## Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tüвітак
Research Article
Turk J Math
(2019) 43: $2865-2875$

# Coefficient estimates for a new subclasses of $\lambda$-pseudo biunivalent functions with respect to symmetrical points associated with the Horadam Polynomials 

Adnan Ghazy ALAMOUSH* ${ }^{*}$<br>Faculty of Science, Taibah University, Saudi Arabia

| Received: 15.06 .2019 | • Accepted/Published Online: 06.10 .2019 | Final Version: 22.11 .2019 |
| :--- | :--- | :--- | :--- | :--- |


#### Abstract

In the present article, we introduce two new subclasses of $\lambda$-pseudo biunivalent functions with respect to symmetrical points in the open unit disk $\mathbb{U}$ defined by means of the Horadam polynomials. For functions belonging to these subclasses, estimates on the Taylor -Maclaurin coefficients ja2j and ja3j are obtained. Fekete-Szegö inequalities of functions belonging to these subclasses are also founded. Furthermore, we point out several new special cases of our results.


Key words: Analytic function, univalent and biunivalent functions, Fekete-Szegö problem, $\lambda$-pseudo biunivalent functions with respect to symmetrical points, Horadam polynomials, coefficient bounds, subordination

## 1. Introduction and preliminaries

Let $\mathcal{A}$ denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit open disk $\mathbb{U}=\{z: z \in \mathbb{C},|z|<1\}$, and denoted by $\mathcal{A}$. Let $\mathcal{S}$ be class of all functions in $\mathcal{A}$ which are univalent and normalized by the conditions

$$
f(0)=0=f^{\prime}(0)-1
$$

in $\mathbb{U}$. For two functions $f$ and $g$, analytic in $\mathbb{U}$, we say that the function $f$ is subordinate to $g$ in $\mathbb{U}$, written as $f(z) \prec g(z), \quad(z \in \mathbb{U})$, provided that there exists an analytic function (that is, Schwarz function) $w(z)$ defined on $\mathbb{U}$ with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \text { for all } z \in \mathbb{U}
$$

such that $f(z)=g(w(z))$ for all $z \in \mathbb{U}$.
Besides, it is known that

$$
f(z) \prec g(z)(z \in \mathbb{U}) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

[^0]
## ALAMOUSH/Turk J Math

It is well known that every univalent function $f$ has an inverse $f^{-1}$, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f^{-1}(f(w))=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w+a_{2} w^{2}+\left(2 a_{2}^{2}-3 a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be biunivalent in $\mathbb{U}$ if both $f(z)$ and $f^{-1}(z)$ are univalent in $\mathbb{U}$, and denoted by $\Sigma$.

In 1967, the class $\Sigma$ of biunivalent functions was first investigated by Lewin [12] and it was derived that $\left|a_{2}\right|<1.51$. Brannan and Taha [6] also considered certain subclasses of biunivalent functions, and obtained estimates for the initial coefficients. In 2010, Srivastava et al. [17] revived the investigation of various classes of bi univalent functions. Moreover, many other authors ( see $[1-4,7]$ ) have introduced and investigated subclasses of biunivalent functions.

By $S^{*}(\varphi)$ and $K(\varphi)$ we denote the following classes of functions

$$
S^{*}(\varphi)=\left\{f: f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z)\right\}, z \in \mathbb{U}
$$

and

$$
K(\varphi)=\left\{f: f \in A, 1+\frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z)\right\}, z \in \mathbb{U}
$$

where $S^{*}(\varphi)$ and $K(\varphi)$ are the class of starlike and convex functions, respectively, were defined and studied by Ma and Minda [14]. It is clear that if $f(z) \in K$, then $z f^{\prime}(z) \in S^{*}$.

Sakaguchi [16] introduced the class $S_{s}^{*}$ of functions starlike with respect to symmetric points, which consists of functions $f(z) \in S$ satisfying the condition

$$
\Re\left\{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, \quad z \in \mathbb{U}
$$

Moreover, Wang et al. [18] introduced the class $K_{s}$ of functions convex with respect to symmetric points, which consists of functions $f(z) \in S$ satisfying the condition

$$
\Re\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}\right\}>0, \quad z \in \mathbb{U}
$$

It is easily seen that if $f(z) \in K_{s}$, then $z f^{\prime}(z) \in S_{s}^{*}$. For such a function $\varphi$, Ravichandran [15] introduced the following subclasses: A function $f \in A$ is in the class $S_{s}^{*}(\varphi)$ if

$$
\frac{2 z f^{\prime}(z)}{f(z)-f(-z)} \prec \varphi(z), \quad z \in \mathbb{U}
$$

## ALAMOUSH/Turk J Math

and in the class $K_{s}(\varphi)$ if

$$
\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)+f^{\prime}(-z)} \prec \varphi(z) \quad z \in \mathbb{U} .
$$

Recently, Babalola [5] defined the class $L_{\lambda}$ of $\lambda$-pseudo-starlike functions as follows: Let $f \in A$ and $\lambda \geq 1$ is real. Then $f(z)$ belongs to the class $L_{\lambda}$ of $\lambda$-pseudo-starlike functions in the unit disc $\mathbb{U}$ if and only if

$$
\Re\left\{\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}\right\} \geq 0, \quad z \in \mathbb{U} .
$$

The Horadam polynomials $h_{n}(x)$ are given by the following recurrence relation (see [10])

$$
\begin{equation*}
h_{n}(x)=p x h_{n-1}(x)+q h_{n-2}(x), \quad(n \in \mathbb{N} \geq 2), \tag{1.3}
\end{equation*}
$$

with $h_{1}=a, h_{2}=b x$, and $h_{3}=p b x^{2}+a q$ where ( $a, b, p, q$ are some real constants). The characteristic equation of recurrence relation (1.3) is

$$
\begin{equation*}
t^{2}-p x t-q=0 . \tag{1.4}
\end{equation*}
$$

This equation has two real roots;

$$
\alpha=\frac{p x+\sqrt{p^{2} x^{2}+4 q}}{2},
$$

and

$$
\beta=\frac{p x-\sqrt{p^{2} x^{2}+4 q}}{2} .
$$

Note that, some particular cases of Horadam polynomials sequence are listed as follows:

- If $a=b=p=q=1$, the Fibonacci polynomials sequence is obtained

$$
F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x), F_{1}(x)=1, \quad F_{2}(x)=x .
$$

- If $a=2, b=p=q=1$, the Lucas polynomials sequence is obtained

$$
L_{n-1}(x)=x L_{n-2}(x)+L_{n-3}(x), L_{0}(x)=2, L_{1}(x)=x .
$$

- If $a=q=1, b=p=2$, the Pell polynomials sequence is obtained

$$
P_{n}(x)=2 x P_{n-1}(x)+P_{n-2}(x), p_{1}(x)=1, P_{2}(x)=2 x .
$$

- If $a=b=p=2, q=1$, the Pell-Lucas polynomials sequence is obtained

$$
Q_{n-1}(x)=2 x Q_{n-2}(x)+Q_{n-3}(x), Q_{0}(x)=2, Q_{1}(x)=2 x .
$$

- If $a=b=1, p=2, q=-1$, the Chebyshev polynomials of first kind sequence is obtained

$$
T_{n-1}(x)=2 x T_{n-2}(x)+T_{n-3}(x), T_{0}(x)=1, T_{1}(x)=x .
$$

## ALAMOUSH/Turk J Math

- If $a=1, b=p=2, q=-1$, the Chebyshev polynomials of second kind sequence is obtained

$$
U_{n-1}(x)=2 x U_{n-2}(x)+U_{n-3}(x), U_{0}(x)=1, U_{1}(x)=2 x
$$

- If $x=1$, the Horadam numbers sequence is obtained

$$
h_{n-1}(1)=p h_{n-2}(1)+q h_{n-3}(1), h_{0}(1)=a, h_{1}(1)=b .
$$

For more information associated with these polynomials see $[8],([9,11,13])$.
Remark 1.1 [9] Let $\Omega(x, z)$ be the generating function of the Horadam polynomials $h_{n}(x)$. Then

$$
\begin{equation*}
\Omega(x, z)=\frac{a+(b-a p) x t}{1-p x t-q t^{2}}=\sum_{n=1}^{\infty} h_{n}(x) z^{n-1} \tag{1.5}
\end{equation*}
$$

In this paper, we introduce two new subclasses of $\lambda$-pseudo biunivalent functions with respect to symmetrical points by using the Horadam polynomials $h_{n}(x)$ and the generating function $\Omega(x, z)$ which are given by the recurrence relation (1.3) and (1.5), respectively. Furthermore, we find the initial coefficients and the Fekete-Szegö inequality for functions belonging to the classes $L \Sigma(\lambda, \alpha, x)$ and $M \Sigma(\lambda, \alpha, x)$. Also, several special cases to our results were obtained.

## 2. Coefficient bounds for the function class $L \Sigma(\lambda, \alpha, x)$

Definition 2.1 A function $f \in \Sigma$ given by (1.1) is said to be in the class $L \Sigma(\lambda, \alpha, x)$, if the following conditions are satisfied:

$$
\begin{equation*}
(1-\alpha) \frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}+\alpha \frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{[f(z)-f(-z)]^{\prime}} \prec \Omega(x, z)+1-\alpha \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}+\alpha \frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{[g(w)-g(-w)]^{\prime}} \prec \Omega(x, w)+1-\alpha \tag{2.2}
\end{equation*}
$$

where the real constants $a, b$, and $q$ are as in (1.3) and $g(w)=f^{-1}(z)$ is given by (1.2).
We first state and prove the following result.
Theorem 2.2 Let the function $f \in \Sigma$ given by (1.1) be in the class $L \Sigma(\lambda, \alpha, x)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|\left[\left(\left(2 \lambda^{2}+\lambda-1\right)+2 \alpha\left(3 \lambda^{2}-1\right)\right) b-4 p \lambda^{2}(1+\alpha)^{2}\right] b x^{2}-4 q a \lambda^{2}(1+\alpha)^{2}\right|}}  \tag{2.3}\\
\left|a_{3}\right| \leq \frac{|b x|}{(3 \lambda-1)(1+2 \alpha)}+\frac{(b x)^{2}}{4 \lambda^{2}(1+\alpha)^{2}}, \tag{2.4}
\end{gather*}
$$

and for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{|b x|}{(3 \lambda-1)(1+2 \alpha)} & ,|\eta-1| \leq \frac{1}{2(3 \lambda-1)(1+2 \alpha)}|A|  \tag{2.5}\\ \frac{\left|b x 3^{3}\right| 1-\eta \mid}{\left.\mid\left(2 \lambda^{2}+\lambda-1\right)+2 \alpha\left(3 \lambda^{2}-1\right)\right][b x]^{2}-4 \lambda^{2}(1+\alpha)^{2}\left(p b x^{2}+q a\right) \mid} & ,|\eta-1| \geq \frac{1}{2(3 \lambda-1)(1+2 \alpha)}|A|\end{cases}
$$

where $A=\left(2 \lambda^{2}+\lambda-1\right)+2 \alpha\left(3 \lambda^{2}-1\right)-\frac{4 \lambda^{2}(1+\alpha)^{2}\left(p b x^{2}+q a\right)}{b^{2} x^{2}}$.

## ALAMOUSH/Turk J Math

Proof Let $f \in \Sigma$ be given by the Taylor-Maclaurin expansion (1.1). Then, for some analytic functions $\Psi$ and $\Phi$ such that $\Psi(0)=\Phi(0)=0,|\psi(z)|<1$ and $|\Phi(w)|<1, z, w \in \mathbb{U}$ and using Definition 2.1, we can write

$$
(1-\alpha) \frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}+\alpha \frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{[f(z)-f(-z)]^{\prime}}=\omega(x, \Phi(z))+1-\alpha
$$

and

$$
(1-\alpha) \frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}+\alpha \frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{[g(w)-g(-w)]^{\prime}}=\omega(x, \psi(w))+1-\alpha
$$

or, equivalently,

$$
\begin{equation*}
(1-\alpha) \frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}+\alpha \frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{[f(z)-f(-z)]^{\prime}}=1+h_{1}(x)-a+h_{2}(x) \Phi(z)+h_{3}(x)[\Phi(z)]^{3}+\cdots \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}+\alpha \frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{[g(w)-g(-w)]^{\prime}}=1+h_{1}(x)-a+h_{2}(x) \psi(w)+h_{3}(x)[\psi(w)]^{3}+\cdots \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7), we obtain

$$
\begin{equation*}
(1-\alpha) \frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}+\alpha \frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{[f(z)-f(-z)]^{\prime}}=1+h_{2}(x) p_{1} z+\left[h_{2}(x) p_{2}+h_{3}(x) p_{1}^{2}\right] z^{2}+\cdots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}+\alpha \frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{[g(w)-g(-w)]^{\prime}}=1+h_{2}(x) p_{1} w+\left[h_{2}(x) q_{2}+h_{3}(x) q_{1}^{2}\right] w^{2}+\cdots \tag{2.9}
\end{equation*}
$$

Notice that if

$$
|\Phi(z)|=\left|p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots\right|<1 \quad(z \in \mathbb{U})
$$

and

$$
|\psi(w)|=\left|q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots\right|<1 \quad(w \in \mathbb{U})
$$

then

$$
\left|p_{i}\right| \leq 1 \quad \text { and } \quad\left|q_{i}\right| \leq 1 \quad(i \in \mathbb{N})
$$

Thus, upon comparing the corresponding coefficients in (2.8) and (2.9), we have

$$
\begin{gather*}
2 \lambda(1+\alpha) a_{2}=h_{2}(x) p_{1}  \tag{2.10}\\
2 \lambda(\lambda-1)(1+3 \alpha) a_{2}^{2}+(3 \lambda-1)(1+2 \alpha) a_{3}=h_{2}(x) p_{2}+h_{3}(x) p_{1}^{2}  \tag{2.11}\\
-2 \lambda(1+\alpha) a_{2}=h_{2}(x) q_{1}  \tag{2.12}\\
{\left[2\left(\lambda^{2}+2 \lambda-1\right)+2 \alpha\left(3 \lambda^{3}+3 \lambda-2\right)\right] a_{2}^{2}-(3 \lambda-1)(1+2 \alpha) a_{3}=h_{2}(x) q_{2}+h_{3}(x) q_{1}^{2}} \tag{2.13}
\end{gather*}
$$

## ALAMOUSH/Turk J Math

From (2.10) and (2.12), we find that

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
8 \lambda^{2}(1+\alpha)^{2} a_{2}^{2}=h_{2}^{2}(x)\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{2.15}
\end{equation*}
$$

Moreover, by using (2.13) and (2.11), we obtain

$$
\begin{equation*}
\left[2\left(2 \lambda^{2}+\lambda-1\right)+4 \alpha\left(3 \lambda^{2}-1\right)\right] a_{2}^{2}=h_{2}(x)\left(p_{2}+q_{2}\right)+h_{3}(x)\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{2.16}
\end{equation*}
$$

By using (2.14) in (2.16), we get

$$
\begin{equation*}
\left[2\left(2 \lambda^{2}+\lambda-1\right)+4 \alpha\left(3 \lambda^{2}-1\right)-\frac{8 \lambda^{2}(1+\alpha)^{2} h_{3}(x)}{\left[h_{2}(x)\right]^{2}}\right] a_{2}^{2}=h_{2}(x)\left(p_{2}+q_{2}\right) . \tag{2.17}
\end{equation*}
$$

From (1.3) and (2.17), we have the desired inequality (2.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.13) from (2.11) and using (2.14) and (2.15) we get

$$
\begin{equation*}
a_{3}=\frac{h_{2}(x)\left(p_{2}-q_{2}\right)}{2(3 \lambda-1)(1+2 \alpha)}+\frac{h_{2}(x)\left[p_{1}^{2}+q_{1}^{2}\right]}{8 \lambda^{2}(1+\alpha)^{2}} . \tag{2.18}
\end{equation*}
$$

Hence, using (2.14) and applying (1.3), we get desired inequality (2.4).
Now, by using (2.16) and (2.18) for some $\eta \in \mathbb{R}$, we get

$$
\begin{aligned}
a_{3}- & \eta a_{2}^{2}=\frac{\left[h_{2}(x)\right]^{3}(1-\eta)\left(p_{2}+q_{2}\right)}{\left[2\left(2 \lambda^{2}+\lambda-1\right)+4 \alpha\left(3 \lambda^{2}-1\right)\right]\left[h_{2}(x)\right]^{2}-8 \lambda^{2}(1+\alpha)^{2} h_{3}(x)}+\frac{h_{2}(x)\left(p_{2}-q_{2}\right)}{2(3 \lambda-1)(1+2 \alpha)} \\
& =h_{2}(x)\left[\left(\Theta(\eta, x)+\frac{1}{2(3 \lambda-1)(1+2 \alpha)}\right) p_{2}+\left(\Theta(\eta, x)-\frac{1}{2(3 \lambda-1)(1+2 \alpha)}\right) q_{2}\right],
\end{aligned}
$$

where

$$
\Theta(\eta, x)=\frac{\left[h_{2}(x)\right]^{2}(1-\eta)}{\left[2\left(\lambda^{2}+\lambda-1\right)+4 \alpha\left(3 \lambda^{2}-1\right)\right]\left[h_{2}(x)\right]^{2}-8 \lambda^{2}(1+\alpha)^{2} h_{3}(x)} .
$$

Thus, we conclude that

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{h_{2}(x)}{(3 \lambda-1)(1+2 \alpha)} & ,|\Theta(\eta, x)| \leq \frac{1}{2(3 \lambda-1)(1+2 \alpha)} \\
2\left|h_{2}(x)\right||\Theta(\eta, x)| & , \quad|\Theta(\eta, x)| \geq \frac{1}{2(3 \lambda-1)(1+2 \alpha)}
\end{array} .\right.
$$

This proves Theorem 2.2.
For $\alpha=0$ the class $L \Sigma(\lambda, \alpha, x)$ reduced to the class of $\lambda$-pseudo bistarlike functions with respect to symmetrical points. For functions belong to this class we have the following corollary:

Corollary 2.3 Let the function $f \in \Sigma$ given by (1.1) be in the class $L \Sigma(\lambda, x)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|\left[\left(2 \lambda^{2}+\lambda-1\right) b-4 p \lambda^{2}\right] b x^{2}-4 q a \lambda^{2}\right|}} \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|b x|}{3 \lambda-1}+\frac{(b x)^{2}}{4 \lambda^{2}} \tag{2.20}
\end{equation*}
$$

and for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{|b x|}{3 \lambda-1} & ,|\eta-1| \leq \frac{1}{2(3 \lambda-1)}\left|A_{0}\right|  \tag{2.21}\\ \frac{\left|b x 3^{3}\right| 1-\eta \mid}{\left|\left(2 \lambda^{2}+\lambda-1\right)[b x]^{2}-4 \lambda^{2}\left(p b x^{2}+q a\right)\right|} & ,|\eta-1| \geq \frac{1}{2(3 \lambda-1)}\left|A_{0}\right|\end{cases}
$$

where $A_{0}=\left(2 \lambda^{2}+\lambda-1\right)-\frac{4 \lambda^{2}\left(p b x^{2}+q a\right)}{b^{2} x^{2}}$.
For $\alpha=1$ the class $L \Sigma(\lambda, 1, x)$ reduced to the class of $\lambda$-pseudo biconvex functions with respect to symmetrical points. For functions belong to this class we have the following corollary:

Corollary 2.4 Let the function $f \in \Sigma$ given by (1.1) be in the class $L \Sigma(\lambda, 1, x)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|\left[\left(\left(2 \lambda^{2}+\lambda-1\right)+2\left(3 \lambda^{2}-1\right)\right) b-16 p \lambda^{2}\right] b x^{2}-16 q a \lambda^{2}\right|}}  \tag{2.22}\\
\left|a_{3}\right| \leq \frac{|b x|}{3(3 \lambda-1)}+\frac{(b x)^{2}}{16 \lambda^{2}} \tag{2.23}
\end{gather*}
$$

and for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{|b x|}{3(3 \lambda-1)} & ,|\eta-1| \leq \frac{1}{6(3 \lambda-1)}\left|A_{1}\right|  \tag{2.24}\\ \frac{|b x|^{3}|1-\eta|}{\left|\left[\left(2 \lambda^{2}+\lambda-1\right)+2\left(3 \lambda^{2}-1\right)\right][b x]^{2}-16 \lambda^{2}\left(p b x^{2}+q a\right)\right|} & ,|\eta-1| \geq \frac{1}{6(3 \lambda-1)}\left|A_{1}\right|\end{cases}
$$

where $A_{1}=\left(2 \lambda^{2}+\lambda-1\right)+2\left(3 \lambda^{2}-1\right)-\frac{16 \lambda^{2}\left(p b x^{2}+q a\right)}{b^{2} x^{2}}$.
For $\lambda=1$ the class $L \Sigma(1, \alpha, x)$ reduced to the class of biunivalent functions with respect to symmetrical points. For functions belonging to this class we have the following corollary:

Corollary 2.5 Let the function $f \in \Sigma$ given by (1.1) be in the class $L \Sigma(1, \alpha, x)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|\left[2(1+2 \alpha) b-4 p(1+\alpha)^{2}\right] b x^{2}-4 q a(1+\alpha)^{2}\right|}}  \tag{2.25}\\
\left|a_{3}\right| \leq \frac{|b x|}{2(1+2 \alpha)}+\frac{(b x)^{2}}{4(1+\alpha)^{2}} \tag{2.26}
\end{gather*}
$$

and for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{|b x|}{2(1+2 \alpha)} & ,|\eta-1| \leq \frac{1}{4(1+2 \alpha)}|B|  \tag{2.27}\\ \frac{|b x|^{3}|1-\eta|}{\left|2(1+\alpha)[b x]^{2}-4(1+\alpha)^{2}\left(p b x^{2}+q a\right)\right|} & ,|\eta-1| \geq \frac{1}{4(1+2 \alpha)}|B|\end{cases}
$$

where $B=2(1+2 \alpha)-\frac{4(1+\alpha)^{2}\left(p b x^{2}+q a\right)}{b^{2} x^{2}}$.
3. Coefficient bounds for the function class $M \Sigma(\lambda, \alpha, x)$

Definition 3.1 A function $f \in \Sigma$ given by (1.1) is said to be in the class $M \Sigma(\lambda, \alpha, x)$, if the following conditions are satisfied:

$$
\begin{equation*}
\left(\frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}\right)^{\alpha}\left(\frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{[f(z)-f(-z)]^{\prime}}\right)^{1-\alpha} \prec \Omega(x, z)+1-\alpha \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}\right)^{\alpha}\left(\frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{[g(w)-g(-w)]^{\prime}}\right)^{1-\alpha} \prec \Omega(x, w)+1-\alpha \tag{3.2}
\end{equation*}
$$

where the real constants $a, b$, and $q$ are as in (1.3) and $g(w)=f^{-1}(z)$ is given by (1.2).

Theorem 3.2 Let the function $f \in \Sigma$ given by (1.1) be in the class $M \Sigma(\lambda, \alpha, x)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left.\mid\left[\left(2 \lambda^{2}(\alpha-2)^{2}+(\lambda+2 \alpha-3)\right) b-4 p \lambda^{2}(\alpha-2)^{2}\right] b x^{2}-4 q a \lambda^{2}(\alpha-2)^{2}\right) \mid}}  \tag{3.3}\\
\left|a_{3}\right| \leq \frac{|b x|}{(3 \lambda-1)(|3-2 \alpha|)}+\frac{(b x)^{2}}{4 \lambda^{2}(\alpha-2)^{2}}, \tag{3.4}
\end{gather*}
$$

and for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{|b x|}{(3 \lambda-1)(3-2 \alpha)} & ,|\eta-1| \leq \frac{1}{2(3 \lambda-1)(3-2 \alpha)}|C|  \tag{3.5}\\ \frac{|b x|^{3}|1-\eta|}{\left[2 \lambda^{2}(\alpha-2)^{2}+(\lambda+2 \alpha-3)\right][b x]^{2}-4 \lambda^{2}(\alpha-2)^{2}\left(p b x^{2}+q a\right) \mid} & ,|\eta-1| \geq \frac{1}{2(3 \lambda-1)(3-2 \alpha)}|C|\end{cases}
$$

where $C=2 \lambda^{2}(\alpha-2)^{2}+(\lambda+2 \alpha-3)-\frac{4 \lambda^{2}(\alpha-2)^{2}\left(p b x^{2}+q a\right)}{b^{2} x^{2}}$.
Proof Let $f \in \Sigma$ be given by the Taylor-Maclaurin expansion (1.1). Then, for some analytic functions $\Psi$ and $\Phi$ such that $\Psi(0)=\Phi(0)=0,|\psi(z)|<1$ and $|\Phi(w)|<1, z, w \in \mathbb{U}$ and using Definition 3.1, we can write

$$
\left(\frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}\right)^{\alpha}\left(\frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{[f(z)-f(-z)]^{\prime}}\right)^{1-\alpha}=\omega(x, \Phi(z))+1-\alpha
$$

and

$$
\left(\frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}\right)^{\alpha}\left(\frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{[g(w)-g(-w)]^{\prime}}\right)^{1-\alpha}=\omega(x, \psi(w))+1-\alpha
$$

or, equivalently,

$$
\begin{equation*}
\left(\frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}\right)^{\alpha}\left(\frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{[f(z)-f(-z)]^{\prime}}\right)^{1-\alpha}=1+h_{1}(x)-a+h_{2}(x) \Phi(z)+h_{3}(x)[\Phi(z)]^{3}+\cdots \tag{3.6}
\end{equation*}
$$

## ALAMOUSH/Turk J Math

and

$$
\begin{equation*}
\left(\frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}\right)^{\alpha}\left(\frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{[g(w)-g(-w)]^{\prime}}\right)^{1-\alpha}=1+h_{1}(x)-a+h_{2}(x) \psi(w)+h_{3}(x)[\psi(w)]^{3}+\cdots . \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we obtain

$$
\begin{equation*}
\left(\frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}\right)^{\alpha}\left(\frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{[f(z)-f(-z)]^{\prime}}\right)^{1-\alpha}=1+h_{2}(x) p_{1} z+\left[h_{2}(x) p_{2}+h_{3}(x) p_{1}^{2}\right] z^{2}+\cdots \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}\right)^{\alpha}\left(\frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{[g(w)-g(-w)]^{\prime}}\right)^{1-\alpha}=1+h_{2}(x) p_{1} w+\left[h_{2}(x) q_{2}+h_{3}(x) q_{1}^{2}\right] w^{2}+\cdots . \tag{3.9}
\end{equation*}
$$

Notice that if

$$
|\Phi(z)|=\left|p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots\right|<1 \quad(z \in \mathbb{U})
$$

and

$$
|\psi(w)|=\left|q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots\right|<1 \quad(w \in \mathbb{U}),
$$

then

$$
\left|p_{i}\right| \leq 1 \quad \text { and } \quad\left|q_{i}\right| \leq 1 \quad(i \in \mathbb{N}) .
$$

Thus, upon comparing the corresponding coefficients in (3.8) and (3.9), we have

$$
\begin{gather*}
-2 \lambda(\alpha-2) a_{2}=h_{2}(x) p_{1}  \tag{3.10}\\
{\left[2 \lambda^{2}(\alpha-2)^{2}+2 \lambda(3 \alpha-4)\right] a_{2}^{2}+(3 \lambda-1)(3-2 \alpha) a_{3}=h_{2}(x) p_{2}+h_{3}(x) p_{1}^{2}}  \tag{3.11}\\
2 \lambda(\alpha-2) a_{2}=h_{2}(x) q_{1}  \tag{3.12}\\
{\left[2 \lambda^{2}(\alpha-2)^{2}+2 \lambda(5-3 \alpha)+2(2 \alpha-3)\right] a_{2}^{2}+(3 \lambda-1)(2 \alpha-3) a_{3}=h_{2}(x) q_{2}+h_{3}(x) q_{1}^{2} .} \tag{3.13}
\end{gather*}
$$

From (3.10) and (3.12), we find that

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
8 \lambda^{2}(\alpha-2)^{2} a_{2}^{2}=h_{2}^{2}(x)\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{3.15}
\end{equation*}
$$

Moreover, by using (3.13) and (3.11), we obtain

$$
\begin{equation*}
\left[4 \lambda^{2}(\alpha-2)^{2}+2(\lambda+2 \alpha-3)\right] a_{2}^{2}=h_{2}(x)\left(p_{2}+q_{2}\right)+h_{3}(x)\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{3.16}
\end{equation*}
$$

By using (3.14) in (3.16), we get

$$
\begin{equation*}
\left[4 \lambda^{2}(\alpha-2)^{2}+2(\lambda+2 \alpha-3)-\frac{8 \lambda^{2}(\alpha-2)^{2} h_{3}(x)}{\left[h_{2}(x)\right]^{2}}\right] a_{2}^{2}=h_{2}(x)\left(p_{2}+q_{2}\right) . \tag{3.17}
\end{equation*}
$$

From (1.3), and (3.17), we have the desired inequality (3.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.13) from (3.11) and using (3.14) and (3.15) we get

$$
\begin{equation*}
a_{3}=\frac{h_{2}(x)\left(p_{2}-q_{2}\right)}{2(3 \lambda-1)(|3-2 \alpha|)}+\frac{h_{2}(x)\left[p_{1}^{2}+q_{1}^{2}\right]}{8 \lambda^{2}(\alpha-2)^{2}} . \tag{3.18}
\end{equation*}
$$

Hence, using (3.14) and applying (1.3), we get desired inequality (3.4).
Now, by using (3.16) and (3.18) for some $\eta \in \mathbb{R}$, we get

$$
\begin{aligned}
a_{3} & -\eta a_{2}^{2}=\frac{\left[h_{2}(x)\right]^{3}(1-\eta)\left(p_{2}+q_{2}\right)}{\left[4 \lambda^{2}(\alpha-2)^{2}+2(\lambda+2 \alpha-3)\right]\left[h_{2}(x)\right]^{2}-8 \lambda^{2}(\alpha-2)^{2} h_{3}(x)}+\frac{h_{2}(x)\left(p_{2}-q_{2}\right)}{2(3 \lambda-1)(3-2 \alpha)} \\
& =h_{2}(x)\left[\left(\Theta(\eta, x)+\frac{1}{2(3 \lambda-1)(3-2 \alpha)}\right) p_{2}+\left(\Theta(\eta, x)-\frac{1}{2(3 \lambda-1)(3-2 \alpha)}\right) q_{2}\right],
\end{aligned}
$$

where

$$
\Theta(\eta, x)=\frac{\left[h_{2}(x)\right]^{2}(1-\eta)}{\left[4 \lambda^{2}(\alpha-2)^{2}+2(\lambda+2 \alpha-3)\right]\left[h_{2}(x)\right]^{2}-8 \lambda^{2}(\alpha-2)^{2} h_{3}(x)}
$$

Thus, we conclude that

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{h_{2}(x)}{(3 \lambda-1)(3-2 \alpha)} & ,|\Theta(\eta, x)| \leq \frac{1}{2(3 \lambda-1)(3-2 \alpha)} \\ 2\left|h_{2}(x)\right||\Theta(\eta, x)| & , \quad|\Theta(\eta, x)| \geq \frac{1}{2(3 \lambda-1)(3-2 \alpha)}\end{cases}
$$

This proves Theorem 3.2.
For $\lambda=1$ the class $M \Sigma(\lambda, \alpha, x)$ reduced to the class of biunivalent functions with respect to symmetrical points. For functions belong to this class we have the following corollary:

Corollary 3.3 Let the function $f \in \Sigma$ given by (1.1) be in the class $M \Sigma(1, \alpha, x)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left.\mid\left[\left(2(\alpha-2)^{2}+2(\alpha-1)\right) b-4 p(\alpha-2)^{2}\right] b x^{2}-4 q a(\alpha-2)^{2}\right) \mid}}  \tag{3.19}\\
\left|a_{3}\right| \leq \frac{|b x|}{2(|3-2 \alpha|)}+\frac{(b x)^{2}}{4(\alpha-2)^{2}} \tag{3.20}
\end{gather*}
$$

and for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{|b x|}{2(3-2 \alpha)} & ,|\eta-1| \leq \frac{1}{4(3-2 \alpha)}\left|C_{1}\right|  \tag{3.21}\\ \frac{\left|b x 3^{3}\right| 1-\eta \mid}{\left[2(\alpha-2)^{2}+2(\alpha-1)\right][b x]^{2}-4(\alpha-2)^{2}\left(p b x^{2}+q a\right) \mid} & ,|\eta-1| \geq \frac{1}{4(3-2 \alpha)}\left|C_{1}\right|\end{cases}
$$

where $C_{1}=2(\alpha-2)^{2}+2(\alpha-1)-\frac{4(\alpha-2)^{2}\left(p b x^{2}+q a\right)}{b^{2} x^{2}}$.

## ALAMOUSH/Turk J Math

## References

[1] Alamoush AG, Darus M. Coefficient bounds for new subclasses of bi-univalent functions using Hadamard product. Acta Universitatis Apulensis 2014; 153-161.
[2] Alamoush AG, Darus M. Coefficients estimates for bi-univalent of fox-wright functions. Far East Journal of Mathematical Sciences 2014; 249-262.
[3] Alamoush AG, Darus M. On coefficient estimates for new generalized subclasses of bi-univalent functions. AIP Conference Proceedings 1614 2014; 844.
[4] Altinkaya Ş, Yalçin S. Coefficient estimates for two new subclasses of bi univalent functions with respect to symmetric points. Journal of Function Spaces 2015; Article ID 145242.
[5] Babalola KO. On $\lambda$-pseudo-starlike functions. Journal of Classical Analysis 2013; 137-147.
[6] Brannan DA, Taha TS. On some classes of bi-unvalent functions. In: Mazhar SM, Hamoui A, Faour NS (editors). Mathematical Analysis and its Applications (Kuwait; February 18-21, 1985), 53--60, KFAS Proceedings Series, Vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, (1988),see also Studia Universitatis Babeș-Bolyai Mathematica 1986; 70-77.
[7] Eker SS, Şeker B. On $\lambda$-pseudo bi-starlike and $\lambda$-pseudo bi-convex functions with respect to symmetrical points. Tbilisi Mathematical Journal 2018; 49-57.
[8] Horadam AF. Jacobsthal Representation Polynomials. The Fibonacci Quarterly 1997; 137-148.
[9] Horadam AF, Mahon JM. Pell and Pell-Lucas Polynomials. The Fibonacci Quarterly 1985; 7-20.
[10] Horcum T, Kocer EG. On some properties of Horadam polynomials. International Mathematical Forum 2009; 1243-1252.
[11] Koshy T. Fibonacci and Lucas Numbers with Applications. A Wiley- Interscience Publication, 2001.
[12] Lewin M. On a coefficient problem for bi-univalent functions. Proceeding of the Amarican Mathematical Society 1967; 63-68.
[13] Lupas A. A Guide of Fibonacci and Lucas polynomials. Mathematics Magazine 1999; 2-12.
[14] Ma WC, Minda D. A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis (Nankai Institute of Mathematics 1992); 157-169.
[15] Ravichandran V. Starlike and convex functions with respect to conjugate points. Acta Mathematica: Academiae Paedagogicae Nyiregyhaziensis 2004; 31-37.
[16] Sakaguchi K. On a certain univalent mapping. The Journal of the Mathematical Society of Japan 1959; 72-75.
[17] Srivastava H M, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent function. Applied Mathematics Letters 2010; 1188-1192.
[18] Wang G, Gao CY, Yuan SM. On certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points. Journal of Mathematical Analysis and Applications 2006; 97-106.


[^0]:    *Correspondence: adnan-omoush@yahoo.com
    2010 AMS Mathematics Subject Classification: Primary 11B39, 30C45, 33C45; Secondary 30C50, 33C05.

