃Zc

1
P̃ (Xc

1 , Y
c
1 ) + ∇̃Zv

2
P̃ (Xc

1 , Y
c
1 )

= (Zc
1(P̃ (Xc

1 , Y
c
1 ))− P̃ (∇̃Zc

1
Xc

1 , Y
c
1 )− P̃ (Xc

1 , ∇̃Zc
1
Y c
1 ))

+ (Zv
2 (P̃ (Xc

1 , Y
c
1 ))− P̃ (∇̃Zv

2
Xc

1 , Y
c
1 )− P̃ (Xc

1 , ∇̃Zv
2
Y c
1 ))

= −P̃ ((∇Z1
X1)

c, Y c
1 )− P̃ (Xc

1 , (∇Z1
Y1)

c)

= − 1

2n− 2
(Ric(∇Z1

X1, Y1)−
S

4n− 2
g(∇Z1

X1, Y1))

− 1

2n− 2
(Ric(X1,∇Z1

Y1)−
S

4n− 2
g(X1,∇Z1

Y1))

=
1

2n− 2
(−Ric(∇Z1X1, Y1)−Ric(X1,∇Z1Y1))

+
S

(2n− 2)(4n− 2)
(g(∇Z1X1, Y1) + g(X1,∇Z1Y1))

=
1

2n− 2
(∇Z1

Ric)(X1, Y1).

Again, Corollary 2.3 and Lemma 5.1 imply that

∇̃Z̃ P̃ (Xv
2 , Y

v
2 ) = ∇̃Zc

1+Zv
2
P̃ (Xv

2 , Y
v
2 ) = ∇̃Zc

1
P̃ (Xv

2 , Y
v
2 ) + ∇̃Zv

2
P̃ (Xv

2 , Y
v
2 )

= (Zc
1(P̃ (Xv

2 , Y
v
2 ))− P̃ (∇̃Zc

1
Xv

2 , Y
v
2 )− P̃ (Xv

2 , ∇̃Zc
1
Y v
2 ))

+ (Zv
2 (P̃ (Xv

2 , Y
v
2 ))− P̃ (∇̃Zv

2
Xv

2 , Y
v
2 )− P̃ (Xv

2 , ∇̃Zv
2
Y v
2 ))

= −P̃ (([Z1, X2]
v, Y v

2 )− P̃ (Xv
2 , ([Z1, Y2]

v)− P̃ (0, Y v
2 )− P̃ (Xv

2 , 0)

=
S

(4n− 2)(2n− 2)
(g([Z1, X2], Y2) + g(X2, [Z1, Y2])) = 0.

In a similar way, we get:

∇̃Z̃ P̃ (Xv
2 , Y

c
1 ) =

S

2(2n− 2)(4n− 2)
g(X2, [Z2, Y1]),

∇̃Z̃ P̃ (Xc
1 , Y

v
2 ) =

S

2(2n− 2)(4n− 2)
g([Z2, X1], Y2).
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Thus, we can obtain the following:

∇̃Z̃ P̃ (X̃, Ỹ ) = ∇̃Z̃ P̃ (Xc
1 +Xv

2 , Y
c
1 + Y v

2 )

= ∇̃Z̃ P̃ (Xc
1 , Y

c
1 ) + ∇̃Z̃ P̃ (Xv

2 , Y
v
2 ) + ∇̃Z̃ P̃ (Xc

1 , Y
v
2 ) + ∇̃Z̃ P̃ (Xv

2 , Y
c
1 )

=
1

2n− 2
(∇Z1

Ric)(X1, Y1) +
S

2(2n− 2)(4n− 2)
{g(X2, [Z2, Y1]) + g([Z2, X1], Y2)}.

Therefore, we have:

C̃(X̃, Ỹ , Z̃) = ∇̃Z̃ P̃ (X̃, Ỹ )− ∇̃Ỹ P̃ (X̃, Z̃)

=
1

2n− 2
((∇Z1

Ric)(X1, Y1)− (∇Y1
Ric)(X1, Z1))

+
S

(4n− 4)(4n− 2)
{g(X2, [Z2, Y1]) + g([Z2, X1], Y2)− g(X2, [Y2, Z1])− g([Y2, X1], Z2)}

=
n− 2

2n− 2
C(X1, Y1, Z1)

+
S

(4n− 4)(4n− 2)
{g(X2, [Z2, Y1]) + g([Z2, X1], Y2)− g(X2, [Y2, Z1])− g([Y2, X1], Z2)}.

2

Definition 5.3 A Riemannian manifold (Mn, g) has harmonic Weyl tensor if the Cotton tensor vanishes.

Theorem 5.4 Let (G, g) be a bi-invariant n-dimensional Lie group (n > 2) . If (TG, g̃) has a harmonic Weyl
tensor then (G, g) has a harmonic Weyl tensor.

Proof Let X,Y, Z be left invariant vector fields on G . Lemma 5.2 gives us

C̃(Xc, Y c, Zc) =
n− 2

2n− 2
C(X,Y, Z) + 0. (5.3)

By hypothesis, (5.3) implies that C(X,Y, Z) = 0 . Hence, G has a harmonic Weyl tensor. 2

5.2. Weyl tensor of TG

The components of (0,4)-versions of Riemann tensor and Weyl tensor W are related by the following formula:

Wabcd = Rabcd +
S

(n− 1)(n− 2)
(gac.gbd − gad.gbc)

− 1

n− 2
(Ricac.gbd −Ricad.gbc +Ricbd.gac −Ricbc.gad), a, b, c, d = 1, · · ·n.

We recall that an n-dimensional Riemannian manifold (n > 3) is conformally flat if its Weyl tensor is zero.

Theorem 5.5 Let (G, g) be an n-dimensional bi-invariant Lie group (n > 3) . (TG, g̃) is conformally flat if
and only if (G, g) is flat.
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Proof Uing Corollary 2.3, we get

W̃ (Xc, Y c, Zc, T c) = (R(X,Y )Z, T ) +
S

(2n− 1)(2n− 2)
(g(X,Z)g(Y, T )− g(X,T )g(Y, Z))

− 1

2n− 2
(Ric(X,Z)g(Y, T )−Ric(X,T )g(Y, Z)

+Ric(Y, T )g(X,Z)−Ric(Y, Z)g(X,T )), (5.4)

W̃ (Xc, Y v, Zv, T c) = − S

(2n− 1)(2n− 2)
g(X,T )g(Y, Z) +

1

2n− 2
Ric(X,T )g(Y, Z), (5.5)

W̃ (Xc, Y c, Zv, T c) = W̃ (Xv, Y v, Zv, T c) = 0, (5.6)

W̃ (Xv, Y v, Zc, T c) = W̃ (Xv, Y c, Zc, T c) = 0, (5.7)

W̃ (Xv, Y c, Zc, T v) = − S

(2n− 1)(2n− 2)
g(X,T )g(Y, Z)

+
1

2n− 2
Ric(Y, Z)g(X,T ), (5.8)

W̃ (Xv, Y v, Zv, T v) =
S

(2n− 1)(2n− 2)
(g(X,Z)g(Y, T )− g(X,T )g(Y, T )), (5.9)

W̃ (Xv, Y v, Zc, T v) = W̃ (Xc, Y c, Zc, T v) = W̃ (Xc, Y v, Zv, T v) = 0, (5.10)

W̃ (Xc, Y c, Zv, T v) = 0. (5.11)

Obviously, if R = 0 , then W̃ = 0 . Conversely, if W̃ = 0 , then from (5.9) we conclude that S = 0 . Using (5.8)
we deduce that Ric = 0 . Therefore, applying (5.4), we get R = 0 . 2

Definition 5.6 Let (M, g) be an n-dimensional Riemannian manifold (n > 1) , and let the Ricci tensor and
Riemann curvature tensor be denoted by Ric and R , respectively. We define the projective curvature tensor Pr

as follows:

Pr(X,Y, Z) = R(X,Y )Z − 1

n− 1
(Ric(Y, Z)X −Ric(X,Z)Y ). (5.12)

We say that (M, g) is projectively flat if the projective curvature tensor Pr vanishes identically.

Theorem 5.7 Let (G, g) be an n-dimensional bi-invariant Lie group (n > 1) . (TG, g̃) is projectively flat if
and only if (G, g) is flat.
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Proof Let P̃ r and Pr be the projective curvature tensors of the manifolds (TG, g̃) and (G, g) , respectively.

Now direct calculation shows that all components of projective curvature tensor P̃ r are zero except:

g̃(P̃ r(Xc, Y c, Zc),W c) = g(R(X,Y )Z,W )− 1

2n− 1
(Ric(Y, Z)g(X,W )−Ric(X,Z)g(Y,W )),

g̃(P̃ r(Xv, Y c, Zc),W v) = − 1

2n− 1
(Ric(Y, Z)g(X,W )).

Now, from the hypothesis and the above equations, we derive that P̃ r = 0 if and only if R = 0 . 2

Definition 5.8 Let (M, g) be an n-dimensional Riemannain manifold (n > 1) . We define the concircular
curvature tensor Con as follows:

Con(X,Y, Z) = R(X,Y )Z − S

n(n− 1)
(g(Y, Z)X − g(X,Z)Y ). (5.13)

We say that (M, g) is concircularly flat if the concircular curvature tensor Con vanishes identically.

Theorem 5.9 Let (G, g) be an n-dimensional bi-invariant Lie group (n > 1) . (TG, g̃) is concircularly flat if
and only if (G, g) is flat.

Proof Let C̃on and Con be the noncircular curvature tensors of Lie groups (TG, g̃) and (G, g) , respectively.

Now direct computations imply that all components of concircular curvature tensor C̃on are zero except the
following:

g̃(C̃on(Xc, Y c, Zc),W c) = g(R(X,Y )Z,W )− S

2n(2n− 1)
(g(Y, Z)g(X,W )− g(X,Z)g(Y,W )),

g̃(C̃on(Xc, Y v, Zv),W c) = − S

2n(2n− 1)
(g(Y, Z)g(X,W )),

g̃(C̃on(Xv, Y v, Zv),W v) = − S

2n(2n− 1)
(g(Y, Z)g(X,W )− g(X,Z)g(Y,W )),

g̃(C̃on(Xv, Y c, Zc),W v) = − S

2n(2n− 1)
g(Y, Z)g(X,W ).

Now, by the above equations and the hypothesis (similar to Theorem (5.5)), we see that the concircular flatness
of TG is equivalent to the flatness of G . 2

Definition 5.10 Let (M, g) be an n-dimensional Riemannian manifold (n > 1) . We define the m-projective
curvature tensor M(X,Y, Z) as follows:

g(M(X,Y, Z),W ) = g(R(X,Y )Z,W ) +
1

2(n− 1)
(Ric(Y, Z)g(X,W )−Ric(X,Z)g(Y,W ) (5.14)

+ g(Y, Z)Ric(X,W )− g(X,Z)Ric(Y,W )). (5.15)
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Theorem 5.11 Let (G, g) be an n-dimensional bi-invariant Lie group (n > 1) . (TG, g̃) is m-projectively flat
if and only if G is flat.

Proof Let M̃ and M be the m-projective curvature tensors of Lie groups (TG, g̃) and (G, g) , respectively.

Now direct calculations show that all components of the m-projective curvature tensor M̃ are zero except:

g̃(M̃(Xc, Y c, Zc),W c) = g(R(X,Y )Z,W )− 1

2(2n− 1)
(Ric(Y, Z)g(X,W )−Ric(X,Z)g(Y,W )

+ g(Y, Z)Ric(X,W )− g(X,Z)Ric(Y,W )),

g̃(M̃(Xc, Y v, Zv),W c) = − 1

2(2n− 1)
g(Y, Z)Ric(X,W ),

g̃(M̃(Xv, Y c, Zc),W v) = − 1

2(2n− 1)
(Ric(Y, Z)g(X,W ) + g(Y, Z)Ric(X,W )).

The hypothesis and the above equations imply that R = 0 if and only if M̃ = 0 . 2

5.3. Bach tensor of TG

In 1921 Bach introduced a tensor to study conformal relativity in the context of conformally Einstein spaces.
This tensor is known as the Bach tensor and it is a symmetric (0, 2) -tensor B on an n-dimensional pseudo-
Riemannian manifold (M, g) , defined by

B(X,Y ) =
1

n− 2
{

n∑
i=1

(∇∂i
C)(X,Y, ∂i) +

n∑
i,j=1

Ric(∂i, ∂j)W (X, ∂i, Y, ∂j)},

where {∂i, i = 1, · · · , n} is a local frame on (M, g) , Ric is the Ricci tensor of type (0, 2) , C is the Cotton
tensor, and W denotes the Weyl tensor of type (0, 4) . The metric g is said to be Bach flat when B = 0 . The
aim of this section is investigation of the components of the Bach tensor for a tangent Lie group TG .

Theorem 5.12 Let (G, g) be a Ricci flat bi-invariant Lie group. If (TG, g̃) has a harmonic Weyl tensor, then
(TG, g̃) and (G, g) are Bach flat Lie groups.

Proof In the definition of the Bach tensor B̃ of TG , the first sum is zero, because TG has a harmonic Weyl
tensor. Also, the Ricci flatness of G implies that TG is Ricci flat. Therefore, the second sum of B̃ is zero, and
so TG is Bach flat. Moreover, in the definition of the Bach tensor B of G , the second sum of B̃ is zero, and
by Theorem 5.4 this implies that G has a harmonic Weyl tensor. Therefore, the first sum of B is zero, and so
G is Bach flat. 2

Theorem 5.13 Let (G, g) be an n-dimensional bi-invariant Lie group (n > 4) . The components of the Bach
tensor of the tangent Lie group (TG, g̃) are as follows:

B̃(Xv, Y c) = 0,
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B̃(Xv, Y v) =
1

2n− 2

2n∑
i=1

−A{g([X,Xi], [Y,Xi]) + g(X, [[Y,Xi], Xi])}

−
2n∑

i,j=1

Ric(Xi, Xj){−
S

(2n− 1)(2n− 2)
g(X,Y )g(Xi, Xj)

+
1

2n− 2
Ric(Xi, Xj)g(X,Y )},

B̃(Xc, Y c) =
1

2n− 2

2n∑
i=1

({−2Ag([Xi, X], [Xi, Y ]) +Ag([[Xi, Y ], X], Xi)}

+ { n− 2

2n− 2
Xc

i (C(X,Y,Xi))−
1

2

n− 2

2n− 2
{C([Xi, X], Y,Xi) + C(X, [Xi, Y ], Xi)}})

+

2n∑
i,j=1

Ric(Xi, Xj){R(X,Y, Z, T ) +
S

(2n− 1)(2n− 2)
(g(X,Z)g(Y, T )− g(X,T )g(Y, Z))

− 1

2n− 2
(Ric(X,Z)g(Y, T )−Ric(X,T )g(Y, Z) +Ric(Y, T )g(X,Z)−Ric(Y, Z)g(X,T ))},

for all left invariant vector fields X , Y on G , where A = S
(4n−4)(4n−2)

Proof Let X , Y be left invariant vector fields on G . From Lemma 5.2, we deduce that C̃(Xv, Y v, Xv
i ) = 0

and C̃(Xv, Y c, Xv
i ) is constant. Therefore, Xv

i (C̃(Xv, Y c, Xv
i )) = 0 . Now, by the covariant derivative of the

Cotton tensor, we have

(∇̃Xv
i
C̃)(Xv, Y c, Xv

i ) = Xv
i (C̃(Xv, Y c, Xv

i ))− C̃(∇̃Xv
i
Xv, Y c, Xv

i )

− C̃(Xv, ∇̃Xv
i
Y c, Xv

i )− C̃(Xv, Y c, ∇̃Xv
i
Xv

i ). (5.16)

In the above equation all terms are zero, and so (∇̃Xv
i
C̃)(Xv, Y c, Xv

i ) = 0 . Also, by Lemma 5.2, we have

C̃(Xv, Y c, Xc
i ) = 0 . We deduce, using Corollary 2.3, that all the summands of the right-hand side of the

following equation are zero:

(∇̃Xc
i
C̃)(Xv, Y c, Xc

i ) = Xc
i (C̃(Xv, Y c, Xc

i ))− C̃(∇̃Xc
i
Xv, Y c, Xc

i )

− C̃(Xv, ∇̃Xc
i
Y c, Xc

i )− C̃(Xv, Y c, ∇̃Xc
i
Xc

i ), (5.17)

and so (∇̃Xc
i
C̃)(Xv, Y c, Xc

i ) = 0 . Now, by the definition of the Bach tensor for the tangent Lie group TG , we
obtain the following:

B̃(Xv, Y c) =
1

2n− 2
{

2n∑
i=1

{(∇̃Xv
i
C̃)(Xv, Y c, Xv

i ) + (∇̃Xc
i
C̃)(Xv, Y c, Xc

i )}

+

2n∑
i,j=1

R̃ic(Xc
i , X

c
j )W̃ (Xv, Xc

i , Y
c, Xc

j )}. (5.18)
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Using (5.16), (5.17), and (5.7) in the above equation, we get B̃(Xv, Y c) = 0 .
The two others identities of the theorem can be proved in the same manner using Lemma 5.2 and Corollary
2.3. 2

6. Operators related to Riemannian curvatures
Some geometrical properties and applications of the Szabo operator and Jacobi operator are in the study of
curvature theory and they play a central role in the study of Osserman manifolds. Furthermore, the spectral
properties of these operators have been studied extensively. The study of the eigenvalues of these operators is
particularly distinguished in Riemannian geometry. In this section, we study Szabo and Jacobi operators on
the tangent bundle of a bi-invariant Lie group.

6.1. Szabo operator of TG

Let (M, g,∇) be an n -dimensional Riemannian manifold with Levi-Civita connection and let R be the associ-
ated curvature operator of ∇ . We define the Riemannian Szabo operator S∇(X) with respect to X ∈ TpM as
follows:

S∇(X)Y = (∇XR)(Ȳ , X̄)X̄

= ∇X(R(Ȳ , X̄)X̄)−R(∇X Ȳ ,X)X −R(Y,∇XX̄)X −R(Y,X)∇XX̄, (6.1)

where X̄ and Ȳ are any vector fields on G extending X and Y , respectively. We say that M is Szabo flat if
S∇(X) = 0 for every vector field X on M .

Theorem 6.1 If (G, g) is a Riemannian bi-invariant Lie group, then (G, g) is Szabo flat.

Proof Let X,Y be left invariant vector fields on G . Since ∇XX = 1
2 [X,X] = 0 , then the two last terms of

(6.1) are zero. Also, we have

∇X(R(Y,X)X) = −1

4
∇X [[Y,X], X] = −1

8
[[[X,Y ], X], X].

Similar calculations give us the following:

R(∇XY,X)X =
1

8
[[[X,Y ], X], X].

Setting the two above equations in (6.1), we get S∇ = 0 . 2

Theorem 6.2 Let (G, g) be a Riemannian bi-invariant Lie group. Then (TG, g̃) is Szabo flat.

Proof Let X̃ = Xc
1 +Xv

2 and Ỹ = Y c
1 + Y v

2 be left invariant vector fields on TG . Using (6.1) we get

S∇̃
X̃
(Ỹ ) = ∇̃X̃R̃(Ỹ , X̃)X̃ − R̃(∇̃X̃ Ỹ , X̃)X̃ − R̃(Ỹ , ∇̃X̃X̃)X̃ − R̃(Ỹ , X̃)∇̃X̃X̃. (6.2)

Using Corollary 2.3 we obtain

R̃(Ỹ , ∇̃X̃X̃)X̃ = R̃(Y c
1 , ∇̃Xc

1
Xc

1)X
c
1 =

1

2
R̃(Y c

1 , [X1, X1]
c)Xc

1 = 0. (6.3)
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Similarly, we derive that

R̃(Ỹ , X̃)∇̃X̃X̃ = 0. (6.4)

Applying Corollary 2.3, we get

∇̃X̃(R̃(Ỹ , X̃)X̃) = ∇̃Xc
1
(R̃(Y1, X1)X1)

c = −1

8
[[[X1, Y1], X1], X1]

c. (6.5)

Again Corollary 2.3 implies

R̃(∇̃X̃ Ỹ , X̃)X̃ = R̃(∇̃Xc
1
Y c
1 , X

c
1)X

c
1 = −1

8
[[[X1, Y1], X1], X1]

c. (6.6)

Setting (6.3)–(6.6) in (6.2), we deduce S∇̃
X̃
(Ỹ ) = 0 for any left invariant vector fields X̃ and Ỹ on TG . 2

6.2. Jacobi operator of TG

Let (M, g) be a Riemannian manifold, ∇ be the Levi-Civita connection, R be the Riemann curvature tensor,
and X be a vector field on M . We define the Jacobi operator with respect to X as follows:

JX(Y ) = R(Y,X,X), ∀Y ∈ χ(M). (6.7)

Definition 6.3 Let (M, g) be a Riemannian manifold with the Levi-Civita connection. We say that M is
nilpotent Osserman at p ∈ M , if spec{JX} = {0} for all X ∈ TpM .

Theorem 6.4 Let (G, g) be a Riemannian bi-invariant Lie group. If G is nilpotent Osserman at identity, then

J̃Xv = 0 and J̃Xc is a nilpotent operator.

Proof Let X̃ , Ỹ be left invariant vector fields on TG . There exist left invariant vector fields X1 , X2 , Y1 ,
Y2 on G such that X̃ = Xc

1 +Xv
2 and Ỹ = Y c

1 + Y v
2 . Direct calculation gives us

J̃X̃(Ỹ ) = R̃(Ỹ , X̃)X̃ = R̃(Y c
1 + Y v

2 , X̃)X̃ = R̃(Y c
1 , X

c
1)X

c
1 = (R(Y1, X1)X1))

c = (JX1(Y1))
c. (6.8)

In particular, when X1 = 0 and X2 = X in (6.8), we obtain J̃Xv (Ỹ ) = 0 , which proves our first assertion. On
the other hand, we obtain by induction

J̃k
X̃
(Ỹ ) = (Jk

X1
(Y1))

c, (6.9)

where k > 0 . In particular, when X1 = X and X2 = 0 in (6.9), we obtain J̃k
Xc(Ỹ ) = (Jk

X(Y1))
c for all integer

k , which proves our second assertion. 2

Theorem 6.5 Let (G, g) be a Riemannian bi-invariant Lie group. If G is nilpotent Osserman at identity, then
(TG, g̃) is nilpotent Osserman at identity and equivalently the nilpotency of the Jacobi operator of G can be
transfered to the nilpotency of the Jacobi operator of TG .

Proof Under the same hypotheses and notations as in the proof of Theorem 6.4, Theorem 6.5 follows easily
from (6.9). 2
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