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Abstract: The complex unit disk D = {z ∈ C : |z| < 1} is endowed with Möbius addition ⊕M defined by

w ⊕M z =
w + z

1 + wz
.

We prove that the metric dT defined on D by dT (w, z) = tan−1 | − w ⊕M z| is an invariant of Möbius transformations
carrying D onto itself. We also prove that (D, dT ) and (D, dP ) , where dP denotes the Poincaré metric, have the same
isometry group and then classify the isometries of (D, dT ) .
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1. Introduction
Recall that the Poincaré disk model (also called the conformal disk model) consists of the (open) complex unit
disk,

D = {z ∈ C : |z| < 1}, (1.1)

naturally associated with the Poincaré metric. From a complex-analysis point of view, the Poincaré metric is
the most natural metric on the complex unit disk (cf. [13, p. 53]). The right transformations of the Poincaré
disk model are the Möbius transformations that carry D onto itself (also called conformal self-maps of D).
Several characterizations of Möbius transformations are obtained; see, for instance, [3–7, 9–12, 14–16, 21].

From an algebraic point of view, the complex unit disk has a nonassociative group-like structure when it
is equipped with Möbius addition ⊕M defined by the equation

w ⊕M z =
w + z

1 + wz
(1.2)

for all w, z ∈ D [20]. More precisely, (D,⊕M ) satisfies the following properties:

I. (identity) The zero number 0 satisfies 0⊕M z = z = z ⊕M 0 for all z ∈ D .
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II. (inverse) For each z ∈ D , the negative of z belongs to D and satisfies

−z ⊕M z = 0 = z ⊕M −z.

III. (the gyroassociative law) For all a, b ∈ D , define a map gyr[a, b] by

gyr[a, b]z =
1 + ab

1 + ab
z (1.3)

for all z ∈ D . Then gyr[a, b] is an algebraic automorphism of D with respect to Möbius addition for all
a, b ∈ D . Furthermore,

a⊕M (b⊕M c) = (a⊕M b)⊕M gyr[a, b]c

(a⊕M b)⊕M c = a⊕M (b⊕M gyr[b, a]c)
(1.4)

for all a, b, c ∈ D .

IV. (the loop property) For all a, b ∈ D ,

gyr[a⊕M b, b] = gyr[a, b] and gyr[a, b⊕M a] = gyr[a, b]. (1.5)

V. (the gyrocommutative law) For all a, b ∈ D ,

a⊕M b = gyr[a, b](b⊕M a). (1.6)

We remark that Möbius addition is not associative so that (D,⊕M ) does not form a group. However, it
shares common properties with groups. The space (D,⊕M ) is known as a gyrogroup, the term coined by Ungar
[19]. The map gyr[a, b] in item III is called a gyroautomorphism due to the fact that it represents a rotation of
the complex unit disk and preserves Möbius addition. Equation (1.4) resembles the associative law in groups,
called the gyroassociative law, and Equation (1.6) resembles the commutative law in abelian groups, called
the gyrocommutative law. From now on, the space (D,⊕M ) is referred to as the (complex) Möbius gyrogroup.
The next theorem collects some algebraic identities of the Möbius gyrogroup extended from group-theoretic
identities.

Theorem 1.1 (See [17, 19].) The following properties are true in (D,⊕M ) :

1. −a⊕M (a⊕M b) = b ; (left cancellation law)

2. −(a⊕M b) = gyr[a, b](−b⊕M −a) ;

3. (−a⊕M b)⊕M gyr[−a, b](−b⊕M c) = −a⊕M c ;

4. gyr[−a,−b] = gyr[a, b] ; (even property)

5. gyr[b, a] = gyr−1[a, b] , where gyr−1[a, b] denotes the inverse of gyr[a, b] with respect to composition of
functions; (inversive symmetry)

6. La : z 7→ a⊕M z is a bijective self-map of D and L−1
a = L−a .

Theorem 1.1 will prove useful in studying the geometric structure of the complex unit disk in Sections 2 and 3.
The map La described in Theorem 1.1(6) is in fact a Möbius transformation of D , which is called a hyperbolic
translation or a left gyrotranslation as it resembles a Euclidean translation.
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2. The metric induced by Möbius addition

In this section, we prove that the complex unit disk possesses another metric, denoted by dT (here, “T ” stands
for “tan−1 ”). We then establish that the Möbius transformations of D preserve dT . Hence, dT becomes a
numerical invariant of Möbius transformations of D . We also describe a few fundamental classes of isometries
of (D, dT ) as well as some geometry of (D, dT ) . Let us begin with the fact that the Cauchy–Schwarz inequality
in R2 may be expressed via complex multiplication and conjugation.

Lemma 2.1 For all w, z ∈ D ,
−2|w||z| ≤ wz + wz ≤ 2|w||z|. (2.1)

Proof Let w = a+bi and z = c+di , where a, b, c, d ∈ R . Then wz + wz

2
= ac+bd = 〈w, z〉 , where w = (a, b)

and z = (c, d) . According to the Cauchy–Schwarz inequality in R2 , we obtain |〈w, z〉| ≤ ‖w‖‖z‖ = |w||z| ,
which implies −|w||z| ≤ 〈w, z〉 ≤ |w||z| and so (2.1) holds. 2

Theorem 2.2 The inequality
|w| − |z|
1 + |w||z|

≤ |w ⊕M z| ≤ |w|+ |z|
1− |w||z|

(2.2)

holds in the complex unit disk.

Proof Let w, z ∈ D . Using the triangle inequality and the reverse triangle inequality, we obtain

(|w| − |z|)2 ≤ |w + z|2 ≤ (|w|+ |z|)2.

Note that |1+wz|2 = (1+wz)1 + wz = 1+wz+wz+|w|2|z|2 , which implies (1−|w||z|)2 ≤ |1+wz|2 ≤ (1+|w||z|)2

by Lemma 2.1. It follows that

|w ⊕M z|2 =
|w + z|2

|1 + wz|2
≤ (|w|+ |z|)2

(1− |w||z|)2

and so |w ⊕M z| ≤ |w|+ |z|
1− |w||z|

. Similarly, we have

|w ⊕M z|2 =
|w + z|2

|1 + wz|2
≥ (|w| − |z|)2

(1 + |w||z|)2

and hence |w ⊕M z| ≥ |w| − |z|
1 + |w||z|

. 2

Define a function | · |T by
|z|T = tan−1 |z| (2.3)

for all z ∈ D . The next theorem summarizes elementary properties of | · |T .

Theorem 2.3 | · |T satisfies the following properties:

1. |z|T ≥ 0 and |z|T = 0 if and only if z = 0
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2. | − z|T = |z|T

3. |w|T − |z|T ≤ |w ⊕M z|T ≤ |w|T + |z|T

4. |gyr[a, b]z|T = |z|T

for all a, b, w, z ∈ D .

Proof Item (1) follows from the fact that tan−1 is increasing and injective. Item (2) is clear. To prove item
(3), set r = |w|T = tan−1 |w| and s = |z|T = tan−1 |z| . By Theorem 2.2,

|w| − |z|
1 + |w||z|

≤ |w ⊕M z| ≤ |w|+ |z|
1− |w||z|

and so tan (r − s) ≤ |w ⊕M z| ≤ tan (r + s) . Since tan−1 is increasing, it follows that

r − s ≤ tan−1 |w ⊕M z| ≤ r + s,

as claimed. Item (4) follows from the fact that gyr[a, b] preserves the complex modulus. 2

In view of Theorem 2.3, one can define a new metric on the complex unit disk using | · |T . In fact, define
dT by

dT (w, z) = | − w ⊕M z|T (2.4)

for all w, z ∈ D . We remark that dT is a bounded metric on D , whereas the Poincaré metric is unbounded.

Theorem 2.4 dT is a bounded metric on the complex unit disk.

Proof By Theorem 2.3(1), dT (w, z) ≥ 0 . Furthermore, dT (w, z) = 0 if and only if −w ⊕M z = 0 if and only
if w = z . Let x, y, z ∈ D . Using some properties of Möbius addition mentioned in Theorem 1.1, we obtain

| − y ⊕M x|T = | − (−y ⊕M x)|T = |gyr[−y, x](−x⊕M y)|T = | − x⊕M y|T .

Hence, dT (y, x) = dT (x, y) . Furthermore, direct computation shows that

dT (x, z) = | − x⊕M z|T

= |(−x⊕M y)⊕M gyr[−x, y](−y ⊕M z)|T

≤ | − x⊕M y|T + |gyr[−x, y](−y ⊕M z)|T

= | − x⊕M y|T + | − y ⊕M z|T

= dT (x, y) + dT (y, z).

This proves that dT defines a metric on D .

Note that dT (0, z) = |z|T = tan−1 |z| < tan−1 1 =
π

4
for all z ∈ D . Hence,

dT (w, z) ≤ dT (w, 0) + dT (0, z) <
π

4
+
π

4
=
π

2

for all w, z ∈ D . 2
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There are two important classes of isometries of D with respect to dT : (i) modulus-preserving auto-
morphisms of (D,⊕M ) and (ii) hyperbolic translations; see Theorems 2.5 and 2.6. This allows us to prove that
(D, dT ) is a homogeneous space and to construct point-reflections of (D, dT ) .

Theorem 2.5 If τ ∈ Aut(D,⊕M ) and τ preserves the complex modulus, then τ is an isometry of (D, dT ) . In
particular, every rotation of the complex unit disk is an isometry of (D, dT ) .

Proof Let τ ∈ Aut(D,⊕M ) and suppose that τ preserves | · | . Then

dT (τ(w), τ(z)) = | − τ(w)⊕M τ(z)|T = |τ(−w ⊕M z)|T = | − w ⊕M z|T = dT (w, z)

for all w, z ∈ D .
Let ρ be a rotation of D ; that is, ρ(z) = ωz for all z ∈ D , where ω is a unimodular complex number.

Clearly, ρ preserves | · | and is bijective. Next, we prove that ρ preserves Möbius addition. Let w, z ∈ D .

Direct computation shows that ρ(w) ⊕M ρ(z) =
ω(w + z)

1 + |ω|2wz
= ω

w + z

1 + wz
= ρ(w ⊕M z) . It follows that ρ is an

isometry of (D, dT ) . 2

Theorem 2.6 The hyperbolic translation Lw : z 7→ w ⊕M z is an isometry of (D, dT ) for all w ∈ D .

Proof Let w ∈ D . The hyperbolic translation Lw is bijective since Lw ◦L−w and L−w ◦Lw are the identity
transformation of D by the left cancellation law. Using some properties of Möbius addition mentioned in
Theorem 1.1, we obtain

| − (w ⊕M a)⊕M (w ⊕M b)|T = |gyr[w, a](−a⊕M −w)⊕M (w ⊕M b)|T

= |(−a⊕M −w)⊕M gyr[a,w](w ⊕M b)|T

= |(−a⊕M −w)⊕M gyr[−a,−w](w ⊕M b)|T

= | − a⊕M b|T .

Hence, dT (Lw(a), Lw(b)) = dT (a, b) . 2

Theorem 2.7 (Homogeneity) For each pair of points w and z in D , there is an isometry ψ of (D, dT ) such
that ψ(w) = z . In particular, (D, dT ) is homogeneous.

Proof Let w, z ∈ D . Define ψ = Lz ◦ L−w . Then ψ is an isometry of D , being the composite of isometries
of D . Clearly, ψ(w) = z ⊕M (−w ⊕M w) = z . 2

With the aid of Möbius addition, a point-reflection symmetry of D is easy to construct, as shown in the
following theorem.

Theorem 2.8 (Symmetry) For each z ∈ D , there is a point-reflection symmetry σz of (D, dT ) ; that is, σz
is an isometry of (D, dT ) such that σ2

z is the identity transformation of D and z is the unique fixed point of
σz .
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Proof Let ι be the negative map of D ; that is, ι(z) = −z for all z ∈ D . By Theorem 2.5, ι is an isometry of
D . Define σz = Lz ◦ ι ◦ L−z . Then σz is a nonidentity isometry of D , being the composite of isometries of D .
Since L−z = L−1

z , it follows that σ2
z = (Lz ◦ ι ◦ L−1

z ) ◦ (Lz ◦ ι ◦ L−1
z ) = Lz ◦ ι2 ◦ L−1

z = Lz ◦ L−1
z = I , where I

is the identity transformation of D . By construction, z is a fixed point of σz . Suppose that w is a fixed point
of σz ; that is, σz(w) = w . It follows that z ⊕M ι(−z ⊕M w) = w and hence ι(−z ⊕M w) = −z ⊕M w . Since 0

is the unique fixed point of ι , we obtain that −z ⊕M w = 0 and so w = z . 2

3. Connections between the Poincaré metric and dT -metric
In this section, we indicate some fruitful connections between the Poincaré metric, the metric dT , and Möbius
transformations.

3.1. The metric structure of the complex unit disk
Recall that the Poincaré metric on D is given by

dP (w, z) = 2 tanh−1

∣∣∣∣ z − w

1− wz

∣∣∣∣ = 2 tanh−1 | − w ⊕M z| (3.1)

and the pseudo-hyperbolic distance δM (also called the Möbius gyrometric) is given by

δM (w, z) =

∣∣∣∣ z − w

1− wz

∣∣∣∣ = | − w ⊕M z| (3.2)

for all w, z ∈ D . The pseudo-hyperbolic distance δM is indeed a metric on D [2, Theorem 2.4]. Although the
metric dT is quite different from the Poincaré metric, they are topologically equivalent. To see this, note that
dT (w, z) ≤ dP (w, z) for all w, z ∈ D since f(x) = 2 tanh−1 x − tan−1 x defines a strictly increasing function
on the open interval (0, 1) . Hence, the topology induced by dP is finer than the topology induced by dT . If

w ∈ D and if ϵ > 0 , then set δ = tan−1
(
tanh

ϵ

2

)
so that BdT (w, δ) ⊆ BdP (w, ϵ) . This proves that the topology

induced by dT is finer than the topology induced by dP and so they coincide. The topology of D induced by
dP is in fact the usual Euclidean metric topology; see, for instance, Proposition 3 on p. 48 of [13].

It is well known that the metric space (D, dP ) is complete; see, for instance, Proposition 4 on p. 49
of [13]. Hence, every Cauchy sequence in (D, dP ) converges. This leads to a natural question of determining
whether (D, dT ) is complete since (D, dP ) and (D, dT ) are topologically equivalent. We begin with the fact
that (D, dT ) is not compact.

Let BP (z, ϵ) be the open ball of (D, dP ) of radius ϵ centered at z and let BT (z, ϵ) be the open ball of
(D, dT ) of radius ϵ centered at z . For all ϵ > 0 , note that

dP (z, w) < ϵ if and only if dT (z, w) < tan−1
(
tanh

ϵ

2

)
. (3.3)

This shows that BP (z, ϵ) = BT (z, ϵ
′) , where ϵ′ = tan−1

(
tanh

ϵ

2

)
, for all ϵ > 0 . This also implies that

BT (z, ϵ) = BP (z, ϵ
′) , where ϵ′ = 2 tanh−1 (tan ϵ) , for all ϵ with 0 < ϵ <

π

4
because the domain of tanh−1 is

(−1, 1) .
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Theorem 3.1 (D, dT ) is not compact.

Proof Define V =

{
BT

(
0,
π

4
− 1

n

)
: n ∈ N and n ≥ 2

}
. Then V is an open cover of (D, dT ) without finite

subcollections covering D . In fact, suppose that

U =

{
BT

(
0,
π

4
− 1

n1

)
, BT

(
0,
π

4
− 1

n2

)
, . . . , BT

(
0,
π

4
− 1

nr

)}

is a finite subcollection of V . Set m = max {n1, n2, . . . , nr} . Then

r⋃
i=1

BT

(
0,
π

4
− 1

ni

)
= BT

(
0,
π

4
− 1

m

)
⊊ D.

Therefore, (D, dT ) is not compact. 2

A similar argument used in the proof of Theorem 3.1 shows that (D, dP ) is not compact. In fact,
V = {BP (0, n) : n ∈ N} is an open cover of (D, dP ) without finite subcollections covering D since

r⋃
i=1

BP (0, ni) = BP (0,m) ⊊ D,

where m = max {n1, n2, . . . , nr} . Since (D, dP ) is complete, it follows that (D, dP ) is not totally bounded as a
metric space is compact if and only if it is complete and totally bounded. This in turn implies that (D, dT ) is
not totally bounded, as shown in the next theorem.

Theorem 3.2 (D, dT ) is not totally bounded.

Proof Suppose to the contrary that (D, dT ) is totally bounded. Let ϵ > 0 . For ϵ′ = tan−1
(
tanh

ϵ

2

)
, there

exist open balls BT (z1, ϵ′), BT (z2, ϵ′), . . . , BT (zk, ϵ′) of (D, dT ) such that
k⋃
i=1

BT (zi, ϵ
′) = D . As proved above,

BT (zi, ϵ
′) = BP (zi, ϵ) for all i = 1, 2, . . . , k . Hence,

k⋃
i=1

BP (zi, ϵ) = D and so (D, dP ) is totally bounded, a

contradiction. 2

In view of Theorems 3.1 and 3.2, the problem of determining whether (D, dT ) is complete is not immediate.
However, this is indeed the case, as shown in the following theorem.

Theorem 3.3 (D, dT ) is a complete metric space.

Proof Let (xn) be a Cauchy sequence in (D, dT ) . We first prove that (xn) is also a Cauchy sequence in

(D, dP ) . Let ϵ > 0 . For ϵ′ = tan−1
(
tanh

ϵ

2

)
> 0 , there is a positive integer N such that dT (xm, xk) < ϵ′ for

all m, k ≥ N . By (3.3), dP (xm, xk) < ϵ for all m, k ≥ N . Hence, (xn) is a Cauchy sequence with respect to
dP . As (D, dP ) is complete, (xn) converges in (D, dP ) , namely that xn → x and x ∈ D .
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We claim that (xn) converges to the same point x in (D, dT ) . Let ϵ > 0 . Set m = min {ϵ, π/8} and
M = min {tanm, 1/2} . Then M ∈ (0, 1) and we can let ϵ′ = 2 tanh−1M . Then ϵ′ > 0 and so there is a
positive integer N such that dP (xk, x) < ϵ′ for all k ≥ N . By (3.3),

dT (xk, x) < tan−1

(
tanh

ϵ′

2

)
= tan−1M ≤ tan−1 (tanm) = m ≤ ϵ

for all k ≥ N . This proves the claim. 2

3.2. The isometry groups of (D, dP ) , (D, δM ) and (D, dT )

The next theorem shows that (D, dT ) , (D, δM ) , and (D, dP ) have the same isometry group.

Theorem 3.4 Let ψ be a self-map of D . Then the following statements are equivalent:

1. ψ preserves dT ;

2. ψ preserves δM ;

3. ψ preserves dP .

Therefore, Iso(D, dT ) = Iso(D, δM ) = Iso(D, dP ) , where Iso(D, dT ), Iso(D, δM ) , and Iso(D, dP ) are the isometry
groups of (D, dT ), (D, δM ) , and (D, dP ) , respectively.

Proof The theorem follows from the fact that

dT (ψ(w), ψ(z)) = dT (w, z) ⇔ | − ψ(w)⊕M ψ(z)| = | − w ⊕M z|

⇔ dP (ψ(w), ψ(z)) = dP (w, z).

for all w, z ∈ D . 2

Let R be the group of rotations of D ; that is, R consists precisely of transformations of the form z 7→ ωz ,
z ∈ D , where ω is a unimodular complex number. Also, define

N = {η : η is a bijective self-map of D and |η(z)| = |z| for all z ∈ D}. (3.4)

It is clear that N forms a group under composition and that R is a subgroup of N . Furthermore, R is
proper in N as shown in (3.6). Let M(D) be the group of Möbius transformations carrying D onto itself; that
is, M(D) consists precisely of holomorphic functions from D to itself that are injective and surjective. By
Theorem 6.2.3 of [8], τ is a Möbius transformation of D if and only if τ = ρ ◦ φa , where ρ is a rotation in R ,
a ∈ D , and φa is given by

φa(z) =
z − a

1− az
, z ∈ D.

Clearly, φa = L−a . By Equation (55) of [17], ρ ◦ L−a = Lρ(−a) ◦ ρ . Moreover, if w ∈ D and ρ ∈ R , then
Lw ◦ ρ = ρ ◦ Lρ−1(w) = ρ ◦ φ−ρ−1(w) . This proves that

M(D) = {Lw ◦ ρ : w ∈ D and ρ ∈ R}. (3.5)
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Lemma 3.5 If ψ is an isometry of (D, dT ) that leaves 0 fixed, then ψ preserves the complex modulus.

Proof Let z ∈ D . Then

|ψ(z)|T = | − ψ(0)⊕M ψ(z)|T = dT (ψ(0), ψ(z)) = dT (0, z) = |z|T .

Since tan−1 is injective, it follows that |ψ(z)| = |z| . 2

We remark that there is a transformation of D that preserves the complex modulus but is not additive:

f(z) =


z if |z| 6= 1

2

−z if |z| = 1

2

(3.6)

for all z ∈ D . Moreover, f is not a rotation of D . The following theorem shows that the Möbius transformations
of D are indeed isometries of (D, dT ) . However, there exists an isometry of (D, dT ) that is not Möbius; see
Example 3.9.

Theorem 3.6 The following inclusions hold:

M(D) ⊆ Iso(D, dT ) ⊆ {Lw ◦ η : w ∈ D and η ∈ N}.

Proof By Theorems 2.5 and 2.6, M(D) ⊆ Iso(D, dT ) . Let ψ ∈ Iso(D, dT ) . Then ψ is a bijective self-
map of D . By Theorem 11 of [18], ψ = Lψ(0) ◦ η , where η is a bijective self-map of D fixing 0 . Since

η = L−1
ψ(0) ◦ψ = L−ψ(0) ◦ψ , it follows that η is an isometry of (D, dT ) . By Lemma 3.5, η preserves the complex

modulus and so η ∈ N . Hence, ψ ∈ {Lw ◦ η : w ∈ D and η ∈ N} . This proves the second inclusion. 2

Corollary 3.7 If a self-map σ of D does not preserve the metric dT , then σ is not Möbius.

Example 3.8 The function f defined by (3.6) preserves the complex modulus but does not define an isometry

of (D, dT ) . In fact, if w =
1

4
and z =

1

2
, then | − f(w)⊕M f(z)| = 6

7
, whereas | − w ⊕M z| = 2

7
. This shows

that Iso(D, dT ) is proper in {Lw ◦ η : w ∈ D and η ∈ N} .

From Example 3.8, we have seen that a modulus-preserving bijection need not be an isometry of D with
respect to dT . However, a modulus-preserving bijection that respects Möbius addition must be an isometry by
Theorem 2.5.

Example 3.9 The complex conjugation κ : z 7→ z , z ∈ D , is an isometry of (D, dT ) but not a Möbius
transformation of D . In fact, κ is an automorphism of (D,⊕M ) that preserves the complex modulus and hence
becomes an isometry of D with respect to dT and dP . However, κ is not Möbius for it is not holomorphic.
This shows that M(D) is proper in Iso(D, dT ) .

Example 3.9 motivates the following question:

Under what conditions is a dT -preserving self-map of D a Möbius transformation?
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According to the Schwarz–Pick lemma (see, for instance, Theorem 4 on p. 15 of [13]), an obvious answer of the
previous question is the condition of “being holomorphic”. We remark that this condition is very strong.

Theorem 3.10 If ψ is a dT -preserving self-map of D that is holomorphic, then ψ is a Möbius transformation
of D .

Proof Let w, z ∈ D with w 6= z . By assumption, dT (ψ(w), ψ(z)) = dT (w, z) , which implies∣∣∣∣∣ ψ(z)− ψ(w)

1− ψ(w)ψ(z)

∣∣∣∣∣ =
∣∣∣∣ z − w

1− wz

∣∣∣∣
since tan−1 is injective. By the Schwarz–Pick lemma, ψ is Möbius. 2

In order to describe the exact isometry group of (D, dT ) , we need a Euclidean version of Möbius addition.
Under the identification

z = u+ vi ↔ z = (u, v) for all u, v ∈ R,

Möbius addition becomes a binary operation on the open unit ball of R2 given by

u⊕M v =
(1 + 2〈u,v〉+ ‖v‖2)u+ (1− ‖u‖2)v

1 + 2〈u,v〉+ ‖u‖2‖v‖2
, (3.7)

where 〈·, ·〉 and ‖ · ‖ are the Euclidean inner product and norm of R2 , respectively; see Section 4 of [20]. In
view of (3.7), we obtain a complete description of the isometry group of (D, dT ) using Abe’s result [1] as follows.
Define

O(D) = {Φ|D : Φ is an orthogonal transformation of R2}, (3.8)

where Φ|D denotes the restriction of Φ to D .

Theorem 3.11 The isometry group of (D, dT ) is given by

Iso(D, dT ) = {Lw ◦ φ : w ∈ D and φ ∈ O(D)}. (3.9)

Proof Note that every transformation in O(D) is a bijective self-map of D since D is invariant under the
orthogonal transformations of R2 . Using (3.7), we obtain that if φ ∈ O(D) , then φ is an isometry of (D, dT )
since φ preserves both Möbius addition and the Euclidean inner product. This combined with Theorem 2.6
implies that

{Lw ◦ φ : w ∈ D and φ ∈ O(D)} ⊆ Iso(D, dT ).

To prove the reverse inclusion, let τ ∈ Iso(D, dT ) . By Theorem 11 of [18], τ = Lτ(0) ◦ φ , where φ is a

bijective self-map of D fixing 0 . Thus, φ = L−1
τ(0) ◦ τ preserves the metric dT as well as the Möbius gyrometric

δM . By Theorem 3.2 of [1], φ = Φ|D , where Φ is an orthogonal transformation of R2 . Hence, φ ∈ O(D) and
the proof completes. 2

It is a standard result in linear algebra that any orthogonal transformation of R2 is either a rotation
about the origin (which is Möbius) or a reflection about a line passing through the origin (which is not Möbius).
Theorem 3.11 shows that any isometry of (D, dT ) is of the form ψ = Lw ◦ φ , where w ∈ D and φ is the
restriction of an orthogonal transformation of R2 to D . Furthermore, ψ is Möbius if and only if φ is a rotation
about the origin.
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